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Abstract—An easy and fast Probability-based Electrical Resistivity
Tomography Inversion (PERTI) algorithm is proposed. The simplest
theory follows from the principles of the probability tomography
imaging, previously developed for the ERT method of geophysical
prospecting. The new inversion procedure is based on a formula
which provides the resistivity at any point of the surveyed volume
as a weighted average of the apparent resistivity data. The weights are
obtained as the Frechet derivatives of the apparent resistivity function
of a homogeneous half-space, where a resistivity perturbation is
produced in an arbitrary small cell of the discretised surveyed volume.
Some 2D and 3D synthetic examples are presented, for which the
results of the PERTI method are compared with the inverted models
derived from the application of the commercial inversion softwares
ERTLAB by Multi-Phase Technologies and Geostudi Astier, and
RES2DINV and RES3DINV by Geotomo Software. The comparison
shows that the new approach is generally as efficacious as the previous
methods in detecting, distinguishing and shaping the sources of the
apparent resistivity anomalies. Less certain appears, however, its
ability to approach the true resistivity of the source bodies. Main
peculiarities of the new method are: (i) unnecessity of a priori
information and hence full and unconstrained data-adaptability; (ii)
decrease of computing time, even two orders of magnitude shorter than
that required by commercial softwares in complex 3D cases using the
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same PC; (iii) real-time inversion directly in the field, thus allowing
for fast modifications of the survey plan to better focus the expected
targets; (iv) total independence from data acquisition techniques and
spatial regularity, (v) possibility to be used as an optimum starting
model in standard iterative inversion processes in order to speed up
convergence.

1. INTRODUCTION

Probability tomography is a 3D imaging approach useful to explore
the information content of a geophysical field dataset. The theory
was originally developed for the self-potential method [1] and then
extended to the resistivity method to image the most probable position
and shape of the source bodies responsible of the apparent resistivity
anomalies [2–5].

Although able to spatially distinguish resistivity highs and lows
with respect to a reference background resistivity, the probability
tomography was formulated in such a way to preclude the direct
possibility to provide an estimate of the intrinsic resistivities of the
target bodies. In near-surface geoelectrics, this aspect has only
rarely been considered a serious shortage, as the determination of the
resistivity of the source bodies in many target-oriented applications is
not so important as the knowledge of their position and shape. Many
datasets have been successfully interpreted on this semi-quantitative
basis, e.g., in archaeological prospection [6, 7]. In all the cases in
which the correct estimate of the true resistivity has been considered
essential for assessing the inner properties of the target, the probability
tomography has been used as a means able to provide robust and
confident geometrical constraints in any of the standard inversion
routines [8].

In order to overcome such a limitation, we propose in this paper
a new fast inversion method, which is directly deduced from the
principles of the probability tomography. In the following sections,
at first we recall these principles, from which we then derive the
solution to the inversion problem. In order to elicit the main features
of the new probability-based electric resistivity tomography inversion
method, from now onward PERTI, some synthetic examples are
analysed and the PERTI results are compared with those obtained
by the commercial softwares ERTLAB by Multi-Phase Technologies
(www.mpt3d.com) and Geostudi Astier (www.geoastier.com), and
RES2D/3DINV by Geotomo Software (www.geoelectrical.com), based
on Loke and Barker’s original approach [9].
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2. OUTLINE OF THE PROBABILITY TOMOGRAPHY

This section deals with the main aspects of the geoelectrical probability
tomography, fully depicted in previous articles [2–5]. In the original
formulation of the geoelectrical probability tomography [2], the volume
V below the flat ground surface where a geoelectric survey is carried out
was assumed to be composed of M cells with a small volume ∆V , each
identified by its intrinsic resistivity, ρm, and centred at (xm, ym, zm)
(m = 1, . . . , M). Accordingly, the nth apparent resistivity, ρa,n

(n = 1, . . . , N), was expanded in Taylor series stopped to the first
derivative term, as

∆ρa,n = ρa,n − ρref
a,n ≈

M∑

m=1

(∂ρref
a,n

/
∂ρm)∆ρm. (1)

