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Abstract—In this paper, we present a distributed particle filter (DPF)
for target tracking in a sensor network. The proposed DPF consists
of two major steps. First, particle compression based on support
vector machine is performed to reduce the cost of transmission among
sensors. Second, each sensor fuses the compressed information from
its neighboring nodes with use of consensus or gossip algorithm to
estimate the target track. Computer simulations are included to verify
the effectiveness of the proposed approach.

1. INTRODUCTION

The research topic of sensor networks has attracted much attention
over the past few years because it has wide applications in
environmental, medical, food-safety and habitat monitoring, assessing
the health of machines, vehicles and civil engineering structures,
energy management, inventory control, home and building automation,
homeland security and military initiatives [1, 2]. Distributed
computation has found very successful applications in sensor
networks [2–5] particularly when a powerful central unit is not
available. In this paper, we address the problem of target tracking in
sensor networks using a distributed processing scheme. The advantages
of the distributed approach over the centralized one are twofold:
First, it does not need a central unit, which makes it robust. By
robust we mean that the whole system still goes on smoothly even
when a single sensor fails or joins/leaves the sensor networks. On
the other hand, the system cannot be carried on if the central unit
fails in the centralized case. Second, it is scalable. By scalable we
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mean that each sensor only needs its neighboring node information
for target track computation. Particle filter (PF) is a standard
technique for target tracking [6, 7]. The distributed particle filter
(DPF) is a distributed realization of PF. In [5], a DPF is presented to
factorize the likelihood function, and each partial likelihood function
is updated at individual sensors using only local observations. The
partial likelihood function is represented by a parameterized model
and the parameters are transmitted to neighboring sensors. In [8],
a low dimensional Gaussian mixture model (GMM) is suggested to
describe the posterior probability density function (PDF) and model
parameters are transmitted over the network. The GMM is also
adopted in [9] where a distributed expectation maximization procedure
is used to estimate the parameters. In this work, we propose to
use support vector machine (SVM) [10, 11] in density estimation to
compress the particles because it can always find the global optimum
and gives the sparse solution. SVM has already found successful
applications in pattern recognition and regression estimation [12, 13].
Since each sensor independently processes its own particles, we need
to fuse the sensors’ information. To achieve distributed information
fusion, a consensus algorithm [4] and a gossip method [14, 15] are
adopted. The consensus algorithm is synchronous, that is, all sensors
activate and communicate with their neighbors at each iteration. On
the other hand, gossip method is asynchronous, in which only one
sensor activates to transmit the information to its neighbors at each
iteration. The main contribution of this paper is that we use SVM to
find the sparse representation of particles and use averaging algorithms
to fuse sensor information in the DPF development. For a comparative
study between consensus and gossip algorithms, the interested reader
is referred to [3].

The rest of the paper is organized as follows. The problem
formulation of target tracking is presented in Section 2. In Section 3,
we present a SVM-based density estimation for sparse representation
of particles. The distributed evaluation is described with the use
of consensus and gossip algorithms in Section 4. In Section 5,
simulation results for evaluating the tracking performance of the
proposed approach are provided. Finally, conclusions are drawn in
Section 6.

2. PROBLEM FORMULATION

The model-based methods for tracking applications generally require
two models, namely, state model and measurement model. The former
describes the evolution of the state with time while the latter defines
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the relationship between the noisy observations and state. In case of
two-dimensional (2D) target tracking, let xt,j = [xt,j , yt,j , ẋt,j , ẏt,j ]T
be the state vector that contains the coordinates and velocities of a
moving target at time t of the jth sensor. In this study, we assume a
linear state [2]:

xt,j = f(xt−1,j) + vt,j = Fxt−1,j + vt,j (1)

where

F =




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1




The Ts is the sampling interval, vt,j is a 4 × 1 independent and
identically distributed process noise vector with vt,j ∼ N (0,Q) where
0 is a zero vector and Q is the covariance matrix of the form of
Ddiag(σ2

x, σ2
y)D

T , with σ2
x and σ2

y are the variances in x-coordinate
and y-coordinate, and D is given as

D =




T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts




On the other hand, we consider that time-of-arrival (TOA) and
angle-of-arrival (AOA) measurements are obtained at the sensors.
By multiplying the TOAs with known propagation speed, range
information is acquired. The observed distance measurement rt,j and
AOA measurement φt,j at time t of the jth sensor are:

rt,j = dt,j + εt,j , t = 1, 2, . . . , j = 1, 2, . . . , M (2)

