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Abstract—A simple, closed-form expression for the time-domain
reflection coefficient for a pulsed TE10-mode wave incident on
a dielectric material discontinuity in a rectangular waveguide is
presented. This formula may be used to represent the transient field
reflected or transmitted by a dielectric-filled waveguide section, which
is useful in material characterization routines. An exponential function
approximation to the reflection coefficient is presented, and the formula
is validated both numerically and experimentally.

1. INTRODUCTION

The propapation of transient electromagnetic fields in conducting
waveguides has received a great deal of attention, with emphasis being
on understanding the temporal evolution of the field under dispersive
conditions [1–8]. Pulse propagation in inhomogeneously filled guides
has received far less attention [9, 10], even though partially-filled guides
are often used for determining the constitutive parameters of material
samples [11–15]. Recently, Moradi and Abtipour [16] proposed using
time-domain methods to extract the material parameters of waveguide
samples. Such approaches require an understanding of the interaction
of propagating transient fields with the interfaces between differing
materials.

Butrym et al. [17] found a closed form expression for the impulsive
field reflected by a perfect dielectric step discontinuity for both TE and
TM modes using using a convolution approach, but their solution is
cumbersome and is given in terms of hypergeometric functions. The
result is extended in [18] to lossy dielectrics, but the resulting impulse
response is very complicated, and an intuitive connection between
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the waveshape and the physical parameters is difficult to establish.
Emig [19] gives a time-domain solution for a pulse incident on a
material-filled waveguide section in terms of infinite series, but these
provide little insight into the physical processes involved.

In this paper, the authors provide a simple expression for the
impulse reflection and transmission responses for a transient TE10 field
incident upon a perfect dielectric step discontinuity in a rectangular
waveguide. The expression is easy to implement, and may be used
to find the transient response of a material-filled waveguide section
used in time-domain material extraction techniques. Validation of
the formulas is provided by comparison with a numerical transform
of the frequency-domain expressions, and by comparison to swept-
frequency measurements of the reflection coefficient. An exponential
approximation for the reflection impulse response is also presented.
Although the numerical values produced by the new expressions are not
different from those produced by the expressions developed by previous
authors, the simplicity of implementation should greatly enhance their
usefulness in material parameter extraction schemes.

The results presented here are for lossless dielectrics. While
this limits the applicability of the expressions, the formulas are very
accurate for low loss materials such as plastics, which make up a
large class of materials of interest to researchers. A comparison to
the measured reflection from a typical plastic (acrylic) demonstrates
the usefulness of the expression for describing the reflection from such
materials. Extension of the present technique to lossy materials is only
a matter of complexity, and is left for future research.

2. THEORY

Consider a rectangular waveguide loaded by a perfect dielectric of
permittivity ε2 = εrε0 in the region 0 ≤ z ≤ d, as shown in Figure 1. A

z

y

0 0, region 1 region 2 region 32 0, 0 0, 

B +

B − C −
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Z=dZ=0

ε µ ε µ ε µ

Figure 1. Side view of a rectangular waveguide loaded with a perfect
dielectric material.
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TE10 wave of frequency ω = 2πf is incident from z < 0 on the dielectric
insert, exciting an identical mode in the material region (region 2), and
in the empty region z > d (region 3). Thus, the transverse fields in
these regions may be written as [20]

Hx1 =
(
B+e−jkz1z −B−ejkz1z

)
jkz1kc sin (kcx) (1)

Ey1 = −
(
B+e−jkz1z + B−ejkz1z

)
Z1jkz1kc sin (kcx) (2)

Hx2 =
(
C+e−jkz2z − C−ejkz2z

)
jkz2kc sin (kcx) (3)

Ey2 = −
(
C+e−jkz2z + C−ejkz2z

)
Z2jkz2kc sin (kcx) (4)

Hx3 = D+e−jkz1(z−d)jkz1kc sin (kcx) (5)

Ey3 = −D+e−jkz1(z−d)Z1jkz1kc sin (kcx) (6)
In these expressions kc = π/a is the cutoff wavenumber, kz1 =√

k2
0 − k2

c , kz2 =
√

k2
0εrµr − k2

c , Z1 = η0k0/kz1, Z2 = µrη0k0/kz2,
k0 = ω

√
µ0ε0, and η0 =

√
µ0/ε0. For a dielectric, µr = 1 is assumed.

