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Abstract—In this paper, three approaches for the synthesis of the
optimal compromise between sum and difference patterns for sub-
arrayed linear and planar arrays are presented. The synthesis problem
is formulated as the definition of the sub-array configuration and the
corresponding sub-array weights to minimize the maximum level of the
sidelobes of the compromise difference pattern. In the first approach,
the definition of the unknowns is carried out simultaneously according
to a global optimization schema. Differently, the other two approaches
are based on a hybrid optimization procedures, exploiting the convexity
of the problem with respect to the sub-array weights. In the numerical
validation, representative results are shown to assess the effectiveness
of the proposed approaches. Comparisons with previously published
results are reported and discussed, as well.

1. INTRODUCTION

Monopulse tracking radars [1] are based on the simultaneous
comparison of sum and difference signals to compute the angle-error
and to steer the antenna patterns in the direction of the target (i.e.,
the boresight direction). Besides classical solutions where multi-
feeder reflectors are considered, the two (sum and difference) or three
(sum and double-difference) patterns, needed to determine the angular
location of the target along a singular angular coordinate or both in
azimuth and elevation, can be synthesized through linear or planar
array antennas, respectively. Recent studies are mainly devoted to
array solutions because of the larger number of degrees of freedom. As
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a matter of fact, such a solution allows one to control the illumination
of the array directly on the aperture by modifying the excitations
of the radiating elements. Moreover, the synthesized patterns are
electronically steerable. This enables the fast change of the beam
direction and it avoids the inertia problems due to the use of mechanical
positioning systems. On the contrary, the drawbacks of the array
implementation lay in the circuit complexity and the arising costs.
Nevertheless, the elements of the aperture can be grouped into sub-
arrays in order to simplify the antenna design and obtain cheaper
tradeoff despite some reductions of the antenna performances [2, 3].

In antenna systems applied for real world applications [4], different
strategies for implementing monopulse radars have been adopted. A
well known technique considers the partition of the array aperture into
two halves (linear array) o four quadrants (planar arrays). The outputs
of the elements belonging to the same half/quadrant are combined and
continuously compared with the output/s of the other half/quadrants
to determine the error signal. Such a signal is used to steer the sum
and difference beams and thus to track the moving target.

In such a framework, recent papers have dealt with the optimal
compromise problem between sum and difference patterns, starting
from an optimum sum pattern generated by a complete and dedicated
feed network. The elements of the array are then grouped into sub-
arrays with a proper weighting to obtain a “sub-optimal” difference
pattern. Either the optimization of some specific pattern features
(e.g., the directivity [5–7], the normalized difference slope [8], the
sidelobe level (SLL) [9, 10]) or the fitting with an optimal pattern
in the Dolph-Chebyshev sense [11, 12] have been considered. Among
them, the SLL minimization of the compromise difference pattern
has received particular attention. To deal with such a synthesis
problem, different optimization strategies based on global optimization
approaches [13, 14] as well as two-step hybrid techniques [9–11, 15] have
been proposed. However, an effective and flexible procedure able to
deal with both the synthesis of linear and planar structures has been
previously proposed only in [9, 12, 16]. Such an event is mainly due to
the exponential growth of the dimension of the solution space with the
increase of the number of array elements.

The approach proposed in [12] and then extended in [16], named
Contiguous Partition Method (CPM), takes advantage from the
knowledge of the relationship between the independent distributions of
the optimal sum and difference [17] coefficients to reduce the dimension
of the solution space. Accordingly, the synthesis of large planar arrays
is enabled and the converge of the synthesis procedure speeded up.
Essentially based on an excitation matching procedure, the sub-array
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configuration is first obtained by minimizing the distance between the
reference/optimal and synthesized (sub-arrayed) difference coefficients.
Accordingly, the sub-array gains are directly computed as a function
of the optimal sum and difference excitations exploiting the guidelines
of [20]. Nevertheless, the CPM procedure does not allow to control the
level of the sidelobes. To overcome this drawback, preliminary results
obtained by means of an iterative version of the CPM (the I-CPM)
have been shown in [18, 19]. There, the optimal pattern to match is
iteratively changed until the SLL of the compromise solution satisfied
the user-defined constraints.

