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Abstract—In this paper, a non-spurious vector spectral element
method is proposed to solve Maxwell’s equations using E and H as
variables. The mixed-order curl-conforming basis functions are used for
both variables to facilitate applying boundary and interface conditions;
and the interpolation degree of basis functions for E is set different from
that for H to suppress the spurious modes. The proposed method
can be utilized in both time domain and frequency domain, and it is
very suitable for the future implementation of discontinuous Galerkin
spectral element method. Numerical results demonstrate the property
of spurious-free and the spectral accuracy of this method. The method
has also been implemented for the more general finite element method
in time and frequency domains.

1. INTRODUCTION

The discontinuous Galerkin spectral element method (DG-SEM) and
collocation method [1–7] are promising methods to simulate multiscale
electromagnetic problems, wherein electrically large and electrically
small structures coexist. They can divide a whole system into
several subdomains based on its material distribution and geometric
characteristics, and they can choose spectral element (SEM) [8–12] or
spectral collocation (such as the discontinuous Galerkin pseudospectral
time-domain method in [6]) with different interpolations orders to
simulate different subdomains, thus making an optimized spatial
discretization scheme and achieving high accuracy with a relatively
small number of unknowns.

Corresponding author: Q. H. Liu (qhliu@ee.duke.edu).



206 Chen and Liu

There are two types of SEM for computational electromagnetics:
One is based on the second order wave equation and the other is based
on the first order Maxwell’s equations. As to the aim of implementation
of DG-SEM, the second version of SEM is superior to the first one
because the numerical fluxes such as the Riemann solver [13], which are
the critical parts used in DG-SEM to communicate and correct fields
between different subdomains, are defined by tangential components of
E and H on the interfaces between subdomains. To construct a robust
DG-SEM for electromagnetic problems, a non-spurious SEM scheme
based on variables E and H for the first order Maxwell’s equations is
in demand.

While it is well-known that the employment of mixed-order curl-
conforming vector basis function can make a SEM scheme based on
the second order wave equation free of spurious modes [14], the same
technique, viz. merely using vector basis functions for both E and
H cannot guarantee a non-spurious SEM scheme for the first order
Maxwell’s equations [15]. Based on our numerical experiments, we
find that to construct non-spurious vector spectral element schemes for
Maxwell’s equations, the interpolation order of vector basic functions
for E is required to be different from that for H. To the best of
our knowledge, this is the first non-spurious vector spectral element
method for Maxwell’s equations based on the variables E and H.
Numerical results confirm our conclusion.

2. FORMULATION AND ALGORITHM

Consider the first order Maxwell’s equations

ε
∂E
∂t

= ∇×H− σE− Js(r, t) (1)

µ
∂H
∂t

= −∇×E (2)

where E and H are the electric and magnetic fields; Js is applied
electric current densities; ε, µ, and σ denote material’s permittivity,
permeability, and electric conductivity, respectively. We use the mixed-
order curl-conforming vector spectral elements [10, 11] to discretize
both E and H in Maxwell’s equations. Denote Φ̂(M) as the vector
basis function for E with M -th order of interpolation, we have
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where

φ(M)
m (ξ) =

− (
1− ξ2

)
L′M (ξ)

M(M + 1)LM (ξm)(ξ − ξm)
, m = 0, . . . , M (4)

LM (ξ) is the Legendre polynomial of degree of M , and ξm is chosen
as (1 − ξ2

m)L′M (ξm) = 0. φ
(M)
n (η) and φ

(M)
p (ζ) are functions of η and

ζ, respectively, and they have similar formulation as φ
(M)
m (ξ). The

reference domain with coordinates ξ, η, and ζ is a standard cube
[−1, 1]× [−1, 1]× [−1, 1] mapped from an arbitrary curved hexahedron
in the physical domain, and ξ̂, η̂, and ζ̂ denote the unit vectors along
the corresponding directions.