Also, note that the time convention ejωt is assumed.
Applying the boundary conditions of tangential field continuity at

z = 0 and z = d leads directly to formulas for the reflection coefficient
Roc and the transmission coefficient T :

Roc(ω) =
B−

B+
= Γ

1− P 2

1− P 2Γ2
(7)

T (ω) =
D+

B+
= P

1− Γ2

1− P 2Γ2
. (8)

Here
P = e−jkz2d (9)

is the phase shift of a propagating wave passing through the dielectric
region, and Γ is the interfacial reflection coefficient for a wave incident
on an interface between two semi-infinite waveguide regions:

Γ =
Z2 − Z1

Z2 + Z1
. (10)

A closely related problem occurs when region 3 is replaced with
a perfect conductor (providing a short circuit at the end of region 2).
Then the boundary condition on continuity of tangential fields at z = d
is replaced by the condition of zero tangential electric field, leading to
the reflection coefficient

Rsc(ω) =
B−

B+
=

Γ− P 2

1− P 2Γ
. (11)
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If the incident electric field has the frequency spectrum E(ω), then
the reflected and transmitted field spectra are given simply by Er(ω) =
E(ω)R(ω) and Et(ω) = E(ω)T (ω), respectively. Thus, the transient
reflected and transmitted fields produced by pulse illumination of the
dielectric insert can be found using the inverse Fourier transform and
the convolution theorem:

Er(t) = E(t) ∗R(t) (12)
Et(t) = E(t) ∗ T (t). (13)

Here Er(t) = F−1{Er(ω)}, etc, and ‘∗’ is the convolution operator.
Although expressions for R(t) and T (t) may be formulated

in terms of infinite series [19], expansions in terms of convolution
sequences allows a more physical description of the temporal field as an
infinite sequence of multiple reflections established within the dielectric
region. These formulas are easily found by expanding the denominators
of the frequency-domain counterparts (7), (8), and (11) in power series.
For example, (11) becomes

Rsc(ω) =
(
Γ− P 2

) ∞∑

n=0

(
ΓP 2

)n =Γ+
(
Γ2 − 1

)
P 2 + Γ

(
Γ2 − 1

)
P 4+. . .

= Γ + T+ · P · (−1) · P · T−
+T+ · P · (−1) · P · (−Γ) · P · (−1) · P · T− + . . . (14)

Here T+ = 1 + Γ is the interfacial transmission coefficient for a wave
passing from air to dielectric, and T− = 1 − Γ is the interfacial
transmission coefficient for a wave passing from dielectric to air. The
multiple reflections may be identified by taking the inverse Fourier
transform of (14), giving

Rsc(t) = Γ(t) + T+(t) ∗ P (t) · (−1) ∗ P (t) ∗ T−(t)
+T+(t) ∗ P (t) · (−1) ∗ P (t) ∗ (−Γ(t))
∗P (t) · (−1) ∗ P (t) ∗ T−(t) + . . . (15)

where P (t) = F−1{P (ω)} describes the effect (time delay and
dispersion) of propagation through the dielectric medium. Defining
the Laplace transform variable as s = jω, P (s) can be written as

P (s) = e−
d
v

√
s2+k2

c , (16)

where v = c/
√

εr. Using standard transform tables [21] immediately
gives

P (t) = δ

(
t− d

v

)
− kc

v

J1

(
kc

√
t2 − (d/v)2

)
√

t2 − (d/v)2
u

(
t− d

v

)
(17)



Progress In Electromagnetics Research, PIER 97, 2009 15

with u(t) the unit step function, δ(t) the impulse function, and J1(x)
the first-kind ordinary Bessel function of unity order. Here t−d/v is the
time delay for propagation through a distance d, and so the quantity
v is identified as the propagation velocity of the wavefront. The first
term replicates the field waveform, while the second term produces
the well-known oscillations associated with transient propagation in a
waveguide [6]. These are primarily due to the cutoff effect rather than
classic dispersion, and aren’t observed with TEM structures such as a
dispersive transmission line.

The physical interpretation of Rsc(t) may now be readily
explained. The first term in (15) represents the initial reflection from
the air-dielectric interface. Because no information about the second
interface yet exists, it is exactly the interfacial reflection coefficient
Γ(t). This is followed a time 2d/v later by a waveform that is
transmitted through the first interface, propagates to the conductor,
reflects, propagates back to the interface, and then is transmitted
through in the opposite direction. The third term follows a time
4d/v from the initial reflection, and comprises the first multiple bounce
inside the dielectric. Each subsequent term represents an additional
bounce within the material.

