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Abstract—We propose an optimization methodology suitable for the
design of various antenna structures. This methodology includes
a rapidly-converging iterative scheme. In each iteration stage, the
algorithm generates a parameterized Cauchy model using the available
results from previous iterations. Optimization is then applied to
this Cauchy model to obtain better design parameters that are also
used in enhancing the accuracy of the model. This cycle continues
until the specifications are met. In addition, this on-the-fly technique
produces an analytical model of the behavior of the antenna structure.
Sensitivity and tolerance analysis can thus be efficiently carried out
without the need for further costly electromagnetic simulations.
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1. INTRODUCTION

Miniaturized handheld form-factors, wider network coverage, good
radio performance, and higher integration of features come together to
define our expectations of a modern wireless communication system.
In any downsized wireless device, antennas play the role of its physical
sensors, interfacing the device to the outer world. To fulfill their
role, these antennas have to be small enough and meet strict system
specifications. With the requirement for various form-factor designs
and coverage over numerous wireless communication bands, different
antenna designs are essential. This motivates research for robust and
efficient design methodologies.

In most cases, the package-integrated antenna design is too
complex. Analytical methods can not fully produce an antenna
performing as required. On the other hand, simple cut-and-try on-
the-bench approaches can be time consuming. With the advances
in computational power, an alternative route is to design through
numerical electromagnetic simulations. Nevertheless, if not guided
through efficient design routines, this process could also become quite
costly.

Combining electromagnetic simulations with powerful optimiza-
tion routines represents the heart of many Computer Aided Design
(CAD) approaches. Many interesting optimization approaches have
been proposed, and some have already become a standard feature in
many commercial electromagnetic simulators [1]. Among these are the
classical quasi-Newton techniques [2], genetic-based algorithms [3, 4],
particle swarm optimization [5–7], evolutionary programming [8–10],
and space mapping [11–15]. Some of these algorithms are also inte-
grated with artificial neural networks [16, 17] leading to an efficient
design approach.

The motivation of this work is to develop a new antenna design
approach that requires fewer calls to the electromagnetic (EM)
simulator, and thus results in a faster design cycle. In addition to
achieving a feasible design, it is also desirable to assess the antenna
sensitivity to fabrication/assembly tolerances without the need for
further EM simulations. This motivates research on models that
accurately describe the behavior of the designed antenna.

Our proposed approach can be classified as an on-the-fly
optimization procedure that does not require a priori knowledge or
simulations [18–20]. A multi-dimensional Cauchy model is constructed
at each iteration stage using the available EM simulations from
previous iterations. The model is then optimized to predict a new
design parameter. This new design is accepted if it improves the design
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objective function. Otherwise, it is rejected. In all cases, this point
is then used, along with all available EM simulations, to construct a
more accurate Cauchy model. The updated model is then utilized to
predict a better design.

This work is divided as follows: First, a review of the
utilized multi-dimensional Cauchy modeling technique is presented
in Section 2. Next, we present our proposed design optimization
methodology in Section 3. We discuss in detail the flow chart of the
algorithm and its different steps. Several examples are then presented
in Section 4 which covers different types of antenna structures. Finally,
the conclusions are discussed in Section 5.

2. MODELING USING MULTI-DIMENSIONAL
RATIONAL FUNCTIONS

2.1. Notations

Let us consider a general electromagnetic response, R(p1, p2, . . . , pn),
which is a function of n parameters, p1, p2, . . . , pn. These parameters
may include frequency, dimensions of different discontinuities, and
material properties. We may model such a response by a
multidimensional Cauchy rational function in the form:

R(p1, p2, . . . , pn) =
N(p1, p2, . . . , pn)
D(p1, p2, . . . , pn)

=
N(p)
D(p)

(1)

where N(p1, p2, . . . , pn) and D(p1, p2, . . . , pn) are polynomial functions
of the design parameters. The order of these polynomials is typically
determined according to the nature of the problem. In the most
general form, the numerator, or the denominator, of order M with
N parameters, can be written in the form:

(
a0 +

N∑

i=1

aipi

)M

(2)

Through simple manipulations, we can write the number of terms in
such a polynomial as:

# of Terms = 1 +
M∑

j=1

(
j∏

i=1

(
N + i− 1

i

))
(3)

The rational approximation given by (1) was initially utilized for
the case of frequency dependent response [21, 22]. For a long time,
this approach was limited to modeling the frequency response for a
given set of parameters. In the 1970s, the Cauchy mathematical
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approach was extended to model multi-dimensional systems for control
applications [23]. Later in the last decade, this multi-dimensional
approach was also adapted for EM problems [24–28], where the rational
polynomials are functions of both the frequency and other design
parameters. However, modeling a medium scale EM problem using this
approach would typically require numerous full wave EM simulations.
In addition, one remaining challenge is how to obtain the coefficients
of these polynomials to model resonant structures [28]. This added a
considerable amount of complexity to the problem.