φt,j = θt,j + qt,j , t = 1, 2, . . . , j = 1, 2, . . . , M (3)

where dt,j =
√

(xt − xj)2 + (yt − yj)2, θt,j = tan−1( yt−yj

xt−xj
), M is the

total number of sensors in the network, (xj , yj) denotes the known
coordinates of the jth sensor, εt,j ∼ N (0, σ2

ε) is noise for range
measurement and qt,j ∼ N (0, σ2

q ) is noise for the AOA measurement.
Putting the TOA and AOA measurements of the jth sensor together
yields the vector for measurement model, denoted by zt,j :

zt,j = g(xt,j) + wt,j (4)

where zt,j = [rt,j θt,j ]T and wt,j = [εt,j qt,j ]T . For such a nonlinear
target tracking problem, PF has been successfully applied [6, 7, 16–
19]. The detailed information of PF is summarized in Table 1. The
goal of this work is to develop a DPF instead of using the centralized
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Table 1. Particle filter algorithm.

For t = 1, 2, . . .

(i) Initialization:
For i = 1, . . . , N , sample the state particle xi

0 ∼ p(x0)
(ii) Prediction of particles:
For i = 1, . . . , N , draw particles

x(i)
t ∼ q

(
xt|x(i)

t−1, z1:t

)

where q(·) is an importance function,
z1:t = {z1, z2, . . . , zt} denotes all the observations up to
the current time t and zt = [zt,1, . . . , zt,M ]T .
(iii) Update:
For i = 1, . . . , N , evaluate the importance weight:

w
(i)
t ∝ w

(i)
t−1 ×

p
(
zt

∣∣x(i)
t

)
p
(
x

(i)
t

∣∣x(i)
t−1

)

q
(
xt

∣∣x(i)
t−1,z1:t

)

For i = 1, . . . , N , normalize the importance weight:
w̃i

t = wi
t/

∑N
j=1 wj

t

(iv) Resampling step: (if necessary)
Eliminate samples with low importance weights and
multiply samples with high importance weights.
For i = 1, . . . , N , set wi

t = 1/N .
(v) Estimation step:
The minimum mean square error estimate of state
is obtained as:

x̂t ≈
∑N

i=1 w
(i)
t x(i)

t

one. To develop a DPF, there are two most important questions need
to be handled. The first one is that what information we should
communicate between sensors. The second one is that how we fuse
the information contained in each sensor. In the following sections, we
will answer these two questions respectively.
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3. DENSITY ESTIMATION USING SUPPORT VECTOR
MACHINE

In this section, we answer the first question. According to the
state and measurement models, the particles are sampled to represent
the posterior PDF of the target position [7]. Considering the
communication energy consumption, it is not feasible to transmit all
particles over the sensor network. Given the set of particles {xi}N

i=1 at
each sensor, we want to find a sparse representation of those particles.
A standard way is to use Gaussian mixtures to approximate the particle
distribution but the maximum likelihood estimate does not exist [20].
In this paper, we seek a non-parametric method, namely SVM, to
achieve the task. SVM has found a lot of successful applications in
regression and classification problems [12, 13]. In what follows, the
use of SVM in density estimation will be employed to compress the
particles. Note that we only consider one sensor’s particles, other
sensors do the same thing in parallel. For clarity, the subscripts are
omitted as long as it does not introduce any confusions. The objective
is to estimate the PDF p(x) that represents the particles from a sensor
at each time. The estimate of p(x) can be obtained through the
following equation: ∫ x

−∞
p(s)ds = F (x) (5)

where F (x) is the cumulative distribution function (CDF). Estimating
p(x) requires solving (5) from the unknown function F (x) based on
the particles {xi}N

i=1. The multidimensional empirical distribution
function Fl(x) to approximate the actual distribution F (x) is