It now becomes clear that the key quantity for describing
the transient reflected field is the time-domain interfacial reflection
coefficient Γ(t). Once this is found, T±(t) = δ(t) ± Γ(t) follows
immediately, and Rsc(t) can be computed, as can Roc(t) and T (t).
To find Γ(t), the Laplace variable s = jω is defined, and the formulas
for Z1 and Z2 are substituted into (10). This gives

Γ(s) =

√
s2 + s2

1 −
√

εr

√
s2 + s2

2√
s2 + s2

1 +
√

εr

√
s2 + s2

2

(18)

where s1 = kcc and s2 = kcv. Since lims→∞ Γ(s) 6= 0, there is an
impulsive component to Γ(t) (which Butrym et al. [17] call the singular
component), and it useful to isolate it. Noting that

lim
s→∞Γ(s) = Γ∞ =

1−√εr

1 +
√

εr
, (19)

it follows that

Γ̃(s) = Γ(s)− Γ∞

=
2
√

εr

1 +
√

εr

√
s2 + s2

1 −
√

s2 + s2
2√

s2 + s2
1 +

√
εr

√
s2 + s2

2

. (20)

Here Γ̃ is called the reduced reflection coefficient (which is called the
regular component of the reflection coefficient by Butrym et al. [17]).
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To simplify (20), the radicals in the denominator may be cleared
by multiplying the numerator and denominator by the factor

√
s2 + s2

1 −
√

εr

√
s2 + s2

2. (21)

This produces

Γ̃(s) =
2
√

εr

1 +
√

εr

N(s)
D(s)

. (22)

The denominator of this expression is

D(s) = s2 + (kcc)2 − εrs
2 − εr(kcv)2 (23)

= (1− εr)s2. (24)

Thus, (22) becomes
Γ̃(s) = KF (s)G(s), (25)

where
K =

2
√

εr

(1 +
√

εr)(1− εr)
(26)

and

F (s) =
1
s

[(√
s2 + s2

1−s

)
−

(√
s2 + s2

2 − s

)]
(27)

G(s) =
1
s

[(√
s2 + s2

1−s

)
−√εr

(√
s2 + s2

2−s

)
−(
√

εr − 1) s

]
.(28)

Most of the terms in F (s) and G(s) take the generic form

W (x, s) =
1
s

(√
s2 + x2 − s

)
. (29)

This function can be inverted using the Laplace transform pairs [21]
√

s2 + x2 − s ↔ u(t)
x

t
J1(xt) (30)

1
s
F (s) ↔ u(t)

∫ t

0
f(τ)dτ (31)

where F (s) ↔ f(t). Combining these gives

W (x, s) ↔ w(x, t) = u(t)x
∫ xt

0

J1(u)
u

du. (32)

This integral is tabulated in [22], and is used to produce

w(x, t) = x [J0(xt)− J1(xt)] u(t). (33)
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Here J0(x) is the Bessel function integral

J0(x) =
∫ x

0
J0(u)du, (34)

which has well-known properties and many standard routines for its
computation [23].

With w(x, t) known, the reduced reflection coefficient may be
evaluated from (25) using the convolution theorem. This gives

Γ̃(t) = K [w(s1, t)− w(s2, t)]
∗ [w(s1, t)−√εrw(s2, t)− (

√
εr − 1)δ(t)] (35)

or

Γ̃(t) = K {w(s1, t) ∗ w(s1, t)−(
√

εr + 1)w(s1, t) ∗ w(s2, t)
+
√

εrw(s2, t)∗w(s2, t)−(
√

εr−1) [w(s1, t)−w(s2, t)]}. (36)

The first and third convolutions in (36) are evaluated analytically in
Appendix A. Using (A6), Γ̃(t) becomes finally

Γ̃(t) =
2
√

εr

εr−1

[
−s2

1tu(t)√
εr

+w(s1, t) + w(s2, t)+w(s1, t)∗w(s2, t)
]
. (37)

Note that the expression (37) is exact, and is applicable to all lossless
dielectric materials.

3. NUMERICAL VALIDATION

Equation (37) is the final form of the time-domain interfacial reflection
coefficient. It may be validated numerically by comparing it to
the inverse transform of the frequency-domain interfacial reflection
coefficient Γ̃(ω) computed using the FFT.