In Eq. (1), ∆ρa,n is the difference between ρa,n and an apparent
resistivity, ρref

a,n, derived from a reference model using the same location
of the four-electrode array as for ρa,n, and ∆ρm is the departure of ρm

from the resistivity, ρref
m , assigned by the reference model to the mth

cell.
Then, the information power Λ associated with the modified

dataset ∆ρa,n was introduced as

Λ =
N∑

n=1

(∆ρa,n)2, (2)

which, using Eq. (1), was rewritten as

Λ =
M∑

m=1

∆ρm

N∑

n=1

∆ρa,n(∂ρref
a,n

/
∂ρm). (3)

Finally, the application of Schwarz’s inequality to any mth element
of the first sum, i.e.,

[
N∑

n=1

∆ρa,n(∂ρref
a,n

/
∂ρm)

]2

≤
N∑

n=1

∆ρ2
a,n

N∑

n=1

(∂ρref
a,n

/
∂ρm)2, (4)

allowed the source cell occurrence probability function, ηm[≡
η(xm, ym, zm)], to be introduced as

ηm = Cm

N∑

n=1

∆ρa,n(∂ρref
a,n

/
∂ρm), (5)
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where

Cm =

[
N∑

n=1

(∆ρa,n)2
N∑

n=1

(∂ρref
a,n

/
∂ρm)2

]−1/2

. (6)

The ηm-function, with ηm ∈ [−1, +1], was assumed to provide a
measure of the probability with which a source pole, responsible of
the ρa,n dataset, is present in the mth cell. The role of probability
attributed to ηm was motivated as follows, noting that a probability
measure Ψ is defined as a function assigning to every subset E of a
space of states U a real number Ψ(E) such that [10]

Ψ(E) ≥ 0, for every E, (7a)
if E ∩ F ≡ 0, with E, F ⊂ U,Ψ(E ∪ F ) = Ψ(E) + Ψ(F ), (7b)
Ψ(U) = 1. (7c)

Considering that the presence of a source pole in V is independent
from the presence of other poles at other points of V , the function

Ψm = |ηm|
/∫

V
|ηm| dV (8)

has the meaning of a probability density, since it allows a measure of
the probability to find a source pole in the mth cell to be determined
in agreement with the axioms (7a)–(7c). Practically, ηm differs from
Ψm only for an unknown factor and has also the advantage to give
the sign of the source pole. Thus, by convention ηm was assumed as a
probability measure for a source pole to occur in the mth cell.

The 3D probability tomography was conceived as a scanning tool
driven by the Frechet derivative ∂ρref

a,n

/
∂ρm, whose expression depends

on the reference model and the position of the four-electrode array [11].
Using Eq. (5), a positive ηm at a point (xm, ym, zm) was therefore
assumed to give the occurrence probability of a positive source pole,
i.e., the non vanishing probability to find, in the cell centred at that
point, an increase of resistivity with respect to the reference resistivity
ρm (∆ρm > 0). Conversely, a negative ηm was assumed to give the
occurrence probability of a negative source pole, i.e., the non vanishing
probability to find a decrease of resistivity with respect to the reference
resistivity ρm (∆ρm < 0). Finally, a null value of ηm was assumed to
represent the situation in which no anomaly source pole occurs in the
cell centred at (xm, ym, zm), i.e., the intrinsic resistivity in the cell
does not differ from the reference resistivity (∆ρm = 0).

To easily derive the formula of the Frechet derivative ∂ρref
a,n

/
∂ρm

and to construct the modified dataset ∆ρa,n, a simple homogeneous
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half-space was suggested as reference model, by taking as uniform
resistivity the average apparent resistivity or any other value assumed
to be compatible with the expected background resistivity. The relative
meaning of the probability tomography imaging, due to this rather
arbitrary choice of the reference resistivity, was amply dealt with by
Mauriello and Patella [2].