The previous approaches [21–28] enforce the rational approxima-
tion (1) at a large number of sample points to construct an overde-
termined system of equations of the form Ad = v. This system is
then solved using least squares. The solution of this system d∗ is the
vector of optimal polynomial coefficients for both the numerator and
the denominator that best fit the sample points. Solving such a sys-
tem, however, presents some noticeable challenges. In [27], the prob-
lem formulation is changed to Ad = 0 rather than Ad = v, to utilize
the total least squares method instead of the least squares method.
This approach produces good results in low dimensional problems,
but suffers from spurious solutions that would lead to a non-physical
model [27]. In [24], the multidimensional problem is divided into mul-
tiple one dimensional problems that are solved recursively. However,
this approach requires a large number of sample points to reach a
satisfactory model. Other techniques are found in [28], but these ap-
proaches are not proven suitable for rapidly varying responses such as
those associated with antenna structures.

2.2. The Proposed Cauchy Model

Here, the problem is tackled differently by casting it into a linear
programming problem. Let us assume that there are Ns data samples
available, given by Ri = R(pi), i = 1, 2, . . . Ns. The ith sample is given
in a multidimensional Cauchy model by [29]:

R̂i =
aTxi

bTyi
(4)

where a = [a0 a1 . . . aNn]T and b = [b0 b1 . . . bDn]T are the
optimizable polynomials coefficients. Note that the Cauchy model (4)
is not affected if the numerator and the denominator are scaled by
the same factor. The vectors xi and yi are, in general, parameter
and frequency dependent vectors. The coefficient vectors a and b
should minimize the error between the actual output data points and
the Cauchy model. The corresponding optimization problem can be
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written as:

min
a,b

{
max

i

∣∣bTyiRi − aTxi

∣∣
}

(5)

Typically, in any numerical solver, or in a realistic measurement
experiment, there exists a tolerance margin for the accuracy of the
simulated/measured responses. Including the tolerance margin of the
data sample is likely to enhance the robustness of the algorithm. The
modified optimization algorithm is thus modified to:

min
a,b

{
max

i

{
max

|∆Ri|≤εi

∣∣bTyi [Ri + ∆Ri]− aTxi

∣∣
}}

(6)

where ∆Ri is the expected error in the ith sample with |∆Ri| < εi. One
problem with this type of formulation is that it allows for the spurious
solution aTxi = bTyi = 0. This solution, observed also in [27], results
in a non-physical case. In a linear programming problem, this case can
be avoided by adding a set of suitable linear constraints.

For example, and without loss of generality, when modeling the
scattering parameters response of passive structures, like antennas, we
can write:

min
a,b

{
max

i

{
max

|∆Si|≤εi

∣∣∣bTyi [Si + ∆Si]− aTxi

∣∣∣
}}

(7)

To ensure that the numerator is never zero, we add the set of linear
constraints:

bTyi ≥ 1 i = 1, 2, . . . , Ns (8)
Note that because the coefficients of the numerator and the
denominator are scalable, any positive number can be used in (8).
The second set of linear constraints:

aTxi ≥ 0 i = 1, 2, . . . , Ns (9)
ensures that the response is larger than or equal to zero. For a passive
structure, the scattering parameters are between 0 and 1. Thus, the
third set of linear constraints is added:

bTyi ≥ aTxi i = 1, 2, . . . , Ns (10)
The assembly of the aforementioned linear constraints is a standard
procedure in convex optimization problems. However, in its current
form, the objective function in (6) is a non-linear function. Classical
linear programming techniques allow for dealing with this problem by
introducing an auxiliary variable t as follows [30, 31]:

min
a,b,t

t

Subject to :

max
|∆Ri|≤εi

∣∣∣bTyi [Ri + ∆Ri]− aTxi

∣∣∣ ≤ t, i = 1, 2, . . . , Ns

(11)
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where the set of constraints can be expanded by adding constraints
associated with the physical limitations of the system, as discussed
earlier. The current nonlinear constraints can now be made linear by
expanding it into the two linear constraints

max
|∆Ri|≤εi

{
bTyi [Ri + ∆Ri]− aTxi

}
≤ t (12)

and
− min
|∆Ri|≤εi

{
bTyi [Ri + ∆Ri]− aTxi

}
≤ t (13)

where either (12) or (13) is active for the current sample with i =
1, 2, . . . , Ns.