There is no closed-form expression for the one remaining
convolution in (36), so it must be evaluated numerically. This may
be done using discrete convolution or the FFT. An alternative is to
use the exponential approximation for Bessel functions given in [24].
Write

J0(x) =
1
2

2N∑

n=1

aneznx, 0 ≤ x ≤ 50, (38)

where {an} and {zn} are given in [24]. Differentiating (38) gives

J1(x) =
1
2

2N∑

n=1

bneznx, (39)
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where bn = −znan. Similarly, integrating (38) from 0 to t gives

J0(x) =
1
2

2N+1∑

n=1

cneznx, (40)

where z2N+1 = 0 and

cn =
an

zn
, c2N+1 = −

2N∑

n=1

an

zn
. (41)

Combining these gives

w(x, t) = xu(t)
1
2

2N+1∑

n=1

dneznxt, (42)

where dn = cn − bn and b2N+1 = 0. Thus,

w(s1, t) ∗ w(s2, t) = u(t)
1
4

∫ t

0

2N+1∑

n=1

dnezns1τ
2N+1∑

m=1

dmezms2(t−τ)dτ

= u(t)
s1s2

4

2N+1∑

n=1

2N+1∑

m=1

dndm
ezns1t − ezms2t

zns1 − zms2
. (43)

As an example, consider a sample of acrylic placed into an X-
band waveguide (WR-90) with dimensions 0.9 by 0.4 inches (2.286
by 1.016 cm). Acrylic is a low-loss plastic with a dielectric constant
of approximately 2.6 over all of X-band. For this example, a value
of εr = 2.64 was chosen, to match the results from the experiment
described in Section 4. The frequency domain reflection coefficient (10)
was then evaluated. A plot of Γ(ω) is shown in Figure 2. Three distinct
frequency ranges can be seen. Below fc1 = c/(2a

√
εr) = 4.04 GHz

the wave is evanescent in both the air and material regions, and the
magnitude of the reflection coefficient is less than unity. Between fc1

and fc2 = c/(2a) = 6.557GHz the wave is evanescent in the material
region, but propagates in the air region, and the magnitude of the
reflection coefficient is unity (total reflection). Above fc2 the wave
propagates in both regions, and the magnitude of Γ reduces from unity
to Γ∞ = −0.238 as ω →∞. The phase of Γ is shown in Figure 3.

To obtain Γ̃(ω), the value of Γ∞ is subtracted from Γ(ω), with the
resulting magnitude shown in Figure 4. It can be seen that |Γ̃| is quite
small at the high frequency boundary of X-band, which allows the
inverse FFT to be employed without windowing. The time-domain
reduced reflection coefficient Γ̃(t) may be computed by taking the
inverse transform of Γ̃(ω). The result is shown in Figure 5. Also shown
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in Figure 5 is the time-domain reduced reflection coefficient found by
evaluating the time-domain formula (37) using the expansion (43). The
results are nearly identical, providing a validation of the time-domain
formula (37).
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4. EXPERIMENT

To provide an experimental validation of the results of Section 3, an
acrylic sample of thickness d = 0.498 cm (0.196 inches) was inserted
into the end of a section of WR-90 waveguide. The opposite end
was connected to an HP 8510C network analyzer and the reflection
coefficient S11 was measured under two terminating conditions. In the
first situation a metal plate was placed against the material sample,
providing the reflection coefficient Rsc. In the second case, a matched
load was attached to the waveguide section, providing the reflection
coefficient Roc. Calibration was performed using a short/load/thru
method, which placed the reference plane at the the front face of the
material sample. Measurement of S11 was made in the band 6.557 GHz
to 13 GHz. Note that Rsc and Roc could not be measured below
waveguide cutoff since the attenuation of the evanescent wave was
too severe to produce accurate results using the calibration procedure.
Measurements above 13 GHz became inaccurate due to excitation of
higher-order waveguide modes.

