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Abstract—In this paper direction-of-arrival estimation (DOA) of
multiple narrow-band sources, based on higher-order statistics using
propagator, is presented. This technique uses fourth-order cumulants
of the received array data instead of second-order statistics (auto-
covariance) and then the so-called propagator approach is used to
estimate the DOA of the sources. The propagator is a linear operator
which only depends on the array steering vectors and which can
be easily extracted from the received array data. But it does not
require any eigendecomposition of the cumulant matrix of the received
data like MUSIC algorithm. Computer simulations are carried out to
compare the performance of the proposed method to those of methods
based on auto-covariance using MUSIC and propagator algorithms.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation ranks as one of the most
important problems of array signal processing. Considerable research
efforts have been and continue to be made for developing efficient and
effective algorithms for DOA estimation as evident from the volume of
journal publications on this problem in the signal processing literature
over the last three decades. DOA estimation is important in many
applications such as radar, sonar and electronic surveillance. Recent
applications include array processing for wireless communications at
the base station for increasing the capacity and quality of the systems.
In all these systems the time complexity and the capability of resolving
two closely spaced sources plays an important role in deciding the
performance of the systems.
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There are many array models and algorithms [1–7] are available
in literature for estimating the DOA of the narrowband sources.
Among these, MUltiple SIgnal Classification (MUSIC) [7, 8] is the
high resolution algorithm based on the eigendecomposition of the
auto-covariance of the received data and has been widely used. But,
in applications where the large array size is required, the use of
such method is unattractive owing to their intensive computational
complexity. A possible alternative to the MUSIC method for source
bearing estimation with arrays consisting of a large number of sensors
is the propagator method (PM). Marcos et al. [9] have proposed the
so-called ‘propagator, method for array signal processing without any
eigen-decomposition. The propagator is a linear operator based on
a partition of the steering vectors, and was found to be a very
effective tool for estimating the DOAs. PM has a lower computational
complexity at the expense of negligible performance loss. In [10–16],
the DOA estimation methods have been developed based on higher-
order statistics instead of second-order statistics using generalized
eigen structure analysis. Porat and Friedlander [12] proposed the DOA
estimation method based on fourth-order cumulant to eliminate the
effect of Gaussian noise from the non-Gaussian signals. Using fourth-
order cumulant, a physical array size could be increased to larger size
virtual array [14–16] and allows estimating large number of sources. In
this paper, DOA estimation of multiple narrowband sources based on
fourth-order statistics using propagator is presented.

The paper is organized as follows: In Section 2, the data model
is discussed and the MUSIC algorithm for DOA estimation based
on fourth-order cumulant is discussed in Section 3. The proposed
cumulant propagator method is presented in Section 4. The statistical
performance analysis of both cumulant propagator and cumulant
music are presented in Section 5. In Section 6, the numerical
simulations that illustrate the root mean-square error reduction and
resolution improvement achieved by the cumulant propagator method
as compared to the propagator method based on second-order statistics
are presented. Finally, Section 7 concludes the paper.

Throughout this paper, vectors are denoted by lowercase bold
letters and matrices by uppercase bold letters. The superscripts *,
T and H denote respectively complex conjugation, transposition and
conjugate transposition.

2. DATA MODEL

Consider a uniform linear array consists of L sensors, with equal
inter-sensor spacing d, on which M plane wave signals impinge (L >
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M). It is assumed that the signal emitted by the mth source is
a zero-mean non-Gaussian signal. We assume that the M source
signals sm(t), m = 1, 2, . . . , M , are statistically independent. We
further assume that the noises vl(t), l = 1, 2, . . . , L, at various sensor
outputs, are uncorrelated zero-mean white Gaussian processes which
are independent to the signals. The received noise corrupted signal
xl(t), during the observation interval, at the lth sensor output is
sampled. The samples at all the sensor outputs can be represented
as

x(t) = A(θ)s(t) + v(t) for t = 1, 2, . . . , N, (1)

where

x(t)∆[x1(t) x2(t) . . . xL(t)]T is L × 1 observation vector (snap-
shot vector),
A(θ)∆[a(θ1) a(θ2) . . . a(θM )]T is L×M array manifold matrix,
s(t)∆[s1(t) s2(t) . . . sM (t)]T is M × 1 signal vector,
and v(t)∆[v1(t) v2(t) . . . vL(t)]T is L× 1 noise vector,

and where

a(θm) = [1 exp{j(2πd/λ) cos θm} exp{j(2πd/λ)2 cos θm} . . .

exp{j(2πd/λ)(L− 1) cos θm}]T
where λ is the wave length.