In this paper, three new approaches aimed at the minimization
of the SLL of the compromise difference pattern are presented. In
the first, the simultaneous optimization of the problem unknowns is
dealt with likewise [12], but in this case the so-called solution tree (i.e.,
the representation of all the admissible sub-array configuration [12])
is explored looking the solution with minimum SLL. This strategy
will be referred in the following as Modified CPM (M -CPM). The
other two approaches consider the hybridization of the I-CPM (HI-
CPM) and of the M -CPM (HM -CPM) with a Convex Programming
(CP ) procedure [10] to directly introduce SLL constraints in the
optimization procedure.

The paper is organized as follows. In Section 2, the synthesis
problem is mathematically formulated. The innovative CPM -based
procedure aimed at the optimization of the SLL is pointed out in
Section 3, where the one-step (Section 3.1) as well as the hybrid two-
step (Section 3.2) are presented. A set of selected results concerning
the synthesis of linear as well as planar arrays is reported in Section 4
to assess the effectiveness of the proposed methods. Comparison with
previously published results are also reported where available. Finally,
some conclusions are drawn (Section 5).

2. MATHEMATICAL FORMULATION

Let us consider either a linear or planar array with elements uniformly
spaced in the xy-plane (Fig. 1). The array factor is

f (u, v) =
N∑

n=1

cnejk(uxn+vyn) (1)

where cn, n = 1, . . . , N , is the set of real excitations, u = sin θ cosφ
and v = sin θ sinφ, where the values (θ, φ), θ ∈ [

0, π
2

]
and φ ∈ [0, 2π],

indicate the angular direction, and k = 2π
λ is the wavenumber of the

background medium. Moreover, (xn, yn) is the position of the n-th
array element.
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Figure 1. Planar array geometry.

To obtain sum and difference patterns, the distribution of the
coefficients is supposed to be symmetric with respect to the physic
center of the aperture. In particular and concerning the linear case,
the two halves of the array are summed in phase and phase reversal,
respectively. Differently, the aperture is supposed to be divided into
four symmetric quadrants in the case of a planar array. Accordingly,
the sum signal is obtained by adding in phase all the output of the four
quadrants, while the difference modes, namely the azimuth difference
mode (H-mode) and the elevation difference mode (E-mode), are given
with pair of quadrants added in phase reversal.

The excitations of the “sub-optimal” difference pattern cn = dn,
n = 1, . . . , N , as obtained through the sub-arrayed feed network are

dn =

{ ∑Q
q=1 snδanqwq −π/2 < φ ≤ π/2

∑Q
q=1 (−1) snδanqwq π/2 < φ ≤ 3π/2

(2)

where S = {sn; n = 1, . . . , N} is a set of fixed excitations affording an
optimal sum pattern [17], W = {wq; q = 1, . . . , Q} are the (unknown)
sub-array weights, A = {an; n = 1, . . . , N} is a integer vector where the
element an ∈ [0, Q] indicating the sub-array membership (when an = 0
it follows that dn = sn) and δanq is the Kronecker delta (δanq = 1 if
an = q and δanq = 0 otherwise). Since monopulse planar arrays require
the generation of two spatially-orthogonal difference patterns [4], the
coefficients of the first difference mode are given as in (2), while the
second difference mode is obtained by adding the two pairs of quadrants
shifted by π/2 in the φ-direction with respect to (2).
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Hence, the problem at hand is formulated as follows : “optimizing
the sub-array configuration Aopt and the corresponding set of weights
W opt to obtain a compromise difference pattern with minimum sidelobe
level for a given main lobes beamwidth.”