For a positive valued response, these two sets of linear constraints
can be rewritten as:

bTyi [Ri + εi]− aTxi ≤ t i = 1, 2, . . . , Ns (14)

and
−bTyi [Ri + εi] + aTxi ≤ t i = 1, 2, . . . , Ns (15)

Now, integrating all the previous steps, we get the following linear
convex programming problem for the S parameters [30]:

min
a,b,t

t

Subject to :

bTyi [Si + εi]− aTxi ≤ t i = 1, 2, . . . , Ns

bTyi [−Si + εi] + aTxi ≤ t i = 1, 2, . . . , Ns

bTyi ≥ 1 i = 1, 2, . . . , Ns

aTxi ≥ 0 i = 1, 2, . . . , Ns

bTyi ≥ aTxi i = 1, 2, . . . , Ns

(16)

For a general response with general linear physical constraints, the
corresponding linear program is given by

min
a,b,t

t

Subject to : Ad ≤ v
(17)

where d = [aT bT t]T is the vector of unknowns of the linear program.
The matrix A and the vector v are the matrix of parameter coefficients
and the vector of right hand side constants of the linear program,
respectively. They depend on the physical constraints imposed and
the number of available samples.
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The linear program (17) can be solved by the simplex
method [30, 31], which yields the global solution of the problem. A
linear program of the form (17) with several hundred unknowns is
usually solved in few seconds. It is worth mentioning that there
are several available optimization packages for solving such linear
programming problem, including MOSEK [32], TOMLAB [33], and
MATLAB [34].

3. OPTIMIZATION USING MULTI-DIMENSIONAL
RATIONAL MODELING

3.1. Previous Optimization Approaches

Most of the previous work that addressed multi-dimensional modeling
aimed at utilizing the developed models in optimization. Few points
can be observed with this approach. First, a large number of sample
points is typically needed [24–28]. For example, the lowest possible
number of points reported uses 125 points for modeling a simple
resonant three-variable problem [24]. This is considered a costly
process, given that if the design invokes 5 parameters instead of 3, the
number of required simulations will be around 3125. Large number
of points exceeding 1000 was also reported in [26, 28]. Another issue
with this type of modeling is that it assumes a given domain for the
parameters. Enlarging this domain would significantly complicate the
process as more points may be needed, especially if resonances occur
in this domain. On the other hand, shrinking the domain would
result in limited modeling scope, in spite of the considerable number
of simulations needed to build it.

Thus, to realize an antenna that should incorporate multiple
bands and fits into various miniaturized packages, the model-then-
optimize approach, in its current form, is quite costly. It would
most likely provide similar (if not inferior) performance to currently
available optimization routines used in antenna design. Still, one
should emphasize that the model-then-optimize approach has the
advantage of providing a parameterized model that can be used in
tolerance, statistical and yield analysis.

The approach proposed in this work is to construct a parameter-
ized Cauchy model while simultaneously applying optimization. This
approach still maintains the capability of performing tolerance, yield,
and statistical analysis. We start by first giving simple one-dimensional
and three-dimensional illustrative examples of our approach.



286 Shaker et al.

3.2. A One-dimensional Example Using the Proposed
Approach

To illustrate our approach, we first study a simple one-dimensional
example. Assume that we need to find the value of the variable p,
denoted by p∗, such that R(p∗) = 0.5. For simplicity, we assume that
the function R(p) represents some unknown system behavior which is
best described as R(p) = cos(p). Note that this functional behavior
is not known to the designer. Now, from a designer’s perspective,
very few test values of the variable should be needed to find the value
which realizes the desired system response R(p∗) = 0.5. Hence, the
algorithm will take the form of Fig. 1. The designer has to supply some
initial guess for the value of the parameter p, along with parameter
bounds, that would typically reflect some physical/fabrication limits,
in addition to the required response. In this example, we assume that
the solution will be within the domain p ∈ [0, π]. Also, we assume that
the initial guess for p is p0 = 0.9.

Our proposed algorithm runs as follows. First, the algorithm uses
the user input, p0, to call the numerical solver, or control a physical
experiment to obtain R(p0). The extraction set, used to construct
the Cauchy model, at the first iteration R

(0)
CM (p) is thus Φ(0) = {0.9}.

The order of the Cauchy model is predefined. As discussed earlier, this
problem can be casted as a convex linear programming of the form (17)
to find the best fit to the available sample points.