The problem is that given the array output {x(t), t = 1, 2, . . . , N},
where N denotes the number of snap-shots, estimate the DOA
parameter θm, m = 1, 2, . . . , M, of the impinging signals. For this
problem, we shall work with a fourth-order cumulant of the received
array output which can be expressed in matrix notation as

C = E
[
(x⊗ x∗) (x⊗ x∗)H

]
− E [(x⊗ x∗)]E

[
(x⊗ x∗)H

]

−E
[
xxH

]⊗E
[(

xxH
)∗]

(2)

where ⊗ denotes the Kronecker product and the dimension of the
cumulant matrix C is L2 × L2. Since the fourth-order cumulants of
Gaussian noise are identically zero, using (1) in (2) we get

C = (A⊗A∗)Cs (A⊗A∗)H (3)

where

Cs∆E
[
(s⊗s∗) (s⊗s∗)H

]
−E[(s⊗s∗)]E

[
(s⊗s∗)H

]
−E

[
ssH

]⊗E
[(

ssH
)∗]
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is the fourth-order cumulants of s. Since the sources are statistically
independent, the fourth-order cumulants of the signal vector s is a
diagonal matrix so (3) can be written as

C =
M∑

m=1

[a(θm)⊗ a∗ (θm)]µm [a(θm)⊗ a∗ (θm)]H (4)

where µm is the fourth-order cumulants of sm for m = 1, 2, . . . ,M.
Define

b(θm)∆a(θm)⊗ a∗(θm), m = 1, 2, . . . , M,

B(θ)∆[b(θ1) b(θ2) . . . b(θM )]

and
D∆diag{µ1, µ2, . . . , µM}

Now (4) can be written as

C = BDBH (5)
Since B is comprised of b(θm) = a(θm)⊗a∗(θm), m = 1, 2, . . . ,M,

which are linearly independent, it has full column rank, and D is non-
singular (since sources are independent).

3. MUSIC LIKE ALGORITHM

The range of C, which is a L2-dimensional space, can be decomposed
into two orthogonal subspaces: (i) An M -dimensional subspace, called
signal subspace, which is spanned by the eigenvectors corresponding
to the M largest eigenvalues and (ii) the complementary (L2 − M)-
dimensional subspace called noise subspace. The signal subspace
and the noise subspace can be found by eigendecomposition of the
covariance matrix C. Let λ1, λ2, . . . , λL2 denote the eigenvalues of
C and v1,v2, . . . ,vL2 the corresponding eigenvectors. Then, the
eigenvectors satisfy the equations

Cvk = λkvk for k = 1, 2, . . . , L2, (6)
From elementary linear algebra, it can be shown that (L2 − M)
eigenvalues of C will be equal to zero. Without loss of generality,
the eigenvalues can be arranged in nondecreasing order as

λ1 ≥ λ2 ≥ . . . ≥ λM > λM+1 = λM+2 = . . . = λL2 = 0
Let Q ∆[v1, v2, . . . ,vM ] as a L2×M matrix, V ∆[vM+1,vM+2,

. . . , vL2 ] as a L2× (L2−M) matrix, Σ∆diag(λ1, λ2, . . . λM ) as M ×M
matrix and Λ∆diag(λM+1, λM+2, . . . , λL2) as a (L2 −M)× (L2 −M)
zero matrix. From Equations (5) and (6), we get

CV = VΛ = 0 = BDBHV (7)
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Since the matrix BD has full column rank, (7) implies that

BHV = 0 (8)