3. SIDELOBE LEVEL OPTIMIZATION APPROACHES

In this section, three new approaches for the solution of the optimal
compromise between sum and difference patterns are described,
where the SLL optimization of the difference beams is dealt with.
In particular, the simultaneous optimization of both the sub-array
aggregation and the sub-array gains is firstly considered according to
the M -CPM (Section 3.1) and the main differences with respect to the
I-CPM [18] are pointed out. Then, their hybridized two-step versions,
namely the HI-CPM and the HM -CPM are presented in Section 3.2,
as well.

3.1. Simultaneous Definition of the Unknowns

As far as the simultaneous synthesis of the problem unknowns is
concerned, the Iterative Contiguous Partition Method (I-CPM) has
been successfully applied. Its procedure and some preliminary results
have been already published in [18, 19], where linear and planar array
synthesis problems have been dealt with, respectively. In particular,
the I-CPM is based on the following concept: by successively
changing the reference/optimal target to approximate, at each step
the CPM [12] is applied until the requirements on the SLL for the
synthesized difference pattern are satisfied. It is worth to notice that
in the I-CPM [19], whose workflow is schematically outlined in Fig. 2,
the optimization of the SLL is obtained as a by-product. As a matter
of fact, the bare version of the CPM [12] concerns the definition of the
“best compromise” difference pattern close as much as possible to the
optimal one through an excitation matching procedure. Nevertheless,
enforcing the CPM to iteratively approximate an optimal difference
pattern with a reference SLL lower and lower, it allows to reduce the
SLL of the synthesized pattern and therefore to satisfy user-defined
constraints.

The strategy proposed in this work, namely the Modified
Contiguous Partition Method (M -CPM), tries to to explore the
solution tree [12], directly looking for the solution with minimum SLL,
unlike the one guaranteeing the best least-square pattern matching.
The solution with the lowest SLL is searched by means of the border
element method (BEM) described in [12]. Towards this aim, the
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Figure 2. Pictorial representation of the CPM-based approaches.

following cost function is considered

ΨM -CPM (A,W ) = min
u,v

{SLL (u, v)} (3)

for the linear and planar case, where SLL (u, v) is the maximum level
of the sidelobes outside the main lobe region. Let us we refer to this
procedure as the.

It is worth noting that both the I-CPM and the M -CPM
allow the simultaneous definition of all the problem unknowns in a
reliable and efficient way since the are based on the CPM . As a
matter of fact, whether on one hand the final sub-array aggregation is
obtained through the BEM , which computational efficiency has been
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pointed out in [2], on the other hand the definition of the sub-array
weights does not increase the computational burden, since an analytical
relationship [12] is considered:

wCPM
q =

[∑N
n=1 δanq (snβn)∑N
n=1 δanq (sn)2

]
; q = 1, . . . , Q (4)

where B = {βn; n = 1, . . . , N} is the set of optimal difference
excitations [17].

3.2. Two-step Hybrid Approaches

Inspired by the investigations on the synthesis of difference patterns
carried out in [21], it has been recently discussed in [10] how the
definition of the sub-array weights can be formulated as the solution
of a convex programming problem, once the clustering of the array
elements is given. However, in [10] the solution of a the CP problem is
required every time a new sub-array configuration is obtained by means
of the an approach based on Simulated Annealing (SA). Therefore, the
SA-CP approach turns out to be affected by an unavoidably and high
computational cost.

In order to cope with this drawback, in the following two new
hybrid (two-step) approaches are proposed, where the solution of
the CP problem is required only once during the whole synthesis
process. The flowchart of both the approaches is schematically
depicted in Fig. 2. More specifically, at the first step the sub-array
configurations are computed according to the principles of either the
M -CPM or the I-CPM [18]. Successively, the sub-array weights,
W opt =

{
w

(opt)
q ; q = 1, . . . , Q

}
, of the compromise feed network are

computed so that the SLL of the afforded pattern is below a pre-fixed
threshold. The following cost function

