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Abstract—Photonic band structure and reflection properties of one-
dimensional magnetic star wave-guide (MSWG) structure composed
of a backbone (or substrate) waveguide along which a finite side
branches grafted periodically have been investigated. The dispersion
relation and hence the photonic band gaps (PBGs) of the magnetic
SWG structure have been obtained by applying the Interface Response
Theory (IRT). Investigation of dispersion characteristics shows that the
existence of band gaps in magnetic SWG structures does not require
the contrast in the wave impedance of the constituent materials, which
is unlike the usual magnetic photonic crystal structure, where there
must be the contrast in the wave impedance for the existence of the
band gaps. Moreover, magnetic SWG structures have wider reflection
bands in comparison to normal magnetic photonic crystal (MPC)
structure for the same contrast in the wave impedance. Analysis shows
that the width of forbidden bands for MSWG structure changes with
the change in permittivity and permeability of the backbone, and side
branches materials even the ratio of wave impedance is the same, but
it remains the same in case of MPC structure. In addition to this, we
have studied the effects of variation of number of grafted branches and
substrates, i.e., number of nodes on the reflection bands of magnetic
SWG structure.

Corresponding author: S. K. Srivastava (sanjeev17th@yahoo.co.in).



22 Srivastava and Ojha

1. INTRODUCTION

Photonic crystal (PC) structures also known as photonic band gap
(PBG) materials have attracted a great deal of attention in the fields of
the solid-state and optical physics due to their unusual electromagnetic
properties. These materials are based on the interaction between
optical fields and materials exhibiting periodicity on the scale of optical
wavelength. Due to their peculiar optical properties and capability to
manipulate the flow of light within the structure, they have many
potential applications in field of optical technology and photonics [1–
11].

In recent years, different types of photonic structure called comb-
like waveguide (CWG) structure or star waveguide (SWG) structure
has been investigated and studied. These types of structure are
composed of a backbone (or substrate) waveguide along which finite
side branches grafted periodically [12–17]. The SWG structures or
CWG structures have a narrow transmission bands separated by large
forbidden bands. In the SWG (or CWG) structure the existence of
band gaps does not require the contrast in the refractive indices of
the constituent materials, which is unlike the normal (PC) structure
where there must be the contrast in the refractive index for the
existence of the photonic band gaps. The one-dimensional nature of the
proposed model retains its validity to any region of the electromagnetic
spectrum. Indeed, it must be emphasized that the diameter of the
guide should be much smaller than the wavelength in order to allow
the propagation of a single mode guide. Moreover, the diameter of
guide should be small in comparison to its period [12–14].

In the present paper, we study the photonic band structure
and reflection properties of the magnetic star wave-guide structure
composed of one-dimensional continuous branches grafted on the
same substrates. Because of electro-optical and magneto-optical
properties, the magnetic photonic structures play an important
role in electro-optics and have generated growing interest. The
tuning ability of the photonic characterizations of magnetic photonic
structure makes it possible to develop magnetically tunable micro-
cavities, micro-waveguides and micro-Bragg mirrors etc. [18, 19]. Due
to the one-dimensional nature of the proposed structure, it has
easier fabrication technique and can be manufactured by using the
lithography techniques. In order to obtain the dispersion relation and
transmission coefficient of the proposed structure Interface Response
Theory (IRT) [12–14] has been applied. The analysis shows that
formation of band gap in magnetic SWG structure is independent of
the contrast in the wave impedance of the constituent’s materials where
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it must be for the existence of band gaps in the normal magnetic PC
structures [20–22]. In addition to this, the effect of increasing the
number of side branches and substrates (or number of nodes) on the
reflection bands has also been studied. Here, we have assumed that
the dielectric and magnetic absorptions of the constituent materials
are negligible.