Here, the number of samples Ns is equal to one which is the
cardinality of the set Φ(0). The next step in the algorithm is to find
a better value for p. We apply optimization to the Cauchy model
R

(0)
CM (p) seeking the parameter p∗ that satisfies the specified objective.

The obtained design p1 = 1.08 is then verified through a call to the
numerical/EM solver to obtain the corresponding new response R(p1).

Figure 1. A general flow chart of our optimization algorithm.
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Table 1. Algorithm results starting with p0 = 0.9.

Iteration
Parameter
Value (p)

Response
Value R(p)

Absolute Error

1 0.9 0.6216 0.1216
2 1.08 0.4713 0.0287
3 1.0443 0.5025 0.0025
4 1.0472 0.5000 2× 10−6

 

Figure 2. A local comparison between the models developed
using Cauchy rational functions and the exact response for the one-
dimensional example.

The new obtained point is then added to the extraction set to obtain
Φ(1) = {0.9, 1.08}. A new Cauchy rational model R

(1)
CM (p) is then

constructed using the two available sample points (Ns = 2). The cycle
goes on till the desired response is achieved. Table 1 illustrates the
results obtained for p0 = 0.9. Fig. 2 shows how the resulting models
behave as a function of the parameter p. The resulting second order
Cauchy model after 4 iterations is:

R∗
CM |p0=0.9 = 1.088

1.00− 0.3918p− 0.1612p2

1.00− 0.1612p + 0.0612p2
(18)

Note that the final Cauchy model is denoted by R∗
CM (p). It should

be emphasized that each iteration stage corresponds to a single call to
the numerical/EM solver or to a single physical experiment. Changing
the initial point to p0 = 0.1 results in a comparable accuracy but with
a slightly different model:

R∗
CM |p0=0.1 = 1.021

1.00− 0.3361p− 0.1907p2

1.00− 0.2488p + 0.1421p2
(19)
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Figure 3. A wide range comparison between the models developed
using Cauchy rational functions to the exact response for the one-
dimensional example.

Changing the order to 1, results in a simpler model but with limited
range of accuracy:

R∗
CM |p0=0.9 = 1.1788

1.00− 0.6512p
1.00− 0.2394p

(20)

Fig. 3 shows a wide range comparison between the Cauchy models
of different orders and the exact response. As expected, the models
match well within the region of the sample points obtained during
optimization. Obvious deviation is noted though outside this region as
the Cauchy model was not given any sample points in this region.

3.3. A Three-variable Resonance Circuit Using the
Proposed Approach

The one-dimensional example illustrates a scenario where we have
a simple scalar response. However, resonant structures, such as
antennas, are usually modeled over a frequency band. The responses of
such resonant-based structures can be approximated by a combination
of parallel or series resonance networks. For illustration, we consider
an RLC parallel network. The input impedance of such a network is
written as:

Zm(ω, L,C, R) =
1

1
R + jωC + 1

jωL

(21)

The input reflection coefficient seen at the ports of the network can
then be written as:

S(ω, L, C,R) =
Zin(ω, L,C, R)− Z0

Zin(ω, L,C, R) + Z0
(22)
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Figure 4. The constraints on the three-variable resonance circuit.

where Z0 is the characteristic impedance of the feed line. After some
simple manipulations, we can write:

|S(ω,L, C, R)|2 =

(
ω4Z2

0L2C2R2 − 2ω2Z2
0LCR2 + ω2L2R2

−2ω2Z0L
2R + ω2Z2

0L2 + Z2
0R2

)

(
ω4Z2

0L2C2R2 − 2ω2Z2
0LCR2 + ω2L2R2

+2ω2Z0L
2R + ω2Z2

0L2 + Z2
0R2

) (23)

In order to accurately model the behavior of this network, we
generate a polynomial with the highest powers of both the numerator
and denominator. That is, in principle, we need a Cauchy rational
function of order 10 to capture all the details of this function. However,
in a more realistic design situation, we try to find the values of
components, or physical dimensions that realize a given frequency
response. For example, Fig. 4 shows a typical desired frequency
response where the reflection coefficient at the input ports meets
specific constraints.