ΨCP (W ) =
∂Re {f (u, v)}

∂u∂v

∣∣∣∣ u = u0

v = v0

(5)

is minimized subject to ∂Im{f(u,v)}
∂u∂v

∣∣∣ u = u0

v = v0

= 0, to f (u0, v0) = 0 and

a function descriptive of an upper mask UB (u, v) on the synthesized
difference pattern. Moreover, Re and Im denotes the real and
imaginary part, respectively and (u0, v0) is the boresight direction.
Towards this end, a standard CP procedure is used, whose initial guess
solution is given by W (0) as computed through Eq. (4).
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4. NUMERICAL SIMULATIONS AND RESULTS

In order to show the effectiveness and the versatility of the proposed
approaches, different synthesis problems concerning linear (small and
large) as well as planar monopulse array antennas are shown in this
section. In order to better point out the advantages and limitations
of the simultaneous/global optimization and of the hybrid procedures,
the numerical analysis has been subdivided in two parts. The first one
(Section 4.1) concerns with the syntheses of small linear arrays, where
the total number of unknowns is small (N ≤ 20) and both global
and hybrid approaches reach the final solution in a limited amount
of time (i.e., in the order of one minute or less). The capability to
deal with large linear arrays and planar apertures, characterized by a
large number of radiating elements, is then considered in Section 4.2.
Comparisons with benchmarks already reported in the literature are
considered where available.

4.1. Small Linear Arrays Synthesis

In the first test, let us consider a linear array of N = 20 elements
equally spaced of λ/2. The sum excitations are chosen to afford a
Villeneuve pattern with SLL = −25 dB and n = 4 [22]. The number
of sub-arrays has been set equal to Q = 5. In this case the results
obtained by means of the proposed approaches are compared with the
pattern synthesized by means of the constrained Excitation Matching
Method (EMM) of [11], where the final pattern was characterized by
SLL = −23.4 dB.

As far as the proposed approaches are concerned, the optimal
difference excitation set considered in the M -CPM is chosen to
correspond to the one used at the last step of the I-CPM . Moreover,

Table 1. Small linear array (N = 20, d = λ
2 , Q = 5) — Sub-array

configurations and weights.

N = 20
AICPM ,

AH-ICPM
3 4 5 5 5 4 3 3 2 1 1 2 3 3 4 5 5 5 4 3

AMCPM ,

AH-MCPM
3 4 5 5 5 4 4 3 2 1 1 2 3 4 4 5 5 5 4 3

Q = 5 W ICPM 0.1738 0.5083 0.9561 1.3299 1.4775

W MCPM 0.1738 0.5083 0.8358 1.2042 1.4775

W H-ICPM 0.2896 0.7476 1.4378 2.1858 2.3207

W H-MCPM 0.3423 0.7816 1.6012 2.1233 2.7166
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since the constrained EMM [11] is also an excitation matching
procedure, we force the I-CPM to avoid a reference target with SLL
lower than that considered in [11] (i.e., a modified Zolotarev difference
pattern with SLL = −25 dB, n = 4 and ε = 3 [23]).

The sub-array configurations Aopt
I-CPM , Aopt

M -CPM as well as the
corresponding sub-array gains W opt

I-CPM , W opt
M -CPM obtained at the final

iterations by the two global optimization techniques are summarized in
Tab. 1. The corresponding patterns are shown in Fig. 3. As expected,
improvements in term of SLL minimization are given by the M -CPM
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with a SLL lowered of almost 2 dB (i.e., SLLI-CPM = −22.4 dB
vs. SLLM -CPM = −24.3 dB). In this experiment, only the M -CPM
outperforms the EMM in terms of SLL minimization. As far as
the computational burden is concerned, thanks to the computational
efficiency of the BEM , Manica 2008b and by virtue of the fact that
the sub-array weights are computed analytically, the required CPU
time is equal to TI-CPM = 0.05 sec and TM -CPM = 0.24 sec, while
kI-CPM = 19 and kM -CPM = 4 is the total number of cost function
evaluations.

