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Abstract—Time modulated linear antenna arrays consisting of
printed dipoles above a ground plane are simulated using the finite-
difference time-domain (FDTD) method. The FDTD method brings
great convenience to the investigation of the time domain responses of
the time modulated arrays. In conjunction with the near-to-far field
transformation in time domain, the far-field transient response can be
computed to explain the physical essence of different time sequences.
By employing the discrete Fourier Transform (DFT) and the frequency
domain near-to-far field transformation, the radiation patterns at
the frequencies of interest are obtained and are compared with the
measured results. Simulation results show that the FDTD method is
an effective and accurate approach for the full-wave simulation of time
modulated antenna arrays.

1. INTRODUCTION

The amplitude excitations in conventional antenna arrays usually have
large dynamic range ratios to obtain low or ultra-low sidelobe levels
(SLLs). However, such antenna arrays are usually rather difficult
and expensive to be realized in practice. Moreover, excitations in
conventional antenna arrays are usually much influenced by various
errors, such as the systematic errors and random errors, etc. [1]. On
the other hand, the time modulated array proposed by Kummer [1]
is a good candidate to meet these kinds of challenges. Recently,
a substantial amount of studies have been carried out on time
modulated antenna arrays, including synthesis of radiation patterns
with low/ultra-low SLLs [2–4], synthesis of shaped beam patterns [5],
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sidebands suppression using optimization algorithm [2, 6], studies on
various time sequences [3, 6–9], mutual coupling compensation in time
modulated antenna arrays [10], and the full-wave simulation of time
modulated antenna arrays in frequency domain [11].

Despite the promising results obtained in the aforementioned
studies, none of the studies were on the time domain analysis of time
modulated arrays. In order to obtain a full understanding of the
time modulated arrays, an investigation in time domain is of great
necessity. In fact, the time modulated array possesses an inherent
nature of periodic variation with respect to time, thus a time domain
approach should be advantageous in analyzing the time modulated
arrays. On the other hand, the FDTD method, firstly proposed by
Yee [12], is one of the most predominate full-wave simulation methods
in the analysis of antenna and antenna arrays [13, 14]. It provides
a general formulation to problems with complicated structure and
inhomogeneous material in the computation domain. Furthermore,
it outperforms any other frequency domain methods in that it can be
used to obtain the wideband frequency responses and time domain
far-field waveforms using only one single simulation.

In this paper, the FDTD method is applied to the analysis of time
modulated linear arrays with two types of time sequences, namely, the
variable aperture sizes (VAS) [7] and the bidirectional phase center
motion (BPCM) [9]. The numerical results well explained the inherent
physical essence of the two types of time sequences in time modulated
antenna arrays. The radiation patterns obtained over the frequencies
of interest are in good agreement with published measurement results,
thus validating the effectiveness of the proposed FDTD approach in
the simulation of the time modulated antenna arrays.

2. THEORY OF TIME MODULATED ANTENNA
ARRAYS

Consider an N -element linear array of equally spaced parallel dipoles,
each element is controlled by a high speed RF switch and is excited
with a complex excitation Ak (k = 1, 2, . . . , N). When a plane wave
of frequency f0 is incident at an angle θ with respect to the normal of
the array, the output of the array is given by:

E(θ, ϕ, t) = e0(θ, ϕ)ej2πf0t
N∑

k=1

AkUk(t)ej(k−1)βd sin θ (1)

where e0(θ, ϕ) is the common radiation pattern of each dipole, and
Uk(t) refers to the periodic on-off switching time sequence function for
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the kth element. Two types of time sequence functions are discussed
in this paper. For the time modulated linear arrays with VAS, the kth
element is switched on for an interval of τk within one pulse repetition
period Tp. Consequently, Uk(t) can be expressed as:

Uk(t) =
{

1 0 ≤ t ≤ τk

0 otherwise (2)

By decomposing (1) into Fourier series with different frequency
components separated by prf = 1/Tp, the response of the far-field
pattern in the spatial and time domain is given by:

E(θ, ϕ, t) = e0(θ, ϕ)ej2πf0t
+∞∑

m=−∞

N∑

k=1

amke
j(k−1)βd sin θej2πm·prf ·t (3)

where the excitation for the mth harmonic on the kth element is
integrated as:

amk =
Akτk

Tp
· sin [πmτk · prf ]

πmτk · prf · e−jπmτk·prf (4)

Similarly, when the linear array is modulated with a continuous (C-
Scheme) BPCM in [9], the time switching function can be expressed
as:

U1(t) =
{

1 0 ≤ t ≤ τ
0 otherwise (5)

Uk(t) =

{ 1 t1k ≤ t ≤ t2k

1 t3k ≤ t ≤ t4k

0 otherwise
(1 < k ≤ N −M) (6)

Uk(t) =
{

1 t′1k ≤ t ≤ t′2k
0 otherwise (N −M < k ≤ N) (7)

where M is the number of elements being switched to the on-state
at any time instants, τ, t1k, t2k, t3k, t4k, t

′
1k, t

′
2k are the “on” and “off”

time switching instants, and more details on them are given in [9].
The corresponding complex excitation amk for the mth harmonic on
the kth element is also presented in [9].

According to (3), we can find that undesired radiation does exist
for each frequency component m, whose amplitude level is controlled
by the Fourier coefficient amk. Although the response of the far-field
pattern in the spatial and frequency domain has been investigated
either by analytical method [7, 9] or by full-wave simulations in
frequency domain [11], the results obtained by the FDTD method will
also be presented for comparison in Section 4. It is necessary to point
out that the transmitted signal is assumed to be a rectangular pulse
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in this study, and the C-Scheme is applied both for the time sequences
of BPCM and VAS, i.e., the pulse repetition period Tp equals to the
rectangular pulse width T , where T = 1/B and B is the passband of
the radar or other system receiver.

3. FDTD MODEL OF TIME MODULATED ANTENNA
ARRAYS

The time modulated linear array to be modeled in FDTD comprises of
16 printed dipoles above a perfect conducting ground of finite sizes, as
illustrated in Figure 1. The dipoles are parallel to the y-axis and are
arrayed along the x-axis, with a λ/2 spacing at the operating frequency
f0. The origin of the coordinate system is supposed to be located at
the geometrical center of the linear array.

The FDTD approach requires a free space surrounding the array,
which is divided into a number of rectangular bricks in the three-
dimensional space. As to the radiation problem considered in this
paper, the computational domain should be truncated due to the
limited computer resources. Therefore, the perfectly matched layer
(PML) developed by Berenger [15, 16] is implemented to truncate
the computational domain from open space to make the actual
computation possible.

Equation (2) shows that the time modulated array in this paper
is excited with rectangular pulses. Undoubtedly, the rectangular pulse
in experiment cannot be an ideal rectangular shape because of the
rising and falling edges. Thus, the rising and falling edges of the
ideal rectangular pulse should be modified. Another benefit from this
practical consideration is that the shock waves excited by an ideal
rectangular pulse can be avoided in the FDTD simulation. In order
to simulate the rising and falling edges in a rectangular pulse, the

Figure 1. Configuration of the time modulated linear array.
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Gaussian pulse is a suitable candidate in this case, which has the
following form:

V (n∆t) = e−(n∆t−t0)2/T 2
(8)

where ∆t is the time increment in the FDTD method, T is the pulse
half-duration at the 1/e point, and it determines the Gaussian width.
t0 governs the rising or falling time of the pulse. The peak value of the
Gaussian appeared at n∆ = t0. By applying the Fourier transform to
the Gaussian pulse (8), we have

G(f) = T
√

π exp
(−j2πft0 − π2f2T 2

)
(9)

In this paper, the rising and falling edges of the rectangular pulse
are approximated by their counterparts in the Gaussian pulse. By
choosing the rising or falling time t0 and the pulse half-duration time
T (defined in term of the 1/e point) properly, the rising and falling time
of the ideal rectangular pulse can be modified efficiently. Generally, the
half-duration time of the Gaussian pulse can be chose to be relatively
larger than