3. THE PROBABILITY-BASED ERT INVERSION

The starting assumption for the PERTI method is that the reference
uniform resistivity is no longer pre-assigned but assumed to be the
unknown value ρm that corresponds to a generic mth cell centred at
(xm, ym, zm). Such an assumption allows ηm to be rewritten as

ηm = Cm

N∑

n=1

(ρa,n − ρm)(∂ρref
a,n

/
∂ρm). (9)

The rationale for the new inversion tool is that if at a point
(xm, ym, zm) it results ηm = 0, then in the cell centred at (xm, ym, zm)
the probability to find an increase or a decrease of the resistivity with
respect to ρm is zero. In other words, in that cell the intrinsic resistivity
does not differ from ρm. Thus, referring to Eq. (5), since Cm is always
different from zero, the ηm = 0 condition leads to

ρm =
N∑

n=1

ρa,n(∂ρref
a,n

/
∂ρm)

/
N∑

n=1

(∂ρref
a,n

/
∂ρm), (10)

which represents the required solution for the application of the
PERTI method. We only need to change repeatedly the coordinates
(xm, ym, zm) to retrieve, point by point, the resistivity pattern within
V .

The certainty hypothesis, upon which the derivation of Eq. (10)
has been based, must, of course, be intended within the limits imposed
by the data sampling rate and accuracy, the survey extent and, mostly,
the Born approximation used for the initial definition of ∆ρa,n given
in Eq. (1).

In conclusion, by this very simple and rapid approach, the intrinsic
resistivity at a point of the surveyed volume is nothing but a weighted
average of the apparent resistivity values, using the Frechet derivatives
as weights depending on the coordinates of the given point.

4. ADAPTATION TO THE DIPOLE-DIPOLE ARRAY

This section deals with the main aspects of the well known dipole-
dipole configuration for the acquisition of geoelectrical data. In near-
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surface surveys, the dipole-dipole (DD) (Fig. 1) is the most convenient
four-electrode device, since it provides a very detailed lateral bounding
of vertical features. The DD device is normally used in profiling mode
to map lateral as well as depth variations of the resistivity. The
convention for the DD device illustrated in Fig. 1 is that current and
voltage dipole lengths are the same, a, and the spacing between the
dipoles is an integer multiple k of a.

Figure 1. The dipole-dipole array. A, B and M, N are the current
(I) and potential (φ) dipole, respectively. The dipole length is a and
k determines the dipolar spacing as an integer multiple of a.

The ERT approach consists in taking determinations of ρa,n at as
many locations as possible and involves the joint inversion of the many
independent tests. The inversion of a {ρa,n} dataset, collected by the
described DD profiling field technique, gives rise to a 2D ERT model.
If one assembles a set of p parallel DD profiles, the common inversion
of the multiple {ρa,n} dataset provides a 3D ERT model.

The DD apparent resistivity is calculated using the formula ρa,n

= (K/In)∆φn, where:
- In is the intensity of the primary current injected into the

ground through the electrodes A and B in the nth position
(n = 1, 2, . . . , N), say An and Bn,

- K = πak(k+1)(k+2) is the DD geometrical factor, where a is the
spread of the dipoles and k the sampling step running index along
the profile axis, taken parallel to the x-axis of a reference system
with the (x, y)-plane coinciding with the ground surface, assumed
locally flat, and the z-axis positive downwards, and

- ∆φn is the potential difference across the electrodes M and N in
the nth position, say Mn and Nn, expanded as ∆φn = φAn

Mn
−

φBn
Mn

− φAn
Nn

+ φBn
Nn

.

The Frechet derivative of ρref
a,n, is thus made explicit as

∂ρref
a,n

∂ρm
=

K

In

∂

∂ρm

(
φAn

Mn
− φBn

Mn
− φAn

Nn
+ φBn

Nn

)
. (11)

If the reference model is a homogeneous half space, indicating
with yp the coordinate along the y-axis of the pth DD profile, the four
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Frechet derivatives of the potential function are [2]

∂φAn
Mn

∂ρm
=

In∆V

4π2
· ∆x1∆x2 + ∆r2

(
∆x2

1 + ∆r2
)3/2 (

∆x2
2 + ∆r2

)3/2
, (12a)