In order to complete the analysis, Fig. 4 reports the values of the
cost function of the I-CPM as well as that of the M -CPM . Since
two incommensurable quantities are minimized, in order to make the
comparison meaningful the following relationship has been considered
for the plots of the fitness

Λ = 1− |ξk − ξmax|
|ξmax| , k = 1, . . . , K (6)

where ξk assumes either the value ΨM -CPM
k (3) or ΨI-CPM

k [18],
according to the use of the M -CPM or I-CPM , respectively.
Moreover, ξmax = maxi=1,...,K {ξi} is the maximum fitness value
obtained throughout the whole optimization process.

As a second step, the final aggregations obtained by means
of the bare approaches (Tab. 1) are considered as fixed clustering
in the H-ICPM and H-MCPM , i.e., Aopt

H-ICPM = Aopt
ICPM and

Aopt
H-MCPM = Aopt

MCPM , respectively. Then, the sub-array weights
are determined through the subroutine FMINCON [24], where the
mask UB (θ) has been set to have BW = BWEMM and uniform
level of sidelobes. Accordingly, starting from a guess solution equal
to W

(0)
H-ICPM = W opt

ICPM and W
(0)
H-MCPM = W opt

MCPM , the weights of
the sub-arrays are computed by the two hybrid approaches and the
corresponding results are reported in Tab. 1. Also in this case, the
synthesized patterns are shown in Fig. 3. It is worth noting that both
the solutions achieved by the hybrid approaches have a SLL below
the one obtained with the EMM [11], i.e., SLLHI-CPM = −24.4 dB,
SLLHM-CPM = −25.8 dB vs. SLLEMM = −23.4 dB. Moreover, the
hybrid versions are more effective in term of SLL minimization than
the respective bare procedures, with an improvement of 2 dB and 1 dB
for the HI-CPM and HM -CPM , respectively. As a matter of fact,
notwithstanding the CP problem is aimed at the maximization of
the difference slope, the same hybrid approaches can be used for the
optimization of the SLL, as pointed out in [10].

Figure 5 reports the values ΨCP
k , k = 1, . . . , K (k being the

iteration index) as well as the maximum distance Cθ between the actual
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pattern and the mask

Cθ
k = maxθ {fk (θ)− UB (θ)} −π

2 ≤ θ ≤ π
2 (7)

where fk (θ) is the array factor of the trail solution at the k-th iteration.
As far as the costs of the subroutine FMINCON [24] are concerned,
let us first point out that the number of function evaluations to reach
the final solutions is equal to kH-ICPM = 1001 and kH-MCPM = 83.
The overall CPU -time required to obtain W opt

H-ICPM and W opt
H-MCPM

amounts to TH-ICPM = 61.22 sec and TH-MCPM = 9.66 sec, with a non-
negligible cost saving of almost six times for the HM -CPM against
the HI-CPM .

As a second experiment, let us consider one of the benchmark
of [10], previously proposed in [14]. The number of sub-array was set
to Q = 6 and the sum excitations fixed to those of a Dolph-Chebyshev
pattern with SLL = −20 dB [25], while the difference excitations are
those of a Zolotarev pattern with SLL = −31 dB [26]. Similarly to the
previous case, the synthesis problems consists in defining the sub-array
clustering and weights in order to obtain a compromise difference beam
with the lowest SLL, once the pattern beamwidth has been fixed to
that obtained by Differential Evolution (DE) optimization in [14].

The sub-array configuration achieved in [10] in the case of SLL

optimization was Aopt
SA-CP = [1 5 2 3 3 4 2 5 6 1 1 6 5 2 4 3 3 2 5 1] with a

maximum SLL = −30 dB. For the sake of comparison, the result
achieved by the SA-CP in the case of maximization of the slope
(where a value SLL = −29.50 dB was reached) has been reported in
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Fig. 6 as well as the one obtained with the DE-based approach [14],
together with those synthesized through the proposed approaches.
Concerning the two global CPM -based approaches, the I-CPM
and the M -CPM achieve two different sub-array configurations,
namely Aopt

I-CPM = [2 4 5 6 6 6 5 4 3 1 1 3 4 5 6 6 6 5 4 2] and Aopt
M -CPM =

[1 3 4 5 6 6 4 3 2 1 1 2 3 4 6 6 5 4 3 1], among the 126 solutions defined in
the solution tree [12]. The corresponding sub-array weights turns
out being W opt

I-CPM = {0.1641, 0.2422, 0.4652, 0.6917, 0.8776, 0.9991}
and W opt

M -CPM = {0.2081, 0.4652, 0.6917, 0.8776, 0.9840, 1.0044}.