This means that the eigenvectors, associated with the eigenvalue zero
of multiplicity (L2 − M), are orthogonal to the vectors b(θm) =
a(θm) ⊗ a∗(θm), m = 1, 2, . . . , M. This implies that the vectors
b(θm), m = 1, 2, . . . , M, are orthogonal to the column space of V.
Since the vectors b(θm), m = 1, 2, . . . , M, are orthogonal to the
eigenvectors corresponding to the zero eigenvalues, the true DOA
parameters θm, m = 1, 2, . . . , M, of the sources are the unique solutions
of the equation

bH(θ)VVHb(θ) = 0 (9)

In practice, we do not know the actual eigenvalues and
eigenvectors of the cumulant matrix C and must estimate them from
the received snap-shot vectors. We denote the estimated cumulant
matrix by Ĉ. It can be computed from

Ĉ =
1
N

N∑

t=1

y(t)yH(t)− 1
N2

N∑

t=1

y(t)
N∑

t=1

yH(t)−
(
R̂⊗ R̂∗

)
(10)

where y(t)∆x(t) ⊗ x(t)∗ and R̂∆ 1
N

N∑
t=1

x(t)xH(t). Thus, one can

estimate the vectors b(θm), m = 1, 2, . . . , M, by finding the vectors
which are most nearly orthogonal to the eigenvectors corresponding
to the (L2 − M) eigenvalues of Ĉ that are approximately zero. Let
V̂ denote the matrix defined similarly to V, but made from the
eigenvectors of Ĉ. Then, the DOA of the multiple source signals can
be estimated by locating the M largest peaks of the spatial spectrum
given by

F (θ) =
1

bH(θ)V̂V̂Hb(θ)
, θ ∈ [0, π] (11)

4. PROPOSED ALGORITHM

Now we apply the concept of propagator method for estimating the
DOA of the sources. We first give the definition of the propagator.
Since the matrix B is a full column rank matrix, M rows of B are
linearly independent. The other rows can be expressed as a linear
combination of these M rows. Hereafter, we will assume that the first
M rows of B are linearly independent. Let B1 denote the M×M sub-
matrix of the L2×M matrix C comprising the first M rows. Denoting
by B2 the (L2 −M) ×M sub-matrix of C comprising the remaining
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L2−M rows, we may write B2 = PHB1 where PH is the (L2−M)×M
matrix whose entries are coefficients of the linear combinations. The
Hermitian P of PH is called propagator matrix. Thus, we have the
partition

B =
[
BH

1 : BH
2

]H
=

[
BH

1 : BH
1 P

]H
(12)

Using (12), we can partition C in (5) as

C =
[

D1 D1P
PHD1 PHD1P

]
(13)

where D1 = B1DBH
1 . Defining

C1∆
[

D1

PHD1

]
and C2∆

[
D1P
PHD1P

]
= C1P

(13) can be expressed as

C = [C1 : C2] (14)

where C1 and C2 are matrices of dimension L2×M and L2×(L2−M)
respectively. From (12) we can write that

UHB∆
[
PH : −IL2−M

]
B = 0 (15)

where UH = [PH : −IL2−M ] is the matrix of dimension L2× (L2−M)
and 0 is the (L2 − M) × M matrix of zeros. The relation (15)
means that the vectors b(θm), m = 1, 2, . . . , M, are orthogonal to
the columns of U. This means that the column space of the matrix U
is included in the column space of V. Since the matrix U contains the
(L2−M)×(L2−M) identity matrix as sub-matrix, its L2−M columns
are linearly independent. Therefore, the column space of U and the
column space of V is equal. This follows that the propagator defines
the subspace as does the matrix V of the eigenvectors corresponding to
the zero eigenvalues of the fourth-order cumulant matrix C. Therefore,
the true DOA parameters θm, m = 1, 2, . . . ,M, of the sources are the
unique solutions of the equation

bH(θ)UUHb(θ) = 0 (16)

Considering (14) to define a partition of the fourth-order cumulant
matrix C computed on the basis of (2), the relation