∂φBn
Mn

∂ρm
=

In∆V

4π2
· ∆x3∆x2 + ∆r2

(
∆x2

3 + ∆r2
)3/2 (

∆x2
2 + ∆r2

)3/2
, (12b)

∂φAn
Nn

∂ρm
=

In∆V

4π2
· ∆x1∆x4 + ∆r2

(
∆x2

1 + ∆r2
)3/2 (

∆x2
4 + ∆r2

)3/2
, (12c)

∂φBn
Nn

∂ρm
=

In∆V

4π2
· ∆x3∆x4 + ∆r2

(
∆x2

3 + ∆r2
)3/2 (

∆x2
4 + ∆r2

)3/2
, (12d)

where it is

∆x1 = xm − xAn , (13a)
∆x2 = xm − xMn , (13b)
∆x3 = xm − xBn , (13c)
∆x4 = xm − xNn , (13d)
∆r2 = (ym − yp)2 + z2

m. (13e)

5. SYNTHETIC TESTS

In order to evaluate the performance of the PERTI method and
to be more specific on how the technique is used, we study some
synthetic examples of 2D and 3D structures. The results from the
application of Eq. (10) will be compared with those coming from the
use of the ERTLAB and RES2DINV or RES3DINV softwares. The
2D synthetic cases have been extracted from the Geotomo Software
inversion manual.

5.1. The 2D Three-prism Model

A 2D model is considered as depicted in Fig. 2(a). Three infinitely
long horizontal prisms with rectangular cross-section and resistivity
500, 10 and 30 Ωm, respectively, are placed inside a uniform half-space
with resistivity 100 Ωm. The structure is assumed to be prospected by
a DD array with spacing of 1m along a profile of 36m perpendicular
to the 2D strike. The three prisms are 3 m wide and 1.3m high, with
the top surfaces placed at 1.5 m of depth. The {ρa,n} pseudosection,
contaminated by a 5% random noise, is plotted in Fig. 2(b).
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(a)

(e)

(d)

(c)

(b)

Figure 2. A comparative analysis of the PERTI, ERTLAB and
RES2DINV approaches applied to the 2D three-prism model. (a)
The simulated pseudosection, (b) and the model reconstruction by the
PERTI, (c) ERTLAB, (d) and RES2DINV, (e) algorithms.

Figures 2(c)–(e) show the resistivity sections obtained by the
PERTI, ERTLAB and RES2DINV softwares. The ERTLAB and
RES2DINV sections are better representative of the presence of
the prisms, although the algorithms show the tendency to generate
artefacts either in the top part, viz. ERTLAB, or in the bottom part,
viz. RES2DINV, likely due to noise. On the contrary, the PERTI
algorithm provides a smoother section with the tendency to weaken
not only the resistivity contrasts, but, significantly, also the artefacts
due to noise. However, it must be pointed out that the RES2DINV
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Table 1. A comparative analysis of the PERTI, ERTLAB and
RES2DINV approaches applied to the 2D three-prism model shown
in Fig. 2(a). The estimated resistivity range in correspondence of the
three blocks.

Prism
(500 Ωm)

Prism
(10 Ωm)

Prism
(30 Ωm)

PERTI 118–134Ωm 52–59 Ωm 67–76 Ωm
ERTLAB 162–209Ωm 52–59 Ωm 55–71 Ωm

RES2DINV 247–293Ωm 23–33 Ωm 33–64 Ωm

section, differently from the ERTLAB and mostly the PERTI section,
displays a significant deepening of the centres of the first two blocks
from left, which appear to be located at around 2.5 m of depth, instead
of 2.15 m.

As it concerns the resistivity of the prisms, considering the portion
of the nuclei nearly located in the area occupied by them, the estimates
listed in Table 1 have been obtained. It must be pointed out that the
RES2DINV software does not allow for an inversion below 3m of depth.
However, in this case, the RES2DINV algorithm seems the one that
best approaches the true resistivities of the prisms and allows for a
clearer distinction between the prisms and the background, followed
by the ERTLAB algorithm.