-50

-40

-30

-20

-10

 0

0 /8 /4 3 /8 /2

P
o
w

e
r 

P
a
tt
e
rn

  
 [
d
B

]

   [rad]

I-CPM
M-CPM
HI-CPM

HM-CPM
DE

SA-CP

π π π π

θ

Figure 6. Small linear array (N = 20, d = λ
2 , Q = 6) — Relative

power patterns obtained by means of the proposed approaches, the
SA-CP [10] and the DE [14].

10-2

10-1

100

 0  2  4  6  8  10  12  14  16  18  20

F
it
n
e
s
s
 B

e
h
a
v
io

r,
 

Fitness Evaluations, k

=
I-CPM

=
M-CPM

(a)

-140

-120

-100

-80

-60

-40

-20

 0

 0  2  4  6  8  10  12  14  16  18  20
10-15

10-12

10-9

10-6

10-3

100

103

F
it
n
e
s
s
 F

u
n
c
ti
o
n
, 

C
P

C

Fitness Evaluations, k

CP
: HI-CPM

C : HI-CPM

CP
: HM-CPM

C : HM-CPM

(b)

Λ

Ψ

Λ Λ

Λ Λ

Ψ

Ψ

θ

θ

θ

Figure 7. Small linear array (N = 20, d = λ
2 , Q = 6) — Behavior

of the cost function of the (a) I-CPM and M -CPM and of the (b)
HI-CPM and HM -CPM versus the iteration index k.



Progress In Electromagnetics Research, PIER 99, 2009 121

Moreover, TI-CPM = 0.001 sec, TM -CPM = 0.267 sec and kI-CPM =
12, kM -CPM = 10. Also the solutions achieved by the hybrid
versions are shown in Fig. 6. In these cases, kHI-CPM = 15
and kHM -CPM = 16 function evaluations were needed with a
required CPU time of THI-CPM = 2.703 sec and THM-CPM =
2.719 sec. The corresponding sub-array weights are W opt

HI-CPM =
{0.6676, 0.9174, 1.7668, 2.6966, 3.4241, 3.8810} and W opt

HM -CPM =
{0.8019, 1.8409, 2.6401, 3.5552, 3.7342, 3.9490}. It is interesting to
note how all the solutions defined by means of the proposed approaches
outperform that of [14], whereas only the solutions obtained by
means of hybrid approaches HI-CPM and HM -CPM are able to
enhance the performances of [10]. As a matter of fact SLLI-CPM =
−28.81 dB, SLLM -CPM = −29.12 dB, SLLHI-CPM = −30.09 dB
and SLLMI-CPM = −30.13 dB. In order to complete the analysis,
the behavior of the objective functions for the global optimization
procedures as well as their hybrid versions are reported in Figs. 7(a)
and 7(b), respectively.

4.2. Large Linear Arrays and Planar Apertures

This section is aimed at analyzing the performances of the proposed
approaches when dealing with the synthesis of array with a large
number of elements. In the first example a linear aperture of length
100λ is considered, whit N = 200 elements equi-spaced of λ

2 . The
sum excitations are fixed to afford a Dolph-Chebyshev pattern [25]
with SLL = −25 dB. The number of available sub-array is Q = 6.
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This synthesis problem was previously dealt with in [12]. Since a well
known trade-off exists between pattern beamwidth and SLL, the I-
CPM is not allowed to use reference targets whose SLL is below the
one taken into account in [12] (i.e., a Zolotarev difference pattern [26]
SLL = −30 dB). Fig. 8 shows the compromise difference patterns
synthesized by means of the proposed procedures. As expected, the
solution obtained with the I-CPM is the same obtained with the
CPM [12]. The behavior of the fitness values for the global and hybrid
approaches are shown in Figs. 9(a) and 9(b), respectively.

