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Abstract—In this paper, the performances of thinned arrays based
on Almost Difference Sets are analyzed in the presence of mutual
coupling effects. The geometry under test is composed by thin dipole
elements and the arising mutual interactions are modeled by means of
the induced EMF method. To assess the robustness of the ADS -based
thinning technique also in such a non-ideal case, an extensive numerical
analysis is carried out by considering several test cases characterized
by different aperture sizes, lattice spacings, and thinning factors. The
obtained results show that the peak sidelobe estimators deduced in the
ideal case still keep their validity although, as expected, a deterioration
usually arises due to the mutual coupling.

1. INTRODUCTION

Large antenna arrays providing low sidelobes are of great interest
in several applications including radar, microwave imaging, remote
sensing, radio astronomy, satellite and ground communications [1]. In
such a framework, filled arrangements are characterized by very high
costs, weight, and power consumption and usually require complex
feeding network. On the other hand, removing some elements from
the array generally increases the peak sidelobe level (PSL) of the
radiated pattern. As a consequence, suitable thinning techniques
have been introduced to reduce the array elements while obtaining
low PSL values [2] and several approaches have been proposed.
Randomly thinned arrays have provided predictable results [3] and
improved PSLs with respect to deterministic techniques [4]. Stochastic
approaches based on genetic algorithms (GAs) [2, 5–13], simulated
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annealing (SA) [14, 15], pattern search [16], and particle swarm
optimizers (PSOs) [17, 18] have been successfully applied to reach
enhanced PSL performances although their computational complexity
rapidly grows with the aperture size and no predictors are available
to a-priori estimate their performances. On the contrary, thinning
techniques exploiting difference sets (DSs) [19] allow one to obtain low
PSLs and predictable results in a very effective fashion. Unfortunately,
only a limited set of thinning factors and aperture sizes [19] can be
dealt with because of the reduced set of available sequences. In order
to enlarge the set of admissible array configurations almost difference
sets (ADS s) [20] or their subsets [21, 22] have been recently employed
to thin linear geometries. In [23], it has been shown that the PSL
of ADS -based ideal arrays† is (a) a-priori bounded, (b) comparable
to that of DS-based designs, and (c) significantly better than that of
random arrangements [23]. However, it is worth noticing that analytic
bounds for the PSL behavior are available only for ideal arrays, while
neither a-priori estimates exist nor simple extensions of the ADS array
theory have been deduced in the presence of non-ideal radiators when
mutual coupling (MC ) effects between the array elements take place.

In this paper, the performances of ADS -based linear thinned
arrays are analyzed in the presence of MC effects to assess the
reliability of the PSL bounds yielded in [23]. The paper is not aimed
at defining an optimal synthesis strategy for non-ideal arrays, but to
provide to the antenna designer an indication on the robustness of
the ADS -based thinning technique. Towards this end, the paper is
organized as follows. In Sec. 2, the ADS -based thinning approach
is summarized and some details on the considered MC model are
provided. Sec. 3 is concerned with an extensive numerical analysis
devoted to show the dependence of the PSL performances of non-
ideal arrays on the aperture size, the inter-element spacing, and the
thinning factor. Finally, some conclusions are drawn (Sec. 4).

2. MATHEMATICAL FORMULATION

Let us consider a one-dimensional regular lattice of N positions spaced
by d wavelengths (λ being the free-space wavelength). The power
pattern radiated from the linear thinned array defined over such a
lattice is equal to [1]

PP (u) =

∣∣∣∣∣
N−1∑

n=0

w(n) exp (j2πndu)

∣∣∣∣∣

2

(1)

† In this paper, the term ideal array indicates an array of identical isotropic elements
without mutual coupling effects.
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where u = sin(θ) and w(n) ∈ {0, 1} is the excitation coefficient of the
array element located at the n-th location of the lattice whose binary
value is defined according to the ADS -based guideline [23]:

w(n) =
{

1 if n ∈ D
0 if n /∈ D.

(2)

D ,
{
dk ∈ ZN , dh 6= dl, k, l, h = 0, . . . ,K − 1

}
being a (N, K,Λ, t)-

ADS. More in detail, an ADS is a K-subset of ZN characterized by a
three-valued cyclic autocorrelation [24, 25]

Aw (D) =
N∑

n=0

w (n) w [(n + τ) modN ]

=

{
K τ = 0
Λ for t values of τ ∈ [1, N − 1]
Λ + 1 elsewhere

. (3)

As an example, let us consider the (16, 8, 3, 4)-ADS in [20], D1 ,
{2, 3, 4, 5, 7, 12, 14, 15}, and the corresponding arrangement W (D1) =
{0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1} whose n-th entry is equal to w (n), n =
0, . . . , N − 1. In this case, Aw (D) results

Aw (D) =

{ 8 τ = 0
3 τ = 4, 6, 10, 12
4 τ = 1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15

.