5.2. The Fault and Prism Model

A 2D model is again considered as in Fig. 3(a). A faulted structure
with resistivity 100Ωm is placed in horizontal and vertical contact
with a 10 Ωm material. In this conductive material, an infinitely long
horizontal prism, 5 m wide, 2.4 m high and with resistivity 2 Ωm, is
placed. Both structures have the top surface at 0.8m of depth. A
DD survey with a spacing of 1 m is simulated along a straight profile
of 60 m perpendicular to the 2D strike. The {ρa,n} pseudosection,
contaminated again by a 5% random noise, is plotted in Fig. 3(b).

Figures 3(c)–(e) show the resistivity sections obtained by the
PERTI, ERTLAB and RES2DINV softwares. It is evident that the best
geometrical resolution is now provided by the PERTI and RES2DINV
tools. In fact, both inversion methods give a model section reasonably
conforming to the original section, whereas the ERTLAB algorithm
does not respond satisfactorily as to the definition of the faulted
structure. It can finally be noted the tendency of the RES2DINV
approach to raise the bottom of the conductive block a little above the
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true depth.
As it concerns the resistivity of the faulted layer and the prism,

considering again the portion of the nuclei nearly located in the area
occupied by them, the estimates listed in Table 2 have been obtained.
Once again, the RES2DINV software has not allowed the inversion to
be run below 3 m of depth. In this case the PERTI algorithm appears
to be the one that best approaches the true section.

(a)

(e)

(d)

(c)

(b)

Figure 3. A comparative analysis of the PERTI, ERTLAB and
RES2DINV approaches applied to the 2D fault and prism model. (a)
The simulated pseudosection, (b) and the model reconstruction by the
PERTI, (c) ERTLAB, (d) and RES2DINV, (e) algorithms.



Progress In Electromagnetics Research, PIER 97, 2009 285

Table 2. A comparative analysis of the PERTI, ERTLAB and
RES2DINV approaches applied to the 2D fault and prism model shown
in Fig. 3(a). The estimated resistivity range in correspondence of the
faulted layer and prism.

Faulted layer
(100 Ωm)

Prism
(2 Ωm)

PERTI 19–58Ωm 1.4–4.4 Ωm
ERTLAB 19–58Ωm 1.4–4.4 Ωm

RES2DINV 22–219Ωm 1.5–6.2 Ωm

5.3. The Two-layer and Dyke Model

The last 2D model which has been dealt with is drawn in Fig. 4(a).
A two-layer structure is considered where the first 20 m thick
overburden with resistivity of 300 Ωm overlies a resistive substratum
with resistivity of 1000Ωm. A vertical dyke, only 5 m wide and with
resistivity 10 Ωm, is placed inside the substratum. A DD survey with
a spacing of 5 m is simulated along a profile of 295 m perpendicular to
the strike direction. The {ρa,n} pseudosection, corrupted again by a
5% random noise, is plotted in Fig. 4(b).

Figures 4(c)–(e) show the model sections obtained by the PERTI,
ERTLAB and RES2DINV methods. The PERTI algorithm provides
a geometrical solution that appears to conform to the true section,
although with an exceedingly large dyke breadth, which is, however,
very similar to that appearing in the ERTLAB and RES2DINV
modelled sections. These two last approaches show the tendency to
image the two portions of the substratum, on both sides of the dyke,
as two laterally confined blocks, differently from the PERTI inversion
software, which provides, instead, a better image of the two-layer
sequence.

As it concerns the resistivity of the two-layer and the dyke,
considering again the portion of the nuclei nearly located in the area
occupied by them, the estimates listed in Table 3 have been obtained.

5.4. The Archaeological Masonry Model

To conclude this section, we study now the responses from the
3D model in Fig. 5(a). The model aims at simulating a buried
archaeological structure consisting of a sequence of walls disposed at
right angle, bounding two adjacent rooms, each with its own entrance.
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(a)

(e)

(d)

(c)

(b)

Figure 4. A comparative analysis of the PERTI, ERTLAB and
RES2DINV approaches applied to the 2D two-layer and dyke model.
(a) The pseudosection, (b) and the model reconstruction by the
PERTI, (c) ERTLAB, (d) and RES2DINV, (e) algorithms.