2. THEORETICAL ANALYSIS

Let us consider a one-dimensional star-waveguide structure containing
magnetic materials. The proposed structure is composed of an
infinite one-dimensional backbone waveguide having permittivity (ε1)
and permeability (µ1) along which N ′ identical side branches having
permittivity (ε2) and permeability (µ2) are grafted at N nodes. The
propagation of EM wave and hence the dispersion relation of the
proposed structure for an infinite SWG structure (N → ∞) can be
obtained with the help of interface response theory (IRT) [12–14],
by choosing the two different boundary conditions, i.e., by vanishing
of either electric filed (E = 0) or magnetic field (H = 0) at the
extremities of the side branches. The geometry of the proposed
structure considered here is depicted in Fig. 1. If n1 and n2 are
the refractive indices of the side branches and backbone, and ‘a’
(periodicity of the system) and ‘b’ (length of the grafted branches)
are the length scale of the system, then the characteristics equations
of the infinite star waveguide with the boundary conditions E = 0 or
H = 0 can be written as [12–14]

cos(Ka) = cos (k1a)− N ′

2

(
Z2

Z1

)
sin (k1a) tan (k2b) (1)
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2

(
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)
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√
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εj
is the wave impedance and

(j = 1, 2). Here ‘K’ is the propagation vector along the waveguide;

Figure 1. Schematic representation of periodic star waveguide
structure with finite number of stars.
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‘ω’ is the angular frequency; ‘c’ is the speed of light. If the absolute
value of the right hand side of Eq. (1) is less than 1, one can find the
real solution for K; the corresponding wave can propagate along the
waveguide and belongs to the pass band. For the value greater than 1,
K is a complex number and will result in forbidden or stop bands.

The dispersion relation of the infinite star waveguide structure
with the boundary conditions E = 0 or H = 0 is given by

K =
1
a

cos−1

[
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2
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The transmittance through the waveguide when the side branches
are grafted at a finite number N of nodes is give by [12–14, 16]

T =

∣∣∣∣∣
2 sin (k1a)

(
t2 − 1

)
tN

(1−At)2 − t2N (t−A)2

∣∣∣∣∣
2

(5)

where A = exp (ik1a) and t = exp (iKa) and K is determined by
Eq. (3).

The reflectance of the proposed waveguide structure can be
obtained by the expression

R = 1− T (6)

For the usual magnetic PC structure, dispersion relation at the normal
incidence for both TE and TM-polarized waves is given by the following
expressions [22]

K=
(

1
d

)
cos−1

[
cos (k1a) cos (k2b)− 1

2
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]
(7)

here, d = a+ b is the period of the lattice; a and b are the width of the
two alternate regions having wave impedance Z1 and Z2 respectively.

In the next section, we will numerically compute the band
structure and reflectance spectra for different sets of values of
permittivity and permeability.

3. RESULTS AND DISCUSSIONS

We now discuss the numerical results according to the aforementioned
equations. For the sake of numerical calculation we take different
combinations of (ε1, µ1) and (ε2, µ2) as shown in Table 1. The
dispersion characteristics for both MSWG and MPC structures are
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Table 1. The different combinations of (ε1, µ1) and (ε2, µ2).

(ε1, µ1); (ε2, µ2) (Z1, Z2) (n1, n2)
(2, 2); (4, 4) (1,1) (2, 4)
(2, 2); (2, 8) (1, 2) (2, 4)
(2, 2); (8, 2) (1, 0.5) (2, 4)
(4, 4); (2, 2) (1, 1) (4, 2)
(2, 8); (2, 2) (2, 1) (4, 2)
(8, 2); (2, 2) (0.5, 1) (4, 2)
(4, 4); (4, 4) (1, 1) (4, 4)
(3, 3); (3, 3) (1, 1) (3, 3)
(2, 2); (2, 2) (1, 1) (2, 2)