This simple observation allows us to select few discrete frequencies
and include the constraints at each of these frequencies in the convex
linear programming algorithm. Thus, the problem simplifies to:

|S(L,C, R)|2
∣∣∣
ω=ωNf

=

(
ω4

Nf
Z2

0L2C2R2−2ω2
Nf

Z2
0LCR2+ω2

Nf
L2R2

−2ω2
Nf

Z0L
2R + ω2

Nf
Z2

0L2 + Z2
0R2

)

(
ω4

Nf
Z2

0L2C2R2−2ω2
Nf

Z2
0LCR2+ω2

Nf
L2R2

+2ω2
Nf

Z0L
2R + ω2

Nf
Z2

0L2 + Z2
0R2

)

(24)
We thus create a rational Cauchy model at each frequency of interest.
At each frequency, we need to construct a rational Cauchy model of
order 6 to capture all the details of the behavior of this function. Hence,
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we need to solve for 168 coefficients. However, as illustrated earlier, for
design purposes, we do not need to model the full functional behavior.
For example, if we use multi-dimensional rational functions of order
3, then we have only 40 coefficients to identify. Here, we specify 13
distinct frequency points, such that the response has to be below a
certain value for the 11 middle ones, and higher than a certain value
at the edge frequencies as shown in Fig. 5. We can then set up a
suitable linear programming problem as discussed earlier.

Following the same previously outlined algorithm, and utilizing a
min-max objective function, a third order rational model provides a
maximum cost of −3×10−4 deviation at the selected frequencies. The
negative sign of the min-max cost function indicates that all constraints
are satisfied. It should be emphasized that a third order model requires

Figure 5. The constraints imposed on discrete frequencies of the
three-variable resonance circuit.

Figure 6. The change of the minimax cost function with each iteration
for the three-variable resonance circuit.
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only 13 calls to the circuit simulator, each with R, C, and L values as
the input parameters. The responses at the thirteen selected frequency
points are the corresponding output of the simulator. The same
accuracy can be achieved with 16 iterations if we use six-order rational
functions as shown in Fig. 6.

It is important to notice the significant acceleration in the achieved
results as compared to the “build a complete model then optimize”
approach [24–28]. For example, following [24], and assuming 5 points
per dimension along with third order rational functions, we would need
at least 45 = 1024 calls to the circuit solver. Optimization would then
be carried out exploiting this model to reach the same results that our
algorithm reached in only 13 calls.

To assess the potential of the third order model to be used for
sensitivity and tolerance analysis, the absolute error between the exact
model and the input reflection coefficient |S(L,C, R)|, calculated from
the corresponding third order multidimensional model at 2.0 GHz, is
shown in Fig. 7. To perform this calculation, the design parameters are
allowed to vary within ±10% from their nominal value. The included
domain is chosen such that L ∈ [1.8, 2.2] nH, C ∈ [2.7, 3.3] pF, and
R ∈ [45, 55]Ω. Each dimension is uniformly divided into 10 points,
creating a grid of 1000 points. Fig. 7 shows a histogram of the resulting
error calculated at each of the grid points. It is clear that the maximum
error is below 5× 10−3.

Now, if the variables are allowed to vary by ±20% from their
nominal value, keeping a uniform grid of 1000 points, we get the errors
shown in Fig. 8. The error is still relatively small given the allowed
percentage change of the parameters.

Figure 7. The results of the absolute error in tolerance analysis
between a 3rd order Cauchy model and actual simulation using a
tolerance of 10% for all parameters at 2.0 GHz.
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Figure 8. The results of the absolute error in tolerance analysis
between a 3rd order Cauchy model and actual simulation using a
tolerance of 20% for all parameters at 2.0 GHz.

Figure 9. The Cauchy coefficients are obtained for a set of discrete
frequencies.

So far, we have generated multi-dimensional rational models
of a number of parameters at each selected frequency. Fig. 9
illustrates such a situation. It is often desirable, however, to reduce
the number of selected frequency points. This speeds up the over
all simulation/measurement time and reduces its associated costs.
We therefore employ Padé approximation on each of the resulting
coefficients to generate frequency dependent coefficients as illustrated
in Fig. 10. Using these frequency-dependent coefficients of the multi-
dimensional rational model allows us to interpolate and extrapolate
rapidly for frequencies other than those selected during the design
process.
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Figure 10. The Padé approximation is applied to determine the
Cauchy coefficients for frequencies other than the considered ones.

Figure 11. The flowchart of the algorithm.

3.4. Proposed on-the-fly Optimization Algorithm

The algorithm explained in the previous two illustrative examples
can be visualized through the flow chart presented in Fig. 11. The
algorithm is summarized in the following steps:

1. Initialization: The iteration counter is set to k = 0. The
starting point p0 is given. The extraction set is initialized with
Φ(0) = {p0}, with the best available solution initialized with p∗ = p0.
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Note that the set Φ(k) contains the samples used to construct the
Cauchy model in the kth iteration.