Although all the solutions show a good behavior in term of
sidelobes rejection, the HM -CPM outperformed the other approaches
with SLLHM -CPM = −27.1 dB, while SLLI-CPM = −25.2 dB,
SLLM-CPM = −26.2 dB and SLLHI-CPM = −26.5 dB. The sub-array
configurations as well as the corresponding sub-array weights are given
in Tab. 2.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160

F
it
n

e
s
s
 B

e
h

a
v
io

r,
 

Fitness Evaluations, k

=
I-CPM

=
M-CPM

(a)

-1800

-1400

-1000

-600

-200

 200

 600

 1  10  100  1000
10-16

10-12

10-8

10-4

100

104

F
it
n

e
s
s
 F

u
n

c
ti
o

n
, 

C
P

C
Fitness Evaluations, k

CP
: HI-CPM

C : HI-CPM
CP

: HM-CPM
C : HM-CPM

(b)

Λ

Λ Λ

Λ Λ

Ψ

Ψ

Ψ

θ

θ

θ

Figure 9. Large linear array (N = 200, d = λ
2 , Q = 6) — Behavior

of the cost function of the (a) I-CPM and M -CPM and of the (b)
HI-CPM and HM -CPM versus the iteration index k.

Table 2. Large linear array (N = 200, d = λ
2 , Q = 6) — Sub-array

configurations and weights.

M = 100 a I - CPM
n , n = 1 , ..., M 11111111111111222222223 3333333 4444444 4555 5555556 6666666 6666666 6666666 6666666 6665555 5555544 4444433 331

aM - CPM
n , n = 1 , ..., M 11111111122222223333333 3333333 4444444 4445 5555555 5555666 6666666 6666666 6666655 5555555 5544444 4444443 332

Q = 6 W I - CPM 0.8206 1.4472 2.0200 2.5000 2.9000

W M - CPM 0.3739 1.0060 1.8017 2.5520 3.0300

W HI- CPM 0.2132 0.7236 0.9411 1.0909 1.2754

W HM- CPM 0.1134 0.3327 0.6773 1.1001 1.1871
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Table 3. Large linear array (N = 200, d = λ
2 , Q = 6) — Fitness

evaluations and CPU time.

Approach k T [sec]

I-CPM 128 15.6

HI-CPM 383 4105.17

M -CPM 24 519.98

HM -CPM 95 957.51

Concerning the computational costs, the number of cost function
evaluation and the required CPU time for each approach are reported
in Tab. 3. It is worth noting that in this case the computational burden
of the CP problem is non-negligible (i.e., THI-CPM = 4105.12 and
THM -CPM = 957.51 sec). Such a drawback is principally due to the
computation of Cθ, where the pattern has to be sampled densely in
order to obtain satisfactory results. Likewise, the computation of the
power pattern is necessary also in the M -CPM to evaluate the SLL
for each trial solution. Therefore, the I-CPM [18] turns out to be in
this case the most efficient strategy.

In the last example, in order to fully exploit the capabilities of the
CPM -based approaches, let us consider a planar array with circular
boundary r = 4.85λ and N = 300 elements equally-spaced of d = λ

2
along the two coordinates. The sum mode is set to a circular Taylor
pattern [27] with SLL = −35 dB and n = 6. Moreover, Q = 3 sub-
arrays have been considered. The synthesis problem has been originally
dealt with in [9] by means of a SA-based algorithm and then considered
as benchmark in [16, 19]. There, the sidelobe ratio (SLR) defined as