The exploitation of the ADS properties guarantees that the arising one-
dimensional ideal array satisfies the following set of inequalities [23]

PSLMIN ≤ PSLDW ≤ PSLopt ≤ PSLUP ≤ PSLMAX (4)

where

PSLMAX = E{Φmin
N } K − Λ− 1 +

√
t(N − t)

(N − 1)Λ + K − 1 + N − t
,

PSLMIN =
K − Λ− 1−

√
t(N−t)
(N−1)

(N − 1)Λ + K − 1 + N − t
, PSLUP = ξE{Φmin

N },

PSLDW = ξ, E{Φmin
N } ≈ 0.8488 + 1.128 log10 N.

Moreover, PSLopt = minσ{PSL(D(σ))}, D(σ) being the cyclic shift
of the sequence D, D(σ) , {d(σ)

k ∈ ZN , k = 1, . . . , K : d
(σ)
k =

(dk + σ)modN}, and PSL(D(σ)) , maxu/∈Rm{PP (u)}
PP (0) . As regards to

Rm, it indicates the mainlobe region [19] defined as Rm , {−UM ≤
u ≤ UM , UM = 1

2Nd
√

ξ
} where ξ , 1

K2 maxl{PP ( nl
Nd)} [23].
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The inequality in (4) holds true for any ADS -based ideal
arrangement provided that N is sufficiently large [23] and d is below 1
(e.g., d ≤ 0.85) since when d → 1 a grating lobe necessarily appears.
On the other hand, it should be observed that no indications are
available or can be envisaged starting from (4) on the behavior of ADS -
based arrays in the presence of MC effects. As a matter of fact, MC
cannot be analytically taken into account to easily derive an extended
version of (4) since (3) holds true only in ideal conditions. Therefore,
a numerical analysis is mandatory to investigate on the reliability
and the robustness of the PSL bounds derived in [23]. Towards
this end, the mutual coupling model presented in [26] is adopted.
The peak sidelobe level of ADS arrays in the presence of mutual
coupling is defined as PSLMC(D(σ)) , maxu/∈Rm{PP MC(u)}

PP MC(0)
where

PPMC(u) = |∑N−1
n=0 wMC(n) exp(j2πndu)|2. The mutual coupling

effects are modeled through the perturbed array vector WMC(D) [26]
given by

WMC (D) = ZL (Z + ZLI)−1 W (D) (5)

where ZL is the load impedance at each element of the array and Z is
the mutual impedance matrix of (N − 1) × (N − 1) entries computed
through the induced EMF method [1] once the array elements are
chosen.

3. NUMERICAL ANALYSIS

In this section, the performances of ADS -based arrays in the presence
of mutual coupling effects are discussed to numerically assess whether
the ideal PSL bounds are still valid when non-ideal radiators are
taken into account. Towards this end, dipole elements of length
l = λ

2 and radius ρ = 5 × 10−4 (in wavelength) have been considered.
Accordingly, the dipole self-impedance turns out to be equal to Zii ≈
73.12 + j 42.2 [Ω], i = 0, . . . , N − 1, [1] while the mutual impedances
assume the following expression [1]

Zij =j
η0

4π

∫ λ
4

−λ
4

sin
[
k

(
λ

4
−|z|

)][
e−jkR+

R+
+

e−jkR−

R−

]
dz, i 6=j, i, j ∈ [0, N−1],

η0 and k being the free-space impedance and the wavenumber,
respectively. Moreover, R± =

√
δ2
ij + (z ± λ

4 )2 and δij is the distance
between the elements i and j.

The first experiment is aimed at analyzing the behavior of
the PSL of ADS sequences with and without mutual coupling in
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Figure 1. [d = 0.5] — Plots of the PSL of ADS-based arrays with
and without MC versus N when (a) ν = 0.25, (b) ν = 0.5, and (c)
ν = 0.75.

correspondence with a half-wavelength lattice (d = λ
2 ) and different

number of elements. Fig. 1 gives the plot of the optimal PSL value for
different values of the thinning factor, ν , K

N . As it can be observed,
the PSLs of ADS arrays affected by mutual coupling still satisfy (4)
whatever the indexes N and ν (PSLDW ≤ PSLMC

opt ≤ PSLUP )
although their values increase and usually result closer to the upper
bound threshold PSLUP as ν grows [Fig. 1(c) vs. Fig. 1(a)]. As a
matter of fact, the impact of mutual coupling effects reduces when the
average spacing between adjacent array elements, dav ≈ d