2. The EM simulator is called (or alternatively measurements are
carried out) to determine R(p0).

3. The Cauchy model of the kth iteration R
(k)
CM (p) is constructed

using the points in the set Φ(k) by solving the linear program (17).
Note that a partial set of the points in the set Φ(k) may be used in (17)
depending on how close the points are to the current iterate p∗. As
mentioned earlier, constraints could be added to or removed from (17)
to fit the considered physical response.

4. The current Cauchy model R
(k)
CM (p) is optimized to obtain the

new design pk+1. A trust region approach [14] is integrated to limit
the search for the new design to a region where the Cauchy model is
trusted.

5. The response at the new point R (pk+1) is calculated using EM
simulation or measurements.

6. If the new design offers a better objective function, i.e.,
U (pk+1) < U (p∗), then the best available solution p∗ is set to pk+1.
Note that U is the objective function to be minimized during the
design process. It may be a least squares or a min-max cost functions
depending on the application.

7. If the termination condition is satisfied, the algorithm is
terminated, and p∗ along with the coefficients of the corresponding
Cauchy model R∗

CM (p) are reported. The utilized termination
condition may include several unsuccessful iterations, or that the
iteration counter k exceeded a certain maximum value.

8. The extraction set is augmented with the new point, i.e.,
Φ(k+1) = Φ(k) ∪ pk+1. Set k = k + 1. The algorithm starts a new
iteration from Step 3.

4. EXAMPLES

The proposed algorithm was applied to a number of practical antenna
designs. In these designs, the relation between the response and the
different parameters is not known. However, as discussed earlier,
by selecting an appropriate order for the multidimensional rational
polynomials, it is possible to accelerate the design process. In the
following examples, the order of the Cauchy model is fixed to 3. With
this order, we should be able to locally generate an accurate model that
can be used for optimization, sensitivity, and tolerance analyses. The
stopping criterion for the algorithm is when the required specifications
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are met. We employ the min-max objective function defined by:

U (p) = max
{

Rsign
1

[
R1 −RConst

1

]
, . . . , Rsign

Nf

[
RNf

−RConst
Nf

]}
(25)

where Rj is the actual response at the jth frequency sample, j =
1, 2, . . . , Nf . The constraint value RConst

j denotes the response
constraint at the jth frequency. Rsign

j takes a value of +1 or −1
depending on whether the constraint of the jth frequency response
is an upper or lower constraint, respectively. When all specifications
are met, the value of the objective function in (25) should be less than
zero.

As discussed earlier, and summarized in Fig. 1, the designer needs
to specify the design specifications, the initial guess for the solution,
and bounds on the design parameters reflecting typical fabrication
limitations or size constraints. All of these are provided to our in-house
Matlab-based software. We refer to this code as the Cauchy Engine for
Radiators/Resonators (CAUCHER). The core of CAUCHER applies
the algorithm as discussed earlier in Section 3. During processing, our
software drives the EM solver to reach a valid design. There are several
powerful EM solvers available in the market for this purpose. In our
algorithm, the CAUCHER software allows the user to choose from a
set of solvers, depending on the nature of the problem. After specifying
a solver, CAUCHER automatically accesses the EM solver, sets up the
design, performs a simulation, retrieves the results, and uses them in
the processing cycle (Fig. 11). The EM solvers currently integrated
with our CAUCHER software include Ansoft’s Designer [36], Ansoft’s
HFSS [37], COMSOL [38], CST’s Microwave Studio [39], Sonnet
EM [40], and SPEAG’s SEMCAD [41].

To demonstrate the algorithm, several practical antenna designs
are presented next. They illustrate the behavior of the algorithm when
designing to meet single as well as multiple objectives. Since all of these
examples are equally produced by any of the listed EM Solvers, we only
list the required number of calls to the solver to reach a feasible design.

4.1. A 3-variable Patch Antenna

The first antenna example addresses the design of a patch
antenna [42, 43] such that it meets the constraint VSWR ≤ 3 over
the band 1.98 GHz–2.04 GHz. The patch should have higher VSWR
outside of this band. Thus, by selecting three in-band frequency
points, and three out-of-band frequencies, we can define the design
specifications as:

|S11|2 =
{

< 0.25 In-Band
> 0.25 Out-of-Band (26)
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Here, we use a 3.0mm thick FR-4 substrate. In addition, we fix the
feed point to be on the centre line of the rectangular patch. Thus,
we consider three variables for the design. They are the length of the
patch Lp, the width of the patch Wp, and the feed distance from one
edge xf (See Fig. 12).

Searching for the optimal set of values of p∗ =
[
L∗p W ∗

p x∗f
]
mm,

we define a practical range of values for each parameter as follows:

15.0mm ≤ Lp ≤ 40.0mm
15.0mm ≤ Wp ≤ 40.0mm
1.0mm ≤ xf ≤ 20.0mm

(27)

Figure 12. The optimizable dimensions of the patch antenna.