The vector basis functions for H are almost the same with the
basis functions for E. Take Ψ̂(N) with N -th order of interpolation for
instance 
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(5)

All arguments in (5) have the same meanings with those in (3) and (4).
Although both Φ̂(M) and Ψ̂(N) are vector-based basis functions,

spurious modes will still be generated under distorted meshes if the
interpolation order for Φ̂(M) is set as the same with that for Ψ̂(N). This
is observed in our numerous numerical tests, and apparently has not
been reported previously for the coupled Faraday’s law and Ampére’s
law in electromagnetics (a similar phenomenon has been reported for
mechanic problems in [16]). Based on our numerical experiments, we
found that there is one more condition to be satisfied to construct a
non-spurious vector spectral element method for Maxwell’s equations:
The interpolation order of Φ̂(M) must be different from that of Ψ̂(N),
i.e., M 6= N . A non-spurious SEM scheme for Maxwell’s equations is
shown in Fig. 1.

The Galerkin’s weak forms of Maxwell’s equations are
Ne∑
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Figure 1. A non-spurious SEM scheme for the Maxwell’s equations:
(left) second order element for E and (right) first order element for H.
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where Ne and Nh denote the numbers of unknowns of E and H. ej

and hk are coefficients for Φ̂j and Ψ̂k, respectively.
By assembling all spectral elements we will obtain the discretized

system of equations as



Mee
de
dt

= Ceee + Kehh + q

Mhh
dh
dt

= Khee
(8)

where vectors e, h, and q are discretized electric field, magnetic field,
and excitation, respectively. The detailed expressions for the above
system matrices Mee, Mhh, Keh, Khe, and Cee can be referred to [12].

The formulation (8) is a set of ordinary differential equations in
the time domain. Several time stepping algorithms, such as the leap-
frog scheme and the Runge-Kutta method can be utilized to solve this
set of equations. Besides, with the time convention d/dt → jω, we can
easily transform (8) from the time domain into the frequency domain,
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in which the spurious modes are easier to be distinguished in the form of
eigenmodes, and the spectral accuracy of the proposed method itself is
more convenient to be demonstrated because the numerical errors due
to time integration will not be introduced into SEM in the frequency
domain. In the next section, we will show some results by this non-
spurious SEM in both time domain and frequency domain.

3. NUMERICAL RESULTS

Consider a 1 cm × 0.5 cm × 0.75 cm metallic cavity filled with air
centered at the origin of coordinates. In order to show the spurious
modes by other basis functions, we use a distorted hexahedral mesh
to discretize this cavity, which is shown in Fig. 2. We choose two
different SEM schemes to solve this problem: Scheme 1 is SEM with
different interpolation orders for E and H (M = 5, N = 4 in this case),
and scheme 2 is SEM with the same interpolation order for E and H
(M = 5, N = 5 in this case).

We first place a dipole with polarization −0.62x̂ + 0.62ŷ + 0.47ẑ
at (−0.014,−0.236, 0.011) cm, and give the first derivative of the
Blackman-Harris window pulse [17] with characteristic frequency as
9.4GHz on the dipole, so only the dominant mode can be stimulated.
We use these two SEM schemes to discretize this problem and use the
4th order Runge-Kutta method for time stepping (with ∆t = 0.5 ps).
Fig. 3 shows the time-varying Ey at (0.174, 0.239, 0.174) cm and the
frequency components by the two SEM schemes. From which we find
that only one mode is stimulated by scheme 1 and the corresponding
time-varying results by scheme 1 agree well with the reference, while
scheme 2 will stimulate a lot of spurious modes and lead the time
domain results deviating greatly from the reference. Fig. 4 shows

Figure 2. A distorted mesh for a metallic cavity, which has a
dimension of 1 cm × 0.5 cm × 0.75 cm and is filled with vacuum.
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Figure 3. (upper) Time-varying Ey on (0.174, 0.239, 0.174) cm by two
SEM schemes and (lower) corresponding frequency components after
FFT.

Figure 4. Snapshots of Ey on the plane y = 0 at t = 0.5 ns (left) by
SEM with different interpolation orders for E and H and (right) by
SEM with the same interpolation order for E and H.

the snapshots of Ey on the plane y = 0 at 1000-th time step (t =
0.5 ns). We observe that the field pattern by scheme 1 is consistent
with the dominant mode (TE101), while the results by scheme 2 are
contaminated by spurious modes.