C2 = C1P (17)

between the sub-matrices C1 and C2 may not be satisfied in
practice since the actual fourth-order cumulant matrix C has to be
approximated by the corresponding sample estimates of the cumulant
matrix Ĉ which is in turn estimated from a finite number of snap-shots
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according to (10). However, a least-square solution for the estimate P̂
of the propagator matrix P satisfying Ĉ2 = Ĉ1P̂ may be obtained by
minimizing the cost function

J(P̂) =
∥∥∥Ĉ2 − Ĉ1P̂

∥∥∥
2

F

where Ĉ1, Ĉ2 are sub-matrices of Ĉ and ‖.‖F denotes the Frobenius
norm. The cost function J(P̂) being quadratic (convex) function of P̂,
may be minimized to give the unique least-square solution for P̂:

P̂ =
(
ĈH

1 Ĉ1

)−1
ĈH

1 Ĉ2

The propagator matrix is thus obtained. The computational cost
incurred for determining P̂ is very much less than that incurred in a
search for the eigen-elements of a fourth-order cumulant matrix. Given
the vectors b(θ), the DOA of the source signals can be estimated by
locating the M largest peaks of the function given by

ξ(θ) =
1

bH(θ)ÛÛHb(θ)
, θ ∈ [0, π] (18)

where Û = [P̂H : −IL2−M ].
The difference between Û and V̂ is that the columns of V̂ are

orthogonal (since they are different eigen vectors) but the columns of
Û are not orthogonal. In order to introduce the orthonormalization,
we can replace matrix Û by its orthonormalized version

Ûo = Û
(
ÛHÛ

)−1/2
(19)

We then obtain the following function

ξo(θ) =
1

bH(θ)ÛoÛH
o b(θ)

, θ ∈ [0, π] (20)

5. PERFORMANCE ANALYSIS

In this section, the performance analysis of the both cumulant MUSIC
and the cumulant propagator methods are discussed in terms of the
root mean-square error of the DOA estimates. Assume that θk is the
actual DOA of the kth source signal. From (9) and (10)

bH(θm)W = 0 for m = 1, 2, . . . ,M, (21)
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where W = V for cumulant MUSIC and U for cumulant propagator
method. The null spectrum function associated with MUSIC and
propagator method can be written as

F (θ,W) = bH(θ)Gb(θ) (22)

where G = WWH . Using (21), we can write

F (θm,W) = 0 for m = 1, 2, . . . ,M, (23)

Due to the noisy observations, the estimated DOA θ̂m of the kth
source signal will be deviated from θm to some amount ∆θm. It can
be written as

θ̂m = θm + ∆θm for m = 1, 2, . . . , M, (24)

The Taylor series expansion of F (θ̂m,Ŵ) about the actual DOA θm is

F
(
θ̂m,Ŵ

)
= F

(
θm,Ŵ

)
+ ∆θmF (1)

(
θm,Ŵ

)

+(1/2) (∆θm)2 F (2)
(
θm,Ŵ

)
+ . . . (25)

where F (k) denotes the kth derivative of F with respect to θ. With
the approximation of first order expansion and taking first derivative
for (25), we get

F (1)
(
θ̂m,Ŵ

)
= F (1)

(
θm,Ŵ

)
+ ∆θmF (2)

(
θm,Ŵ

)
(26)

The left-hand side of (26) is zero since F (θ̂m,Ŵ) attains minima at
θ̂m. Therefore, from (26)

∆θm = −F (1)
(
θm,Ŵ

)
/F (2)

(
θm,Ŵ

)
(27)

Substituting Ŵ = W + ∆W in Ĝ = ŴŴ
H

and approximating Ĝ
by first order deviation in ∆W we get

Ĝ ≈ G + ∆G

where
∆G ≈ (∆W)WH + W(∆W)H (28)

Taking the first and second derivatives of F (θm,Ŵ) with respect to θ
and using the fact that bH(θm)W = 0 for m = 1, 2, . . . , M, we get

F (1)
(
θm,Ŵ

)
=b(1)H(θm)W(∆W)Hb(θm)+bH(θm)(∆W)WHb(1)(θm)

= 2Real
{
bH(θm)(∆W)WHb(1)(θm)

}
(29)
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and
F (2)