ν , enlarges
(i.e., ν → 0). Such an event is further confirmed by the behavior of
the peak sidelobe level versus σ as shown in Fig. 2 (N = 149). As
expected, the optimal shift

σopt = arg
{

max
σ∈[0,N−1]

[
PSL

(
D(σ)

)]}

is kept unaltered when ν = 0.25 [Fig. 2(a)] since the mutual coupling
effects modify only to a small extent the power pattern of the ideal
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array [Fig. 2(d)]. Otherwise, σopt 6= σMC
opt when ν = 0.5 [Fig. 2(b)]

and ν = 0.75 [Fig. 2(c)] since the optimal patterns significantly differ.
Similar conclusions hold true also when dealing with larger apertures
as shown in Fig. 3 (N = 1789).
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Figure 2. [N = 148, d = 0.5] — Plots of PSL (D(σ)) and PSLMC

(D(σ)) versus σ (a)–(c) and beam patterns generated by the optimal
shifts σopt and σMC

opt (d)–(f) when ν = 0.25 (a)(d), ν = 0.5 (b)(e), and
ν = 0.75 (c)(f).
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Figure 3. [N = 1789, d = 0.5] — Plots of PSL (D(σ)) and PSLMC

(D(σ)) versus σ (a)–(c) and beam patterns generated by the optimal
shifts σopt and σMC

opt (d)–(f) when ν = 0.25 (a)(d), ν = 0.5 (b)(e), and
ν = 0.75 (c)(f).

It is also worth noticing that, despite the MC and whatever the
dimension of the array lattice, more than one shift presents a PSL
within the ideal bounds as for ideal arrays. However, the number of the
optimal shifts reduces as pointed out in Fig. 4 where the percentages
of optimal shifts with, ΩMC , and without mutual coupling, Ω, versus
the aperture size are reported.



300 Oliveri, Manica, and Massa

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000

P
e
rc

e
n
ta

g
e

N

, =0.25
MC, =0.25

, =0.5
MC, =0.5

, =0.75
MC, =0.75

Ω ν

Ω

Ω

Ω

Ω

Ων

ν

ν

ν

ν

Figure 4. [d = 0.5]— Plots of Ω and ΩMC versus N for different
thinning factors, ν = 0.25, 0.5, 0.75.

-26
-25
-24
-23
-22
-21
-20

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

d

N
o

rm
a

liz
e

d
 v

a
lu

e
 [

d
B

]

ν=0.5

ν=0.75

PSL opt PSLopt
MC PSLDW PSLUP

-22
-21
-20
-19
-18
-17
-16
-15
-17
-16
-15
-14
-13
-12
-11
-10 ν=0.25

(a)

 0
 30
 60
 90

 120
 150

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

d

ν=0.75

ν=0.5

ν=0.25

opt opt
MC

 0
 30
 60
 90

 120
 150

 0
 30
 60
 90

 120
 150

(b)
σ σ

Figure 5. [N = 148] — Plots of PSLopt (a) and shift number σopt

(b) versus the inter-element distance d for different thinning indexes
(ν = 0.25, 0.5, 0.75).



Progress In Electromagnetics Research B, Vol. 17, 2009 301

Concerning lattices with d 6= 0.5, the second experiment deals
with an array of N ≈ 150 locations and it considers different ν
values. Fig. 5(a) gives the plots of PSLopt and PSLMC

opt versus d.
For completeness, the number of the corresponding optimal shift in
the range [0, N − 1] is reported [Fig. 5(b)], as well. As it can be
noticed, PSLMC

opt still satisfies (4) [Fig. 5(a)] and its deviation from
the ideal level turns out to be greater for larger thinning values, while
negligible variations occur when ν = 0.25 except for d < 0.45. In
this latter case, the MC effects impact more significantly since the
average inter-element distance turns out to be similar to that of filled
configurations. On the other hand, Fig. 5(a) points out that usually
PSLopt < PSLMC

opt although there exists a small range of d values
for which PSLMC

opt < PSLopt. Such a situation takes place when
ν > 0.5 in correspondence with a higher variability of the phases of
the non-ideal weights when d reduces. Such a circumstance probably
provides a constructive interference in minimizing the PSL value. For
illustrative purposes, Fig. 6 shows a sample of the behavior of the
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phases of the coefficients wMC(n), n = 0, . . . , N − 1, [Figs. 6(a)–6(c)]

as well as the plot of the normalized variance ψ , varn{∠wMC(n)}
N and

of ∆ , PSLMC
opt − PSLopt [Fig. 6(d)] when ν = 0.5 and for different

lattice spacings.
As far as the optimal shift is concerned and unlike the ideal case,

the value of σMC
opt continuously changes in non-ideal arrays whatever

the lattice distribution [σMC
opt vs. σopt — Fig. 5(b)] since a change of
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the d value does not only modify the visible range, but also breaks the
symmetry of the power pattern with respect to the axis at d×u = ±0.5.
For illustrative purposes, Fig. 7 shows the plots of power patterns
related to σopt|d=0.5 [Fig. 7(a)] and σMC

opt |d=0.5 [Fig. 7(b)] for different
values of d.