F (x) ≈ Fl(x) =
1
N

N∑

i=1

d∏

h=1

u
(
xh − xh

i

)
(6)

where u(·) is the step function, d = 4 is the dimension of x. The
problem now is to solve (5) based on {(x1, Fl(x1), . . . , (xN , Fl(xN )}. It
is proved in the SVM theory that the global estimates for the unknown
CDF and PDF are:

F̂ (x) =
N∑

i=1

βiK(xi,x), p̂(x) =
N∑

i=1

βiK̃(xi,x) (7)

where {βi}N
i=1 are weight parameters, K(·, ·) is a kernel function, and

K̃(·, ·) is a ‘cross-kernel’ function. The two functions are related by:

K(x,y) =
∫ y

0
K̃(x, s)ds (8)
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In our study, the Gaussian cross-kernel function with variance σ2
j at

the jth sensor is adopted, that is,

K̃(x, s) =
1

σj(2π)d/2
exp

(
−‖x− s‖2

2σ2
j

)
(9)

The weight parameters {βi}N
i=1 are obtained by solving the following

constrained optimization problem [10]

min
βi,ξi

{
N∑

i=1

ξ2
i +

N∑

i=1

βi

σj

}

s.t.
N∑

i=1

βiK(xi,xl) + ξi = Fl(xl), l = 1, . . . , N

N∑

i=1

βi = 1

βi ≥ 0

(10)

where {ξi}N
i=1 is a set of slack variables. This optimization solution

gives only a small number of non-zero βi, and the corresponding
particles {xi} are called support vectors. Using the SVM approach,
particle compression is achieved. In this way, only support vectors
will be communicated between neighbor sensors in the sensor network
instead of the whole set of particles.

4. DISTRIBUTED PARTICLE FILTER

In this section, we answer the second question. To achieve DPF
processing, we need to fuse the information contained in each sensor
in a distributed manner. Now, we describe two classes of fusion
algorithms, namely, consensus and gossip algorithms, which will be
used for DPF. The goal is to compute the average value of the support
vector extracted from each sensor data. In what follows, we will
introduce these two algorithms in details.
• Consensus algorithm [4, 21]:
The consensus filter is a synchronous method. All sensor nodes wake
up at each iteration k, communicate with their neighbors and update
their values. Suppose that the estimated density function in the jth
sensor at time t is p̂t

j(x), then its update equation at iteration (k + 1)
is

p̂t
j(x)(k + 1) = p̂t

j(x)(k) + η





∑

i∈Nj

(
p̂t

i(x)(k)− p̂t
j(x)(k)

)


 (11)
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where η is the iteration step, Nj is a set of neighbors of the jth sensor.
After long enough iterations, each sensor will have the same value,
denoted by p̄(x):

p̄t(x) =
1
M

M∑

j=1

p̂t
j(x) =

1
M

M∑

j=1

N∑

i=1

βj
i K̃

(
xj

i ,x
)

(12)

where βj
i and xj

i denote weight parameters and particles at the jth
sensor respectively. For the detailed study of the consensus algorithm,
the interested reader is referred to [21].
• Gossip method [15]:
The broadcast gossip method is an asynchronous algorithm. At each
iteration step, only one sensor activates. Suppose that the jth sensor
activates at iteration step k, broadcasts its information to its neighbors,
and neighbors update their values. The update equation is:

p̂t
i(x)(k + 1) = γp̂t

i(x)(k) + (1− γ)p̂t
j(x)(k), ∀i ∈ Nj (13)

The broadcast gossip algorithm converges to average of the all sensor
values in the mean sense [15]. However, the convergence of the
consensus-DPF is superior to that of the gossip-DPF in terms of
number of iterations, which is demonstrated in our simulation studies.
With the use of distributed average algorithms, the DPF algorithm at
each sensor is summarized in Table 2. Note that the global function at
time t should be calculated before going to time t+1. Nevertheless, it is
computed in an iterative manner, that is, we take the converged global
function for a fixed number of iterations as the finalized function.

5. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the tracking
performance of the proposed methods. We consider that M =
110 sensors are randomly deployed on a 2D sensor network of
dimension 500 m × 500m and the connection between sensors is
shown in Figure 1 [9]. The initial state vector of the target is
[50m, 40m, 7m/s, 6m/s]T . The target trajectory is generated without
process noise. The sampling time is Ts = 1 s. The number of particles
is N = 10 due to the limited storage in sensors. In the consensus
algorithm, η = 0.01 and γ = 0.5 is assigned in the gossip method.
The iteration number for the consensus and gossip algorithms in (11)
and (13) is 100. In the kernel function, the variance is set to be
σ2

j = 1 for all sensors. The DPF are randomly initialized around
the true values. All results provided are averages of 50 independent
runs. In the centralized PF, the particle number is 1100. In Figures 2
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and 3, the mean square position error (MSPE) performance for DPF
with consensus and gossip schemes is plotted for all sensors at σ2

ε =
σ2

q = 1 and σ2
ε = σ2

q = 5, respectively. The DPFs have comparable
performance with the centralized PF, which proves the validity of the
proposed DPF. Intuitively, the centralized PF should have the best
performance when compared with the DPFs. However, the results
show that the latter can outperform the former. One possible reason for
the superior performance of the latter is that distributed computation
introduces diversity between sensors, which makes DPF better in our
case. Here, diversity refers to different information from different
sensors. Another possible reason is that the number of particles in the
centralized method is not sufficiently large. On the other hand, it is

Table 2. Distributed particle filter algorithm.

For t = 1, 2,. . .
(i) Initialization: For i = 1, . . . , N , sample state particle xi

0 ∼ pt(x0)
(ii) Calculate local function p̂t

j(x) based on SVM at each sensor.
(iii) Compute global function p̄t(x) based on consensus filter
or broadcast gossip algorithm using the local functions for
a fixed number of iterations.
(iv) Sample particles from estimated p̄t(x).
(v) Use bootstrap method to calculate predicted particles,
predicted observations and importance weights.
(vi) Resample if necessary.
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Figure 1. Sensor network geometry and connection.
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observed that the centralized algorithm is more robust to measurement
noises. It is observed that the consensus-DPF is superior to gossip-
DPF because the convergence of the consensus filter is faster that
of the gossip algorithm. The MSPE of DPFs is plotted in Figure 4
without SVM compression scheme, in which it is observed that they
have similar performance as in Figure 2. On the other hand, the
number of particles transmitted using SVM scheme at one time is
shown in Figure 5. It can be seen that there are three cases, namely,
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Figure 2. Mean square position
error (MSPE) of different meth-
ods at σ2

ε = σ2
q = 1 with SVM.

The upper part refers to central-
ized PF, middle part refers to
gossip-DPF, and lower part cor-
responds to consensus-DPF.
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Figure 3. Mean square position
error (MSPE) of different meth-
ods at σ2

ε = σ2
q = 5 with SVM.

The upper part refers to gossip-
DPF, middle part refers to cen-
tralized PF, and lower part corre-
sponds to consensus-DPF.
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Figure 4. Mean square position error (MSPE) of different methods
at σ2

ε = σ2
q = 1 without SVM scheme. The upper part refers to gossip-

DPF and lower part corresponds to consensus-DPF.
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Figure 5. Number of particles transmitted using SVM scheme.

only one particle is being transmitted in some sensors, all particles are
exchanged in some sensors, and portion of the particles is transmitted
in other sensors. However, on average less than 60% percentage of
particles is transmitted compared to transmitting all particles, that
is, without SVM scheme, which demonstrates the effectiveness of the
SVM scheme in compressing particles.

6. CONCLUSION

A distributed particle filter (DPF) for target tracking in sensor
networks is developed in this paper. The proposed DPF includes
two major steps, namely, the use of support vector machine to
compress the particles and utilizing distributed averaging algorithms
to fuse the information between sensors. This DPF is robust because
it does not require a central unit and it is scalable because the
information exchange only takes place between neighboring sensors.
Computer simulation results demonstrate the validity of the proposed
methods. It is expected that the performance can be further improved
if extended Kalman filter or unscented Kalman filter is used as
importance sampling function at the expense of higher computational
requirement [16, 17].
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