Figure 13. Optimization convergence for three different starting
points for the patch antenna example.
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Next, the algorithm is applied with three different initial guesses:
[20.0 20.0 5.0]mm, [35.0 30.0 10.0]mm, and [38.0 37.0 17.0]mm.

The results of running the algorithm for each of these values are
shown in Fig. 13. It should be noted that each iteration represents
one call to the EM simulator. Table 2 shows the obtained optimal
design and the number of iterations for each case. Next, we compare
the performance of our approach to that of some of the commonly used
commercial optimization packages. We list the results obtained using
sequential non-linear, quasi-Newton, and pattern search algorithms.
Note that the min-max cost function used in several commercial solvers
is a weighted version of that defined in (25). See for example [38]
for details on the weighting coefficients. The results when starting
optimization from the two arbitrary points [20.0 20.0 5.0]mm and
[35.0 30.0 10.0]mm, respectively, are shown in Figs. 14 and 15.

For the first point, the pattern search algorithm converged after
22 calls to the EM simulator. However, none of the algorithms
managed to find a design the meets the specifications when using
[35.0 30.0 10.0]mm as the starting point.

Table 2. Results for the three different cases tested.

Initial Set in mm Optimal Set in mm # of Iterations Cost
[20.0 20.0 5.0] [34.75 40.0 2.71] 23 −0.0034
[35.0 30.0 10.0] [34.54 29.62 10.70] 6 −0.0018
[38.0 37.0 17.0] [34.02 40.0 10.16] 11 −0.0063

Figure 14. Patch antenna optimization convergence using
different optimization approaches when starting from the point
[20.0 20.0 5.0]mm.
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Figure 15. Patch antenna optimization convergence using
different optimization approaches when starting from the point
[35.0 30.0 10.0]mm.

4.2. Multi-objective 4-variable Patch Antenna

Here we apply our algorithm to the design of a global positioning
system (GPS) patch antenna. The patch is designed on a rigid foam
material with a thickness of 10.0mm. One basic requirement of this
antenna is that it should maintain a VSWR ≤ 2 over the bandwidth
1575±20 MHz. In addition, the patch has to be of circular polarization
over this band. The following two additional responses are considered:

RmagE =
||Eθ| − |Eϕ||
|Eθ|+ |Eϕ| (28)

and
RangE = |∠Eθ − ∠Eϕ| (29)

Here, the far field is given by E = Eθθ̂ + Eϕϕ̂. To achieve practical
circular polarization [42, 43] at a given frequency, RmagE should be less
than 0.1, with RangE = 90◦ ± 15◦. Six uniformly distributed in-band
frequency points are considered.

The patch variables are the same as those in Fig. 12, but with the
feeding probe located at anywhere on the patch. Searching for optimal
design of p∗ =

[
L∗p W ∗

p x∗f y∗f
]
, we utilize the following practical

bounds:
50.0 mm ≤ Lp ≤ 100.0 mm
50.0 mm ≤ Wp ≤ 110.0mm
5.0mm ≤ xf ≤ 30.0mm
5.0mm ≤ yf ≤ 30.0mm

(30)

Table 3 shows a summary of results with the convergence shown
in Fig. 16. The algorithm converged to a feasible design after 18
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calls to the EM simulator. The results obtained when applying
other commercially available algorithms are shown in Fig. 17. The
optimization stopped after 35 calls to the EM simulator without
reaching a feasible design. Figs. 18–20 show the results of the initial
and optimized responses of the GPS antenna obtained using our
algorithm.

Figure 16. Optimization convergence of the GPS antenna design
using our algorithm.

Figure 17. Optimization convergence of the GPS antenna example
using some of the available commercial algorithms.

Table 3. Summary of the results for the GPS patch antenna.

Initial Set in mm Optimal Set in mm # of Iter. Cost
[100.0 100.0 27.0 27.0] [75.4 86.28 13.55 27.21] 18 −0.0414
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Figure 18. The initial and optimized VSWR of the GPS antenna
obtained using our algorithm.

Figure 19. The initial and optimized axial ratio of the GPS antenna
obtained using our algorithm.