Then we use these two SEM schemes to solve the eigenvalue
problem of this cavity in frequency domain. Fig. 5 shows the calculated
eigenvalues by the two SEM schemes as well as analytical solutions,
from which we find that the results by scheme 1 agree very well
with analytical solutions, while scheme 2 generates many spurious
eigenvalues between every two adjacent analytical eigenvalues.
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Figure 5. Eigenvalues of the cavity by SEM with different
interpolation orders for E and H (left) and by SEM with the same
interpolation order for E and H (right). The dots denote the calculated
eigenvalues by SEM schemes and the horizontal lines denote analytical
solutions.
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Figure 6. Errors of four modes of the metallic cavity by non-spurious
SEM with different interpolation orders.

In Fig. 6, we plot the errors of four modes (TE101, TM110, TE011,
and TE111) of this cavity by the non-spurious SEM with different
interpolation orders of basis functions (M = 1, 2, . . . , 7, N = M + 1),
from which we observe that the errors of all the four modes decrease
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exponentially with the increase of interpolation order, i.e., the proposed
non-spurious spectral element method can achieve spectral accuracy.

The second example is an open-region time-domain scattering
problem with one dielectric cube and one PEC cube, both with a
side length of 10 cm. The dielectric cube with εr = 4 is centered
at the origin, while the PEC cube is centered at (20, 20, 20) cm. The
background medium in this example is air. A z-direction electric dipole
is placed at the origin as the source, with the first derivative of the
Blackman-Harris Window of characteristic frequency 1.55GHz (i.e.,
with a pulse duration of 1 ns) as the time function [17]. Another z-
direction dipole is placed at (11, 11, 11) cm as a receiver. A schematic
of the second example is shown in Fig. 7.

Figure 7. An open-region time-domain scattering problem with a
10 cm × 10 cm × 10 cm dielectric cube (εr = 4) and a 10 cm × 10 cm
× 10 cm PEC cube.
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Figure 8. (left) Numerical results and (right) relative errors of
timevarying received signals by the two SEM schemes.
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Figure 9. (left) Numerical results and (right) relative errors of
frequency components of received signals by the two SEM schemes.

Two SEM schemes are chosen for the time-domain simulation of
this problem. Scheme 1 is the SEM with different interpolation orders
for E and H (M = 2, N = 1 in this case), and scheme 2 is the SEM with
the same interpolation order for E and H (M = 2, N = 2 in this case).
Since analytical solution is not available for this problem, numerical
results by the finite-difference time-domain method enhanced by the
enlarged cell technique in a commercial software, Wavenology EM [18],
under a relatively dense grid are used as the reference. Fig. 8 shows the
received time-varying signals by the two SEM schemes as well as the
reference result and the relative errors. From these plots we observe
that the result by SEM scheme 1 agrees well with the reference, while
the result by SEM scheme 2 does not. Fig. 9 shows the comparison
between numerical results and the reference in the frequency domain
and the relative errors. From these figures we clearly observe good
agreement between the result by SEM scheme 1 and the reference,
while we find some spurious peaks in the low frequency regime from the
result by SEM scheme 2. Based on these two figures, we can conclude
that for an open-region problem, the SEM with different interpolation
orders for E and H is a spurious-free scheme; however, the SEM scheme
with same interpolation order for both E and H will generate spurious
modes, and these spurious modes will contaminate time-domain and
frequency-domain results.

Finally, a general rule of thumb is given for the choice of the order
of basis functions in the non-spurious SEM. From many numerical tests
we found that the mixed-vector SEM can be free of spurious modes as
long as the interpolation degree for E is different from that for H.
For the purpose of minimizing the difference between the number of
unknowns for E and that for H, we set the difference between the
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two interpolation degrees as 1. Furthermore, because PEC objects are
more frequently encountered than PMC objects, we usually set the
interpolation degree for E one order higher than that for H.

4. CONCLUSION

We propose a new non-spurious vector spectral element method for
Maxwell’s equations based on variables E and H. The mixed-order
curl-conforming vector basis functions are employed to both variables,
and the interpolation order of basis functions for E is set different
from that for H. This SEM scheme is vector-based and spurious-
free, and it can achieve spectral accuracy by increasing interpolation
order of basis functions. The above properties make the proposed
method very suitable for construction of DG-SEM, and this is in our
current research. Furthermore, this scheme is applicable to and has
been implemented for the more general finite element method in both
time domain and frequency domain.
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