√
πT . Here, we chose the half-duration width of the

Gaussian pulse to be 3/
√

2T , and the rising time (or falling time)
is set to be as half the width of the pulse in time, i.e., t0 = 3T/

√
2. In

this case, the magnitude at the rising edge is about 1.11% of the peak
value. For the sake of obtaining the far-field pattern in a broad range
of frequencies, the sine wave modulated rectangular pulse is adopted to
stimulate the excitation between the two arms of each dipole. Shown
in Figure 2 are the rectangular pulse with the rising and falling edges
and the sine wave modulated rectangular pulse in free space within
one pulse repetition period Tp. As can be seen, by setting the proper
value of t0 and T , the rising and falling edges in rectangular pulse can
be well approximated.

Two types of near-to-far-field transformation, namely, transfor-
mation carried out in the time domain and frequency domain, are in-
corporated into the FDTD algorithm to obtain the time response and
the radiation pattern in the far zone. Similar to other electromagnetic
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Figure 2. Rectangular pulse and modulated rectangular pulse. (a)
Rectangular pulse with the rising and falling edges of Gaussian pulse;
(b) the sine wave modulated rectangular pulse.
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problems involved with the FDTD method, the time modulated array
is enclosed in a closed Huygens’s surface, which is chosen to be a cube
inside the PML ABCs. A brief review of the two methods is presented
in the following.

In the time domain near-to-far-field transformation [17, 18], the
equivalent currents at each time step are computed from the fields on
the Huygens’s surface. The contributions of the equivalent currents
from each cell on the surface are put into corresponding time bins,
thus the time domain far fields obtained. In the case where the
radiation patterns or other frequency dependent parameters over a
broadband of frequencies are required, the Fourier transform can
be applied to obtain the results in frequency domain. However, if
frequency domain far-field radiations over all the elevation angles are
computed through this approach, the FDTD simulation slows down
significantly as expected. Moreover, storing the entire time domain
signature at all the observation directions would pose a heavy burden
on the memory requirements. Thus, in this paper the time domain
signature is only computed at a few angles to mitigate the burden on
computer resource. Apparently, a pitfall inherent in this method is
that the far-field radiations at the ignored directions can not be given.

Although a great deal of information about the response of the
far-field radiations has been lost in the time domain transformation,
the near-to-far-field transformation in frequency domain [19–21] can
well make up its counterpart in time domain. In the time modulated
arrays, only spatial responses at the center frequency and several low
order sidebands are of interest, thus the single-frequency near-to-far-
field transformation [13] is expected to be a well-suited alternative to
the time domain transformation when the far-field pattern responses at
all the directions are desired. Thus, the computational complexity in
the time domain transformation can be avoided for the calculation
of the far-field radiations. In the single-frequency near-to-far-field
transformation, the electric and magnetic fields are monitored over
the Huygens’s surface, and then either a Discrete Fourier Transform
(DFT) or a Fast Fourier Transform (FFT) is applied to obtain the
coefficients of the fields at the desired frequencies. For the ease of
implementation and the use of an arbitrary number of samples, DFT
is generally preferred. The DFT based transformation from the time
domain to the frequency domain is given by

E(k∆f, r)=∆t
N−1∑

n=0

E(n∆t, r) exp
{
−j2πkn

N

}
, (k=0, 1, 2, . . . , N) (10)

Since only the Fourier coefficients are stored in this scheme, the
DFT above needs no much of extra memory storage, and the memory
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requirements are much smaller than that needed in the time domain
near-to-far-field transformation. Additionally, running of the DFT can
be carried out simultaneously with the time marching in the FDTD
algorithm, thus the computational complexity of the DFT is far less
than that required in the original FDTD. Therefore, the efficiency of
the primitive FDTD algorithm is affected little when such technique is
employed. Once the prefixed time steps runs out, the frequency domain
equivalent currents on the Huygens’s surface are computed through the
DFT. Consequently, radiation patterns at the desired frequencies can
be easily obtained with these equivalent electric current and magnetic
current, using the well-known Green’s function approach.