plotted for a = b at the normal incident angle and are depicted in
Figs. 2(a)–(e) and Figs. 3(a)–(e). Here, we take N ′ = 1 (number
of side branches) for MSWG structure. From the study of these
dispersion curves, it is observed that MPC structures do not show any
forbidden frequency bands because for these structures the value of
(ε1,µ1, ε2µ2) is chosen in such a way that the ratio of wave impedance
has the value (Z1/Z2 = 1/1). While for the same ratio of impedance
MSWG structure shows the appreciable number of band gaps though
the number of forbidden bands and bandwidth is different. This result
confirms that the contrast in wave impedance is not the necessary
criteria for the existence of photonic band gaps in magnetic SWG
structure, which is unlike the normal magnetic PC structure where
the formation of band gaps requires the contrast in wave impedance.
Figs. 2(a), 2(c) and 2(d) have four forbidden bands whereas Figs. 2(b)
and 2(e) show only two forbidden bands even the contrast in wave
impedance is same, i.e., 1 : 1. By examining Figs. 2(a) and (2b)
it is found that the width of forbidden bands for Fig. 2(b) is larger
than that of Fig. 2(a). Enhancement in the band gap of Fig. 2(b)
arises because for this structure the value of (ε1,µ1) and (ε2,µ2) is
(4, 4) and (2, 2) while for Fig. 2(a) it is (2, 2) and (4, 4) though the
value Z1/Z2 = 1/1. Thus, from this observation it may be concluded
that for the same contrast in wave impedance those MSWG structures
show larger band gaps for which substrates (or backbone) material of
the structure have larger value of permittivity and permeability than
the material of side branches, but at the same time the number of
forbidden bands decreases. From the analysis of Figs. 2(a) and 2(c) we
observe that both have equal number of forbidden bands (four), but the
width of the forbidden bands corresponding to Fig. 2(a) is greater than
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(a)

(b)

(c)

(d)

(e)

Figure 2. The dispersion char-
acteristics of MSWG structure for
N ′ = 1, a = b and (a) ε1 = 2,
µ1 = 2, ε2 = 4, µ2 = 4 (b) ε1 = 4,
µ1 = 4, ε2 = 2, µ2 = 2, (c) ε1 = 4,
µ1 = 4, ε2 = 4, µ2 = 4 (d) ε1 = 3,
µ1 = 3, ε2 = 3, µ2 = 3 and (e)
ε1 = 2, µ1 = 2, ε2 = 2, µ2 = 2
respectively.

(a)

(b)

(c)

(d)

(e)

 

Figure 3. The dispersion char-
acteristics of MPC structure for
a = b and (a) ε1 = 2, µ1 = 2,
ε2 = 4, µ2 = 4 (b) ε1 = 4, µ1 = 4,
ε2 = 2, µ2 = 2 (c) ε1 = 4, µ1 = 4,
ε2 = 4, µ2 = 4 (d) ε1 = 3, µ1 = 3,
ε2 = 3, µ2 = 3 and (e) ε1 = 2,
µ1 = 2, ε2 = 2, µ2 = 2 respec-
tively.

that in Fig. 2(c). For these structures wave impedance ratio is again
1 : 1 but the value of refractive indices of the constituent material is
different i.e., for Fig. 2(a), n1/n2 = 2/4 and for Fig. 2(c), n1/n2 = 4/4.
Further, the observation of Figs. 2(c), 2(d) and 2(e) shows that for the
same value of wave impedance the number of forbidden bands decreases
as the value of refractive indices of constituent materials decreases,
but at the same time width of the band gaps increases and shifted
towards the higher frequency side. In conclusion, it can be said that in
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MSWG structure formation of band gap does not require the contrast
in wave impedance but the position of band gaps; their width and
number of bands depend on the value of refractive index of constituent
materials of the structure. The range of forbidden frequency bands for
Z1/Z2 = 1/1 can be seen from Table 2(a).