The masonry structure is placed between 0.7 and 1.6 m of depth and
is given the resistivity of 150 Ωm, in contrast with the 50 Ωm of the
hosting half-space. A DD survey with a 1 m dipole length is simulated
along a set of profiles parallel to the x-axis and spaced 1m apart, up
to the pseudodepth index k = 10.
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(a)

(b)

Figure 5. A comparative analysis of the PERTI, ERTLAB and
RES3DINV approaches applied to a 3D archaeological masonry model.
(a) Inverted model horizontal slice sequence at the depths of 1 m, 1.5m,
2m, and 2.5 m, (b) using the PERTI (left column), ERTLAB (mid
column) and RES3DINV (right column) algorithms.



288 Mauriello and Patella

Table 3. A comparative analysis of the PERTI, ERTLAB and
RES2DINV approaches applied to the 2D two-layer and dyke model
shown in Fig. 4(a). The estimated resistivity range in correspondence
of the two-layer and dyke.

Top layer
(300 Ωm)

Substratum
(1000 Ωm)

Dyke
(10 Ωm)

PERTI 251–398Ωm 447–551Ωm 251–282Ωm
ERTLAB 211–501Ωm 447–551Ωm 251–282Ωm

RES2DINV 200–501Ωm 501–2113Ωm 33–200Ωm

Figure 5(b) displays the inverted horizontal slices at four different
depths every 0.5 m from 1 m down to 2.5 m, as resulting from the
PERTI (left column), ERTLAB (mid column) and RES3DINV (right
column) approaches. All of the three algorithms provide a correct
lateral definition of the masonry structure. However, the PERTI
and ERTLAB methods appear to provide the best depth collocation
of the masonry structure, conforming to the initial model, whereas
the RES3DINV software shows some difficulty to close the bottom
of the walls at the proper depth. As to the entrances to the two
rooms, the PERTI algorithm appears to be the one that provides the
correct positioning of both entrances. As it concerns the resistivity
of the masonry structure and hosting rock, the PERTI and ERTLAB
inversions have given values in the range 59–78 Ωm and 42–55Ωm,
respectively, while the RES3DINV in the range 59–64Ωm and 49–
56Ωm, respectively.

In 3D cases, which involve datasets much heavier than in 2D cases,
computing time becomes the main criterion for the selection among
inversion methods with comparable resolution. In the case of Fig. 5,
the time required by the PERTI algorithm using a standard PC was
only about 3 min, by far shorter than the time required by the ERTLAB
software (more than 250 min) and the RES3DINV demo version (about
30 min).

6. CONCLUSION

We have proposed an easy and fast 3D electrical resistivity
inversion algorithm, which has been deduced from the 3D probability
tomography imaging theory, shown in previous papers. The new
inversion procedure is based on a formula, which provides the resistivity
at any point of the surveyed volume as a weighted average of the
apparent resistivity dataset. The weights have been expressed as the
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Frechet derivatives of the apparent resistivity for a homogeneous half-
space, where a resistivity perturbation is produced in an arbitrary
small cell of the discretised survey volume. The results of the new
inversion method applied to some 2D and 3D synthetic cases have been
compared with those obtained from the application of the ERTLAB
and RES2DINV or RES3DINV softwares. The comparison has shown
that the new approach is generally as efficacious as the two older tools
in detecting, distinguishing and shaping the sources of the observed
apparent resistivity anomalies. The estimate of the intrinsic resistivity
of the source bodies, has appeared closely comparable with that of
the ERTLAB software, but sensibly less precise than that of the
RES2DINV approach.

Main features of the PERTI method are: (i) unnecessity of a
priori information; (ii) full, unconstrained adaptability to any kind
of dataset, including the case of non-flat topography; (ii) drastic
reduction of computing time of even two orders of magnitude, with
respect to the previous methods in complex 3D cases using the same
PC; (iii) real-time inversion directly in the field, thus allowing for fast
modifications of the survey plan to better focus the expected targets;
(iv) full independence from data acquisition techniques and spatial
regularity, (v) possibility to be used as an optimum starting model in
standard iterative inversion processes in order to speed up convergence.
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