As an ending to this section, it should be noted that both the two
types of near-to-far-field transformation are introduced into the FDTD
code, in order to get the far-field response of the time modulated array
in the time domain, frequency domain, and spatial domain. Moreover,
it should also be pointed out that the thin dielectric substrate of the
printed dipole is neglected in our FDTD model, since its thickness
is much less than the spatial increment (∆x, ∆y, and ∆z). This
will not deteriorate the numerical results greatly and will simplify our
numerical model.

4. NUMERICAL RESULTS AND DISCUSSION

In order to validate the accuracy of our FDTD model and to examine
the transient response of the time modulated linear arrays, numerical
results for the arrays modulated with VAS and BPCM schemes are
presented in this section.

The dipole antenna element in the array consists of two arms,
with a length of l = 36.50mm and a width of w = 7.50mm for each
arm. The size of the ground plane shown in Figure 1 is L × W =
1.84m × 0.40 m, on which the printed dipoles are mounted with an
offset of h = 48.00mm from the ground plane. A nonuniform mesh
was used herein to ensure the sufficient accuracy while the memory
requirements are kept as low as possible. By setting the operating
frequency to be 1.56 GHz for the time modulated linear arrays with
both VAS and BPCM schemes, the computational domain is then
discretized by 97×243×18 cells, where the increments in the spatial are:
∆x = 4.56mm, ∆y = 7.92 mm, ∆z = 7.50mm. The time increment
is determined by the Courant Condition [12], which is set to be 10.49
picoseconds in our model. Besides, the Huygens’s surface apart from
the equipment is set to be quarter of the wavelength at the center
frequency. A five-layered PML is used to terminate the mesh to form
a radiation boundary condition.
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(a)

(b)

Figure 3. Near-field transient re-
sponse of the VAS modulated lin-
ear array. (a) Transient excitation
at the grid of the 1st dipole; (b)
transient response on the top face
of the Huygens’s surface.

(a)

(b)

Figure 4. Far-field waveforms of
the VAS modulated linear array
in the H-plane. (a) θ = 0◦; (b)
θ = 90◦.

We take the linear antenna array modulated with VAS scheme
as the first example. The time modulated array with uniform
excitation is used to synthesis a −25 dB SLLs discrete Taylor (D-
Taylor) pattern with n̄ = 4. The pulse repetition period Tp = 10 µs,
implying a modulation frequency of 100 kHz. Figure 3(a) gives the
transient excitation signal Ex at the central grid of the 1st dipole, and
Figure 3(b) plots the near-field transient response Hz on the top face of
the Huygens’s surface paralleled to the xoy-plane. It is apparent to see
that both of them reveal the periodic attribute of the time modulated
arrays. From Figure 3(b), it is also observed that the FDTD updating
procedure is stable, and no shock wave has been stirred up during the
time evolution.

Illustrated in Figure 4 are the H-plane (yoz -plane) co-polar far-
field waveforms at two radiation angles, which are obtained through
the time domain near-to-far-field transformation. The envelope of
the waveform in the broadside (θ = 0◦) and endfire (θ = 90◦)
directions reflects the fact that the elements in the time modulated
VAS array are switched off from two ends of the array by turns in
one pulse period, while the elements in the array center are always
switched on. Additionally, the physical essence of the VAS can also
be found by a comparison between the envelope of waveforms and
the diagram of on-off switching time sequence function [10]. To check
the validity of the FDTD model, the frequency domain near-to-far-
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Figure 5. Radiation patterns at the center frequency and the
first two sidebands for the VAS modulated linear array. (a)
Comparison of the measured radiation patterns with those obtained
from FDTD simulation and HFSS simulation at the center frequency;
(b) comparison of the measured radiation patterns in [10] with those
obtained from FDTD simulation and HFSS simulation at the first two
sidebands.