(
θm,Ŵ

)
= 2b(1)H(θm)Gb(1)(θm) + ∆F (2) (30)

where

∆F (2) = 2b(1)H(θm)(∆G)b(1)(θm) + 2Real
{
bH(θm)(∆G)b(2)(θm)

}

Now, substituting (29) and (30) in (27) and expanding (27) to
only first order deviation yields

∆θm = −Real
{
bH(θm)(∆W)WHb(1)(θm)

}

/
{
b(1)H(θm)WWHb(1)(θm)

}
(31)

In order to calculate the deviation error ∆θm in the DOA estimate θ̂m

given in (31) it is necessary to evaluate the deviation matrix ∆W (that
is, ∆V for cumulant MUSIC method and ∆U for cumulant propagator
method).

5.1. Deviation ∆V in Cumulant MUSIC Method

The eigendecomposition of the estimated cumulant matrix is

Ĉ = V̂Λ̂V̂H + Q̂Σ̂Q̂H (32)

Substituting V̂ = V + ∆V, Q̂ = Q + ∆Q, Σ̂ = Σ + ∆Σ and Λ̂ =
Λ + ∆Λ = ∆Λ (since Λ is a zero matrix) in (32) and approximating
to first order deviation

Ĉ = C + ∆C

where

∆C = QΣ(∆Q)H + Q(∆Σ)QH + (∆Q)ΣQH + V(∆Λ)VH (33)

Pre-multiplying (33) by VH and using the fact that VHQ = 0 and
VHV = IL2−M yields

VH(∆C) = VH(∆Q)ΣQH + (∆Λ)VH (34)

Post-multiplying (34) by Q and using the fact that VHQ =
0 and QHQ = IM yields

VH(∆C)Q = VH(∆Q)Σ (35)

Define Z∆− (∆Q)HV, then from (35)

Z = −Σ−1QH(∆C)HV (36)
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Note that, (V + QZ)H(V + QZ) ≈ IL2−M since ZHZ has second
order term in (∆C). Also it can be shown that columns of (V+QZ)
spans the space spanned by the columns of V. So we can write that

V̂ = V + QZ (37)

Comparing (37) with V̂ = V + ∆V we see that we have

∆V = QZ = −QΣ−1QH(∆C)HV (38)

5.2. Deviation ∆U in Cumulant Propagator Method

The estimate of the cumulant matrix Ĉ can be partitioned as

Ĉ = [Ĉ1 Ĉ2] with Ĉ2 = Ĉ1P̂ (39)

Substituting the Ĉ1=C1 + ∆C1 and Ĉ2= C2 + ∆C2 into (39) and
expressing ∆C as

∆C = [∆C1 ∆C2]

Let ∆P be the deviation in P̂ as P̂ = P+∆P and ∆U be the deviation
in Û as Û = U + ∆U. Therefore, from Ĉ2 = Ĉ1P̂ we can derive ∆P
by approximating to first order terms as

∆C2 +C2 = (∆C1 +C1)(P+∆P) ≈ (∆C1)P+C1P+C1(∆P) (40)

This implies that

∆P =
(
CH

1 C1

)−1
CH

1 (∆C2 −∆C1P) (41)

Then

∆U = Û−U =
[
P̂H : −IL2−M

]H
− [

PH : −IL2−M

]H

=
[
(∆P)H0

]H
= Y(∆C)HU (42)

where
Y = −[C1(CH

1 C1)−10]H

Now substituting (38) and (42) in to (31) we get

∆θm = −Real
{
bH(θm)QΣ−1QH(∆C)HVVHb(1)(θm)

}

/
{
b(1)H(θm)VVHb(1)(θm)

}
(43a)

for cumulant MUSIC method and

∆θm = −Real
{

bH(θm)Y(∆C)HUUH b(1)(θm)
}

/
{
b(1)H(θm)UUHb(1)(θm)

}
(43b)
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for cumulant propagator method. Then the variance of the DOA
estimate for cumulant MUSIC and cumulant propagator methods can
be calculated, respectively, by

Var(∆θm)CM = Var
[
Real

{
bH (θm)QΣ−1QH(∆C)HVVHb(1)(θm)