As expected, a similar behavior of σMC
opt still verifies when varying

the array aperture as shown in Fig. 8(a) for a thinning ν = 0.5.
Moreover, Fig. 8(b) further confirms that the PSL of an ideal array is
usually smaller than PSLMC

opt except for a limited range, whose upper
threshold dth turns out to be inversely proportional to the number of
lattice locations N [Fig. 8(b)]. Likewise the previous experiment, a ψ
value greater (smaller) than ≈ 2.0 corresponds to the condition ∆ > 0
(∆ < 0) [Fig. 9 — d = 0.25].
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Table 1. Comparative Analysis — PSL values from DS-based and
ADS-based arrays.

N ν PSLopt [dB] PSLMC
opt [dB]

DS

197 ≈ 0.25 −13.22 −12.91
107 ≈ 0.5 −16.61 −15.81
197 ≈ 0.75 −22.96 −22.19

ADS

197 ≈ 0.25 −13.56 −12.79
107 ≈ 0.5 −15.95 −15.23
197 ≈ 0.75 −22.57 −21.83

Finally, the last experiments are devoted to analyze the impact
of MC effects on ADS -based arrays and state-of-the-art thinning
techniques. First, a comparison with stochastic techniques is dealt
with. Towards this end, a benchmark arrangement of N = 200
elements is considered. Fig. 10 shows the peak sidelobe levels
synthesized with GA-optimized thinned arrays [5, 27] with and without
MC as well as the corresponding values obtained with similar ADS s
arrays [20]. The ideal ADS bounds when η , t

N−1 = 0.5 are also
reported. As it can be observed, the ADS -based arrays favourably
compare with state-of-the-art GA designs despite the slightly smaller
aperture (197 vs. 200) and thinning factor‡. Moreover, it worth
noticing that the impact of MC more significantly affects their PSL

(δADS = −1.08 vs. δ
[Haupt, 1994]
GA = −0.67 and δ

[Weile, 1996]
GA = −0.40)

because of the “regularity” of ADS locations.
As far as the comparison with DSs is concerned, the results

summarized in Tab. 1 indicate a greater robustness to mutual coupling
effects of ADS designs compared to DS arrays (δADS |ν≈0.5 = −0.72
vs. δDS |ν≈0.5 = −0.80 and δADS |ν≈0.75 = −0.74 vs. δDS |ν≈0.75 =
−0.77), except for very highly thinned arrays (δADS |ν≈0.25 = −0.77
vs. δDS |ν≈0.25 = −0.31). Such a positive feature (although quite
reduced, as it can be noticed from Table 1) is probably due to the
enlarged number of degrees of freedom of ADS sequences and related
autocorrelation functions [23].
‡ Some research activities in the framework of combinatorial mathematics (out-of-the-
scope of the present paper as well as of the focus of the PIER Publications.) are currently
devoted to complete the set of ADS sequences in explicit form and, when available, they
will allow a more fair comparison.
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4. CONCLUSION

In this paper, the validity of PSL bounds deduced in [23] for ideal ADS
arrays has been assessed in the presence of mutual coupling effects.
An extensive numerical analysis has been carried out to evaluate
the PSL performances of ADS arrangements in correspondence with
different lattice spacings, thinning factors, and aperture dimensions.
Representative results have been also provided in order to compare the
sensitivity to MC of ADS -based thinned arrays with that of state-of-
the-art approaches such as DS thinning and stochastically-optimized
techniques. Such an analysis has pointed out that

• the values of PSL of ADS -based arrays in the presence of MC
comply with the ideal bounds in [23] whatever the thinning value
(Fig. 1), the array aperture (Fig. 1), and the lattice spacing
[Fig. 5(a) and Fig. 8(a)];

• the differences between PSLMC
opt and PSLopt are more significant

when dav reduces [Fig. 2(f) and Fig. 3(f)]. In such a case, the
optimal shift of the generating ADS sequence changes when the
MC is present (σopt 6= σMC

opt ) [Fig. 2(c) and Fig. 3(c)]. Otherwise,
PSLMC

opt ≈ PSLopt [Fig. 2(a) and Fig. 3(a)] and σopt = σMC
opt

[Fig. 2(d) and Fig. 3(d)];
• a larger number of evaluations might be necessary to find the

optimal shift σMC
opt when the MC is not negligible, although this

number still remains below N [Fig. 4].
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