field transformation is applied to the near-field data to obtain the
far-field pattern. Figure 5(a) shows the FDTD simulated normalized
co-polar radiation pattern in the H-plane at the center frequency
f0, in comparison with the measured pattern and radiation patterns
simulated using the commercial software HFSS in [11]. Figure 5(a)
also shows the target pattern of a −25 dB discrete Taylor (n̄ = 4)
pattern. As can be seen, the FDTD simulated pattern, HFSS simulated
pattern, and the measured pattern in [10] are in good agreement, and
they are all close to the target −25 dB discrete Taylor pattern. The
FDTD simulated relative SLL is −25.27 dB, which is close to the HFSS
simulated SLL of −22.98 dB and measured SLL of −23.92 dB. Shown in
Figure 5(b) are the FDTD simulated radiation patterns at the first two
sideband frequencies, the measured results [10] and results obtained
from the HFSS simulation [11] are also presented for comparison. As
can be seen, the simulated results obtained from the FDTD method
and the commercial software HFSS are in good agreement, and both of
the two groups of simulated results are in reasonable agreement with
the measured patterns.

As the second example, the FDTD method is employed to analyze
the time modulated linear antenna array with BPCM time scheme.
The continuous time modulation (C-Scheme) is introduced, and the
number of the consecutive “on” elements at each time instant is
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Figure 6. Time sequences of a 16-element linear array with C-scheme
BPCM (M = 14).
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Figure 7. Comparison of the measured radiation patterns in [9]
with those obtained from FDTD simulation for the 16-element linear
array with C-scheme BPCM (M = 14). (a) Comparison at the center
frequency; (b) comparison at the first two sidebands.

selected as M = 14. The static excitation Ak (k = 1, 2, . . . , N) with a
dynamic range ratio of 3.8 was accepted to synthesize a −40 dB SLL D-
Taylor pattern (n̄ = 7) at the center frequency f0. The pulse repetition
frequency prf is set to be 1.0 MHz, which is a higher prf than that in
the first example, implying less time steps are required in one pulse
repetition period. Thus the running time consumed in this example
decreased greatly. The time sequence diagram for the array is shown
in Figure 6. The FDTD simulated radiation patterns at the center
frequency and the first two sidebands are shown in Figure 7, and the
measured radiation patterns in [9] are also presented in Figure 7. It is
observed that the FDTD simulated radiation patterns are close to those
of the measured results. The FDTD simulated SLL of the radiation
pattern at the center frequency is −39.6 dB, close to the target value of
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−40 dB, but the deviation from the measured SLL is slightly large and
this may be due to the measurement error in our experiment system.
Moreover, it is found that there is also relatively large deviation
between the simulation and measurement results. However, the FDTD
simulations agree well with those simulated in [9]. Therefore, we can
conclude that measured pattern at center frequency may be inaccurate,
and the accuracy of FDTD simulations is also demonstrated. The
FDTD simulated maximum sideband level is −28.9 dB, which is in
good agreement with the measured value of −29.9 dB.

The good agreement between the FDTD simulated results
(Figure 5 and Figure 7) and those accurate measured data or
simulation results from other methods demonstrates that the neglect
of the thin dielectric substrate in our FDTD model is valid. Figure 8
shows the FDTD simulated 3-D space and frequency response plot.
The two branches split from the sidelobes in the frequency domain
have not been separated completely. This can also be observed from
the time sequence diagram in Figure 6, where the number of moving
elements is large, leading to a very small Doppler frequency shift at
the positive and negative θ directions.

Thirdly, in order to investigate the Doppler frequency shift effect
of time modulated linear arrays with BPCM scheme in time domain,
the FDTD method is again employed to analyze a time modulated
linear antenna array with C-Scheme BPCM and a smaller number
of moving elements. The number of the consecutive “on” elements
at each time instant is selected as M = 6. The static excitation
Ak (k = 1, 2, . . . , N) with a dynamic range ratio of 1.75 was adopted

Figure 8. Space and frequency
response for the 16-element linear
array with C-scheme BPCM (M =
14).