}]

/
∥∥∥b(1)H(θm)V

∥∥∥
4

and

Var (∆θm)CP = Var
[
Real

{
bH(θm)Y(∆C)HUUHb(1)(θm)

}]

/
∥∥∥b(1)H(θm)U

∥∥∥
4

This can be further reduced by assuming the elements of ∆C are
uncorrelated zero-mean random variables with equal variance σ2.
Therefore, the square root of the variance (i.e., standard deviation) will
be equal to root mean-square error (RMSE) and can be simplified [17–
19] to

RMSECM =
(
σ2/2

)
bH(θm)QΣ−2QHb(θm)/

∥∥∥b(1)H(θm)V
∥∥∥

2
(44a)

and

RMSECP =
(
σ2/2

) [
bH (θm)YYHb(θm)

] [
b(1)H(θm)UUHUUH

b(1)(θm)
]
/

∥∥∥b(1)H(θm)U
∥∥∥

4
(44b)

If the matrix U is replaced by its orthonormalized version Uo, then
(44b) is reduced to

RMSECP =
(
σ2/2

) [
bH(θm)YYHb(θm)

]
/

∥∥∥b(1)H(θm)Uo

∥∥∥
2

(45)

In the noise free case, it can be shown that Uo = −V as discussed
in [9, 20]. So the RMSE in (44a) and (45) differ only by the numerator
value. Using the definition of the propagator in (12) and the matrix
Y defined in (42), the numerators of (44a) and (45) can be written as

bH(θm) QΣ−2QHb(θm) = bH
1 (θm)ŨHQΣ−2QHŨb1(θm) (46a)

bH(θm)YYHb(θm) = bH
1 (θm)

(
CH

1 C1

)−1
b1(θm) (46b)

where Ũ = [IM : P]H is an L2×M matrix orthogonal to U and b1(θm)
is an M × 1 vector containing the first M elements of b(θm). Using
the fact that V and Q are orthogonal, the orthonormalized version of
Ũ is

Ũo = Ũ
(
ŨHŨ

)−1/2
= −Q (47)
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In noise free case, the cumulant matrix C can be written as

C = [C1 : C2] =
[
QΣQH

1 : QΣQH
2

]

where Q1 is a M × M matrix containing the first M rows of Q.
Therefore,

CH
1 C1 = Q1ΣQH

1 (48)

So from (47) and the definition of Q1 that

Q1 = −(ŨHŨ)−1/2 and Q = ŨQ1 (49)

Now using (49), the right hand side of (46a) can be written as

bH
1 (θm)ŨHQΣ−2QHŨb1(θm)

= bH
1 (θm)

(
ŨHŨ

)H/2
Σ−2

(
ŨHŨ

)1/2
b1(θm)

= bH
1 (θm)Q−H/2

1 Σ−2Q−1/2
1 b1(θm) = bH

1 (θm)
(
CH

1 C1

)
b1(θm)

Now, we showed that under noise free case the numerators are also
equal. So the cumulant propagator method performs similar to
cumulant MUSIC for high and moderate signal-to-noise ratios(SNRs).
It is worth noting that the computational complexity of the cumulant
propagator method is much less than the cumulant MUSIC.

For the above analysis, the first order derivative b(1)(θm) of b(θm)
is necessary. The derivative of b(θm) with respect to the actual DOA
θm is

b(1)(θm) = a(1)(θm)⊗ a∗(θm) + a(θm)⊗ a(1)∗(θm)

where
a(1)(θm) = −j(2πd/λ) sin θm[h¯ a(θm)]

and where ¯ denotes Hadamard product and h = [0, 1, 2, . . . , (L−1)]T .

6. SIMULATION RESULTS

In this section, computer simulations are presented to demonstrate
the performance of the fourth-order cumulant-propagator method.
The following performance measures are used to investigate the
performance of the DOA estimation technique: (i) Root-mean square
error (RMSE) (ii) resolution capability (iii) detection probability (iv)
capability to resolve two nearby sources and (v) minimum resolvable
angular separation. Computer simulations have been carried out using
Matlab 7.0.4 to evaluate the performance of the both methods. A
uniform linear array consisting of 9 sensors and 100 snapshots are used
for all the computer simulation.
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(a)

(b)

Figure 1. Power spectrum plots of two sources from the directions
θ = 85◦ and 88◦ at an equal SNR of 0 dB. (a) For the proposed method
and (b) for the propagator based on auto-covariance method.