Figures 4(a)–(d) and 5(a)–(d) show the dispersion curves of
MSWG and MPC structures for different ratios of wave impedance.
It can be seen from Figs. 5(a)–(d) that MPC structure shows the
band gaps when there is contrast in wave impedance. There are total
four forbidden bands in each case, and the width of the band gaps
associated with them is same whether the contrast in wave impedance
is (Z1/Z2 = 1/2 or 2/1) which can be seen from the Table 2(b).
But for MSWG structure, the number of forbidden bands as well as
their widths is different for different values of wave impedance of the
constituent materials. The magnetic SWG structure for which the
value of wave impedance of backbone material is larger than the wave
impedance of side branches shows wider forbidden bands. Bandwidth
of magnetic SWG structure for Z1/Z2 = 1/2 is 0.132(ωa/c), [Fig. 4(a)],
and for Z1/Z2 = 1/0.5 it is 0.314(ωa/c) [Fig. 4(b)]. The band
structures of Figs. 4(c) and 4(d) show two forbidden frequency bands
and the width of the forbidden bands corresponding to Z1/Z2 = 2/1
is 0.786(ωa/c) [Fig. 4(c)] where as for Z1/Z2 = 0.5/1 it is 0.464(ωa/c)
[Fig. 4(d)]. If we compare the dispersion curves of Figs. 4(a)–(d), it is
found that the bandwidth corresponding to Fig. 4(c) is the largest.
This is due to the larger value of wave impedance as well as the

Table 2(a). The forbidden bands in normalized frequency of MSWG
and MPC structure for N ′ = 1, a = b and ε1 = 2, µ1 = 2, ε2 = 4,
µ2 = 4; ε1 = 4, µ1 = 4, ε2 = 2, µ2 = 2; ε1 = 4, µ1 = 4, ε2 = 4, µ2 = 4;
ε1 = 3, µ1 = 3, ε2 = 3, µ2 = 3 and ε1 = 2, µ1 = 2, ε2 = 2, µ2 = 2
respectively.

Forbidden bands in normalized frequency ( )
c

ωa  for (Z 1, Z 2 ) = (1,1)

(ε1 , µ1); (ε2 µ2 (2,2); (4,4) (4,4); (2,2) (4,4); (4,4) (3,3) ;(3,3)  (2,2); (2,2) 

MSWG 

Structure 

0.347—0.561

1.010—1.223

1.918—2.132

2.580—2.794

0.477—1.093

2.048—2.664

---------------- 

---------------- 

0.375—0.478

1.093—1.263

1.878—2.048

2.663—2.834

0.410—0.637

1.457—1.684 

2.504—2.731

----------------- 

0.615—0.956

2.186—2.526

----------------

--------------- 

MPC Structure No Bands Bands No Bands No Bands No Bands

),

No 
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Table 2(b). The forbidden bands in normalized frequency of MSWG
and MPC structure for N ′ = 1, a = b and ε1 = 2, µ1 = 2, ε2 = 2,
µ2 = 8, ε1 = 2,µ1 = 2, ε2 = 8, µ2 = 2, ε1 = 2, µ1 = 8, ε2 = 2, µ2 = 2
and ε1 = 8, µ1 = 2, ε2 = 2, µ2 = 2 respectively.

Forbidden bands in normalized frequency ( )c
ωa

(ε1 ,µ1); (ε2 µ2 (Z1, Z 2) MSWG Structure MPC Structure 

(2,2,); (2,8) (1, 2) 

0.368—0.500

1.070—1.202

1.939—2.071

2.641—2.773

0.420—0.615

0.955—1.150

1.991—2.186

2.526—2.721

(2,2);(8,2) (1,0.5) 

0.314—0.628

0.942—1.257

1.884—2.199

2.513—2.827

0.420—0.615

0.955—1.150

1.991—2.186

2.526—2.721

(2, 8);(2,2) (2,1) 

0.392—1.178

1.963—2.749

------------------ 

-------------------

0.420—0.615

0.955—1.150

1.991—2.186

2.526—2.721

(8,2); (2,2) (0.5, 1) 

0.553—1.017

2.124—2.588

------------------ 

-------------------

0.420—0.615

0.955—1.150

1.991—2.186

2.526—2.721

);

permeability of the backbone material than the side branches. From
the above analysis it is inferred that change in the wave impedance
ratio of MSWG structure can change the width of the forbidden bands,
their numbers and the position. In addition to this, width of forbidden
bands can be enhanced by increasing the permeability of the backbone
material. Moreover, the width of the reflection bands of MSWG is
larger than the MPC structure for the same ratio of wave impedance.