SLR (φ) =
SLL (φ)

maxθ [f (θ, φ)]
, 0 ≤ θ <

π

2
(8)

was optimized. Unlike [19], in this case we are aimed at synthesizing a
compromise difference pattern with a SLL low as much as possible. As
far as the I-CPM is concerned, the reference excitations (at the last
iteration) was set in [19] to those a Bayliss pattern [28] with SLL =
−35 dB and n = 6. In this case, the SLL was equal to the one obtained
with the SA-based approach (i.e., SLLSA = SLLI-CPM − 19 dB).
Although an improvement of the performances was expected by using
its hybrid version, in this case the achieved compromise configuration
affords a pattern with SLLHI-CPM = −18.9 dB, worse than the one
obtained with the I-CPM . On the contrary, the M -CPM synthesized
a solution with SLLM -CPM = −24.45 dB, almost than 5 dB below
the solution of [9]. Moreover, an additional improvement of more
than 2 dB was gained when using the HM -CPM (i.e., SLLM -CPM =
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−26.55 dB).
Figure 10 shows the 2D plots of the relative power patterns

for all the compromise solutions. The corresponding sub-array
configurations are shown in Fig. 11, while the sub-array weights for
the four approaches are summarized in Tab. 4. Although the proposed
approaches are aimed the optimization of the maximum SLL on the
whole aperture, in this case both M -CPM and HM -CPM guaranteed
that also the values of SLR were lower than that of [9] (Fig. 12).
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Figure 10. Planar array synthesis (N = 300, d = λ
2 , r = 4.85λ,

Q = 3) — Relative power patterns obtained by means of (a) the I-
CPM , (b) the M -CPM , (c) the HI-CPM and (d) HM -CPM .
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Figure 11. Planar array synthesis (N = 300, d = λ
2 , r = 4.85λ,

Q = 3) — Sub-array configurations obtained with (a) the I-CPM and
(b) the M -CPM .
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Q = 3) — Plots of the synthesized SLR values by means of the
proposed approaches and the SA [9] in the range φ ∈ [0◦, 80◦].

Table 4. Planar array synthesis (N = 300, d = λ
2 , r = 4.85λ, Q = 3)

— Sub-array weights obtained by means of the proposed approaches
and the SA [9]).

Approach wH
1 wH

2 wH
3

I-CPM 0.3499 0.9333 1.4170
M -CPM 0.2870 0.8120 1.3886
HI-CPM 0.3684 2.4088 4.0573
HM -CPM 0.3313 0.9719 1.4113

SA [9] 1.69 3.69 5.00
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Concerning the computational costs, it turns out that THI-CPM =
24186.6 sec (almost seven hours) and THM -CPM = 39036.8 sec (more
than ten hours). Moreover, kHI-CPM = 6621 and kHM -CPM = 10001.
On the contrary, the computational cost reduces to TM -CPM =
537.9 sec, TI-CPM = 165.5 sec, and kM -CPM = 6, kI-CPM = 81 for
the bare approaches.

5. CONCLUSIONS

In this paper, innovative approaches to the synthesis of the optimal
compromise between sum and difference patterns for sub-arrayed
monopulse array antennas have been presented. The synthesis of
linear and planar array has been deal with, where the problem
at hand has been formulated as the definition of the sub-array
configuration and weights of these latter to minimize the SLL of
the synthesized difference beam. The definition of the unknowns has
been simultaneously carried out according to a global optimization
schema, the M -CPM , and the results have been compared with the
previously proposed I-CPM . Unlike the I-CPM , the compromise
solution with minimum SLL has been directly looked for among the
solutions belonging to the solution tree. In a different fashion, the
HI-CPM and the HM -CPM have shown better performance in
term of SLL minimization with respect to the corresponding one-
step approaches. In these case, the convexity of the problem with
respect to a part of the unknowns has been exploiting, where the
synthesis problem has been reduced to solve a CP problem for a fixed
clustering. The effectiveness of the proposed techniques in terms of
SLL minimization has been assessed by showing some experiments
concerned with small as well as large array synthesis problems, hardly
to manage with stochastic optimization procedures for the arising
computational burden. Moreover, by virtue of the fact that the
solution of the CP problem is required only once, the hybrid CPM -
based strategies seem to represent promising tools to be further
analyzed and extended to other antenna geometries.
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