(a)

(b)

Figure 2. Power spectrum plots of 4 sources from the directions
θ = 70◦, 80◦, 90◦ and 100◦ at an equal SNR of 0 dB. (a) For the
proposed method and (b) for the propagator based on auto-correlation
method.
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First, the resolution capabilities of the propagator method based
on fourth-order statistics and second-order statistics for the case of
two signal sources separated by 3◦ at an equal SNR of 0 dB are
considered. The power spectrum plots, when the direction of both
sources lie in the range [35◦, 145◦], are plotted for 6 independent trials
and are shown in Fig. 1(a) for the fourth-order cumulant propagator
method and in Fig. 1(b) for the propagator method based on second
order statistics. The power spectrum plots show that the fourth-order
cumulant propagator method resolves the two sources consistently in
all the 6 trials while the propagator method based on second order
statistics does not resolve consistently in every trial.

Next, the resolution capabilities of both methods for four signal
sources from the directions θ = 70◦, 80◦, 90◦ and 100◦ at an equal SNR
of 0 dB are considered and the power spectrum graphs are plotted for
6 independent trials and are shown in Figs. 2(a) and 2(b) respectively
for the fourth-order cumulant propagator method and second-order
cumulant propagator method. The plots attest to the consistent
performance of the proposed method.

Figure 3 shows the detection probability of second source at an
angular separation that is varied between 1◦ and 9◦ in the vicinity of
first source. The detection probability plots show that the cumulant
propagator method is capable of resolving two sources separated by an
angle of 3◦ successfully but the propagator method based on second-
order statistics is not able to do so.

Furthermore, the robustness with respect to the number of sources
is also analyzed through simulations. Fig. 4 shows the performance
with respect to the number of distinct sources at an SNR of 0 dB for
each source at an angular separation of 10◦ between adjacent sources.
The detection probability is plotted against the number of distinct

Figure 3. Detection probability
versus angular separation.

Figure 4. Detection probability
versus number of distinct sources.
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Figure 5. Detection probability
versus SNRs.

Figure 6. Root-mean square
error versus SNR.

sources and is shown in Fig. 4, which clearly shows that the proposed
method is capable of detecting up to 5 sources separated by 10◦ with
high reliability. In contrast, the propagator method based on second-
order statistics is able to detect only up to 2 sources. Fig. 5 illustrates
the performance of both the methods at different SNR values. It
depicts the detection probability at various SNRs from −20 dB to
30 dB. The detection probability for all three cases is computed over
250 independent trails by detecting the source(s) within an interval of
±0.1◦ around the actual DOA.

In the final experiment, one source with direction-of-arrival at 30◦
is considered and simulations are been performed over 250 independent
trails for cumulant propagator method based on simulation for various
SNRs and the RMSE is computed using the formula

RMSE =

√√√√ 1
n

n∑

i=1

(
θ − θ̂i

)2

where n is number of trials and θ̂i is the DOA estimate of the
actual direction θ for the ith trial. The RMSE is also computed for
cumulant propagator method based on the theoretical results obtained
in Equation (44b) for various SNRs. The RMSE versus SNR is plotted
for both the results and the plots are shown in Fig. 6. It is observed
from the plots that the simulation results are close to the theoretical
results for moderate and high SNR values.
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7. CONCLUSION

In this paper, a cumulant propagator method, which has better
resolution capability than the propagator method based on second-
order statistics, is presented. The propagator method is applied to
the fourth-order cumulant matrix. Simulation studies reveal that the
performance of the cumulant propagator method is superior to that
of the propagator method based on second-order statistic in resolving
distinct-power sources as well as in detecting the number sources. It
is also seen from the simulation results that the cumulant propagator
method delivers estimates with less RMSE than the propagator method
based on second-order statistics.
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