It is difficult to measure Γ directly, since this would require zero
reflected field in the material region (in essence, isolating Γ(t) in the
series (15)). Using an air-filled waveguide matched load is ineffective
since it introduces a material/air interface that causes a reflected wave,
and using a material-filled matched load is impractical. However, Γ
can be determined using the measured values of Rsc and Roc. Since in
each of these measurements the propagation factor P (ω) is identical,
both (7) and (11) may be solved for P and the results equated to give

P =
Γ−Roc

Γ− Γ2Roc
=

Γ−Rsc

1− ΓRsc
. (44)

Rearranging gives a cubic equation for Γ,

Γ3 −AΓ2 + AΓ− 1 = 0, (45)

where A = (RscRoc + Rsc + 1)/Roc. The cubic may be factored into
the form (Γ − 1)(Γ2 − [A − 1]Γ + 1) = 0. Since the solution Γ = 1 is
unphysical, the two possible values for Γ are

Γ =
A− 1

2
±

√(
A− 1

2

)2

− 1. (46)

For a lossless material, only one of these solutions has |Γ| < 1.
To compare the measured values of Γ to theory, it is necessary to

know the value of εr. This can be determined experimentally using
the measured reflection coefficients Rsc and Roc. With the measured
value of Γ known, P can be found from (44). These two terms allow
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µr and εr to be computed as a function of frequency. From (9), the
propagation constant in the material region is

kz2 =
ln P ± j2nπ

−jd
(47)

where n determines the branch of the square root function, and is
chosen so that both <{µr} > 0 and <{εr} > 0. Then, using

Γ =
Z2 − Z1

Z2 + Z1
=

µrkz1 − kz2

µrkz1 + kz2
(48)

gives immediately

µr =
kz2

kz1

1 + Γ
1− Γ

. (49)

Next, the wavenumber in region 2 is

k2
2 = µrεrk

2
0 = k2

z2 + k2
c , (50)

and thus

µrεr = 1 +
k2

z2 − k2
z1

k2
0

(51)

which gives εr. Figure 6 shows the extracted values of µr and εr found
using (49) and (51). Over the band 8.2–12.4 GHz (X-band), the average
values are εr = 2.640 − j0.02472 and µr = 0.9816 + j0.002796. The
result of µr ≈ 1 gives some confidence that the extraction technique is
working properly.

Figures 2 and 3 show the measured magnitude and phase of
Γ found using (46). Also shown are the theoretical values found
using (10) with εr = 2.64. It is seen that the measured values
match very well with the theoretical values, with the largest differences
occurring near the measurement band edges. The experimental
reduced reflection coefficient may be found using the measured value of
εr. Figure 4 shows this value compared to the theoretical value, with
both found using εr = 2.64. The inverse transform of the measured
Γ̃(ω) gives the time-domain reduced reflection coefficient. However,
this can’t be found directly, since data for f < fc2 = 6.557GHz is
not available. To allow for a comparison, the missing data may be
replaced by the theoretical data found using the experimental value
of εr. When this data is inverse transformed using the FFT, the
result shown in Figure 7 is obtained. The comparison to the time-
domain expression (37) is excellent, further validating the time-domain
formula.
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5. CONCLUSION

A simple closed form expression is introduced to compute the time-
domain reflection coefficient for a transient TE10 mode wave incident
on a dielectric step discontinuity in a rectangular waveguide. An
exponential series approximation is provided for efficient computation
of the reflected and transmitted field waveforms. Validation of the
formula is accomplished both numerically and experimentally. The
closed-form expression should prove useful in time-domain material
characterization systems that use waveguide applicators.

APPENDIX A. DERIVATION OF A CONVOLUTION
FORMULA

Consider the convolution

w(x, t) ∗ w(x, t) =
[
u(t) ∗

{
u(t)

x

t
J1(xt)

}]
∗

[
u(t) ∗

{
u(t)

x

t
J1(xt)

}]

= u(t)∗u(t)∗
{

u(t)x2

∫ t

0

J1(xτ)
τ

J1(x[t− τ ])
t− τ

dτ

}
.(A1)

The integral may be evaluated [22] to give
∫ t

0

J1(xτ)
τ

J1(x[t− τ ])
t− τ

dτ = 2
J2(xt)

t
. (A2)
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This gives

w(x, t) ∗ w(x, t) = x2u(t) ∗ u(t)
∫ t

0
2
J2(xτ)

τ
dτ. (A3)

This integral may be evaluated [22] to give
∫ t

0
2
J2(xτ)

τ
dτ = 1− 2

J1(xt)
xt

. (A4)

Thus

w(x, t) ∗ w(x, t) = x2u(t)
[
t− 2x

∫ xt

0

J1(τ)
τ

dτ

]
(A5)

or
w(x, t) ∗ w(x, t) = x2tu(t)− 2w(x, t). (A6)
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