(a)

(b)

Figure 9. Far-field waveforms
for the 16-element linear array
with C-scheme BPCM (M = 6).
(a) θ = 0◦; (b) θ = 90◦.
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to synthesize a −40 dB SLL D-Taylor pattern (n̄ = 7) at the center
frequency f0, with Tp = 1.0µs and prf = 1.0MHz. We consider
the far-field response of the BPCM modulated linear antenna array
in the time domain, frequency domain, and spatial domain. Figure 9
presents the waveforms of the co-polar field in the directions of θ = 0◦
and θ = 90◦ in the H-plane, which are obtained by the time domain
transformation. Again, the periodicity of the modulated array is found,
and a stable updating procedure is hold on when the time marches
on. By applying a quadrature demodulation technique to the far-field
signals shown in Figure 9 and the far-field signal in the direction of
θ = 10◦, the obtained instantaneous phases of the far-field waveforms
at the three directions are plotted in Figure 10. The instantaneous
frequency is defined as:

fins = C · dφ

dt
(11)

where C is a constant coefficient. Figure 10(a) compares the
instantaneous phases of the waveforms at θ = 0◦ and θ = 10◦. It
can be seen that there is no Doppler frequency shifting in the direction
of θ = 0◦, which is the maximum radiation direction in the linear array.
However, when the observation angle is away from the broadside, the
amount of Doppler frequency shifting in that direction increases. As
can been seen from Figure 10(b), the amount of frequency shifting
increases distinctively from θ = 10◦ to θ = 90◦. In order to investigate
the impact of the Doppler frequency shifting on the radiation pattern,
the 3-D spatial and frequency response obtained through the frequency
domain transformation is given in Figure 11. It can be observed

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-180

-120

-60

0

60

120

180

  

  

 (
d
e
g
)

t ( s)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-180

-120

-60

0

60

120

180

 
(d

e
g

)

t ( s)µ

φ

θ=10
o

θ=0
o

φ

µ

θ=90
o

(a) (b)

Figure 10. Instantaneous phases of waveforms at three different
radiation angles. (a) Comparison of the instantaneous phases in the
directions of θ = 0◦ and θ = 10◦; (b) instantaneous phases in the
direction of θ = 90◦.
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that the sidelobes experienced both the upper and lower frequency
shifting, similar to those observations in [9]. Additionally, the 3-
D response in Figure 11 can be further examined in another two
different perspectives. The first one is that due to the impact of the
Doppler frequency shifting, the two branches were markedly split from
the sidelobes at the center frequency and are distributed at several
sidebands, due to the relatively smaller number of moving elements.
The Doppler frequency shifting thus leads to a lower SLLs at the
center frequency than those in conventional arrays. Another one is
that the two sidelobe branches are distributed at frequencies far away
from the center frequency, especially for BPCM with a higher moving
speed. Thus, the bandwidth of the radar passband is extended. The
same observations were also obtained in [9] by analytical method,
which validates the correctness of the FDTD model in this study.
Consequently, the FDTD method provides an attractive tool for the
analysis of the transient response of the time modulated arrays, and
the Doppler frequency shifting in BPCM array can be interpreted
thoroughly with respect to the instantaneous phases.

Finally, the H-plane normalized co-polar radiation patterns at
the center frequency and the first two sidebands are also presented in
Figure 12. The normalized radiation pattern recovered at the center
frequency is close to the target −40 dB D-Taylor pattern. A front-to-
back ratio of 25 dB is obtained for this time modulated array, due to
the conducting ground plane.

Figure 11. Space and frequency
response for the 16-element linear
array with C-scheme BPCM (M =
6).
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5. CONCLUSION

Full-wave simulations for time modulated linear antenna arrays with
VAS and C-BPCM schemes have been carried out using the FDTD
method. In order to get a full understanding of the arrays modulated
with the two time sequences, the far-field transient responses are
presented, with which the physical essence of the two time sequences
are well explained. Furthermore, the radiation patterns are computed
using the frequency domain transformation. Through comparison
with the measured results and results obtained from other full-wave
simulation method, the accuracy and validity of the FDTD method in
the simulation of the time modulated linear arrays are demonstrated.
Other time modulated arrays are also of necessity to be simulated in
the time domain, and it is hoped that the proposed FDTD method can
be an attractive tool for the analysis of time modulated arrays.
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