Figure 20. The initial and optimized |∠Eθ−∠Eϕ| of the GPS antenna
obtained using our algorithm.
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4.3. A 5-variable Yagi-Uda Antenna

A Yagi-Uda Antenna [42] is a directional antenna system consisting
of a feed dipole along with a number of closely coupled parasitic
dipole elements (usually a reflector and one or more directors). The
design of this antenna has attracted several researchers [44]. Here,
we demonstrate the application of our algorithm in designing such an
antenna to meet the specifications VSWR ≤ 2.0 over the bandwidth
1.5GHz to 2.5GHz. For demonstration purposes, we limit the number
of directors to only one. In addition, we also do not restrict the
out-of-band performance. The diameters of the dipole elements are
fixed to 2.1mm, and are arranged as in Fig. 21. Thus, we have a five
dimensional problem with five design variables: The height of the feed
dipole element HF , the height of the reflector HR, the height of the
director HD, the distance between the reflector and the feed elements
LR, and the distance between the director and the feed elements LD.
Ten uniformly distributed in-band frequency points are utilized.

Searching for the optimal design of the parameters p∗ =
[H∗

F L∗D H∗
D L∗R H∗

R]mm, we impose the following practical parameter
ranges:

25.0mm ≤ HF ≤ 55.0mm
5.0 mm ≤ LD ≤ 30.0mm
10.0mm ≤ HD ≤ 30.0mm
20.0mm ≤ LR ≤ 45.0mm
50.0 ≤ HR ≤ 85.0

(31)

Figure 21. The simplified Yagi-Uda example.

Table 4. Summary of the results for the Yagi-Uda antenna.

Initial Set in mm Optimal Set in mm # of Iter. Cost
[53.0 28.0 43.0 82.0] [41.71 9.92 23.7 45 64.44] 25 −0.028
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Figure 22. Optimization convergence of the Yagi-Uda example using
our algorithm.

Figure 23. The initial and optimized results obtained using our
algorithm for the Yagi-Uda example.

Table 4 shows a summary of the results using the proposed algorithm.
After 25 calls to the EM simulator, a solution that meets the required
specifications is found. The convergence of the algorithm is shown in
Fig. 22, with the initial and optimized results shown in Fig. 23. For
comparison purposes, commercial optimization tools are utilized as
well. The optimization cycle was halted after performing 40 iterations
of EM simulations without reaching a solution as shown in Fig. 24.

4.4. Multi-objective 6-variable E-slot Antenna

Slot antennas [42, 43] are widely utilized for their high gain and
wider bandwidth capabilities as compared to traditional patch
antennas. Here, we apply our algorithm to the design of an E-
slot antenna [45, 46]. This is a multi-objective problem, where the



Progress In Electromagnetics Research B, Vol. 18, 2009 303

Figure 24. Optimization convergence of the Yagi-Uda example using
some of the commercially available algorithms.

 

Figure 25. The E-slot antenna.

desired specifications are VSWR ≤ 2.0 and gain ≥ 8.0 dBi over
the frequency band 1.8 GHz–2.4 GHz. Choosing a foam substrate of
15.0mm, the E-slot patch has six different variables (See Fig. 25) given
by p∗ =

[
L∗ W ∗ L∗s W ∗

1 W ∗
2 x∗f

]
mm. Here, we impose the limits:

30.0mm ≤ L ≤ 70.0 mm
30.0mm ≤ W ≤ 100.0mm
20.0mm ≤ Ls ≤ 70.0mm
4.0mm ≤ W1 ≤ 20.0mm
4.0mm ≤ W2 ≤ 20.0mm
15.0mm ≤ xf ≤ 65.0mm

(32)
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Table 5 shows the results for the algorithm, along with the convergence
shown in Fig. 26. The required specifications are met after 17 calls
to the EM simulator. The initial and optimized impedance and gain
bandwidth are shown in Figs. 27 and 28.

Table 5. Summary of the results for the slot antenna.

Initial Set in mm Optimal Set in mm
[65.0 95.0 60.0 18.0 18.0 60.0] [57.04 92.77 40.57 12.81 14.46 46.09]

# of Iterations Cost
17 −0.007

Figure 26. Optimization convergence for the E-slot antenna obtained
using our algorithm.

Figure 27. The initial and optimized results of the reflection
coefficient of the E-slot antenna obtained using our algorithm.
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Figure 28. The optimized gain of the E-slot antenna obtained using
our algorithm.

5. CONCLUSION

We presented a novel on-the-fly optimization algorithm for the
optimization of antenna structures. In each iteration, our approach
utilizes a surrogate model based on a Cauchy multi-dimensional
rational approximation. This approximation is constructed using
the available samples obtained during optimization with no prior
knowledge or simulations. Our algorithm was successfully used to
design several antenna structures with single or multiple objective
functions. For the considered structures, the convergence of our
approach was shown to be superior to other commercially available
optimizers.
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