Effect of variation of number of side branches on the band
structure and reflection curves of MSWG structure is illustrated in
Figs. 6(a)–(c). For the calculation we choose the value of (ε1, µ1) and
(ε2, µ2) as (2, 8) and (2, 2); the number of side branches is varied as
N ′ = 1, 3 and 5; the number of nodes is taken as N = 15, while
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(a)

(b)

(c)

(d)

Figure 4. The dispersion char-
acteristics of MSWG structure for
N ′ = 1, a = b and (a) ε1 = 2,
µ1 = 2, ε2 = 2, µ2= 8 (b) ε1 = 2,
µ1 = 2, ε2 = 8, µ2 = 2 (c) ε1 = 2,
µ1 = 8, ε2 = 2, µ2 = 2 (d) ε1 = 8,
µ1 = 2, ε2 = 2, µ2 = 2 respec-
tively.

(a)

(b)

(c)

(d)

 
Figure 5. The dispersion char-
acteristics of MSWG structure for
a = b and (a) ε1 = 2, µ1 = 2,
ε2 = 2, µ2 = 8 (b) ε1 = 2, µ1 = 2,
ε2 = 8, µ2 = 2 (c) ε1 = 2, µ1 = 8,
ε2 = 2, µ2 = 2 (d) ε1 = 8, µ1 = 2,
ε2 = 2, µ2 = 2 respectively.

the values of ‘a’ and ‘b’ remain the same as the previous. Now from
the study of Figs. 6(a)–(c) it is observed that when the number of side
branches increases, the width of the reflection bands also increases even
the total number of bands remains the same in each case. For N ′ = 1
the range of forbidden bands is 0.394–1.176(ωa/c), 1.1965–2.747(ωa/c),
and the corresponding band width is found to be 0.782(ωa/c) while
for N ′ = 3 and 5 the range of forbidden bands are obtained as
0.262–1.308(ωa/c), 1.833–2.879(ωa/c) and 0.210–1.360(ωa/c), 1.781–
2.931(ωa/c). The bandwidths corresponding to N ′ = 3 and 5 are found
to be 1.046(ωa/c) and 1.150(ωa/c) respectively. The enhancement in
the reflection bands of the structure arises because of the occurrence of
multiple reflections of the electromagnetic wave within the increased
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(a) (b)

(c)

Figure 6. The dispersion characteristics and reflectance curve of
MSWG structure for ε1 = 2, µ1 = 8, ε2 = 2, µ2 = 2; a = b; N = 15
and (a) N ′ = 1 (b) N ′ = 3 and (c) N ′ = 5 respectively.

number of side branches. Hence, it is emphasized that the width and
range of reflection bands of SWG structure can be tuned by varying
the number of grafted branches without changing the other parameters
of the structure.

Finally, Figs. 7(a)–(c) show the reflectance spectra of MSWG
structure for N ′′ = 1, and number of nodes of backbone material is
varied as N = 5, 10, and 15. The value of (ε1,µ1) and (ε2,µ2) is taken as
(2, 2) and (8, 2) while the other parameters are the same. Observation
of the reflectance curves shows that the range of 100% reflection bands
increases as the number of nodes increases. Each structure possesses
total four reflection bands which are designated as I, II, III and IV.
The widths of I, II, III and IV reflection bands for N = 5, 10 and 15
for MSWG structure are shown in Table 3. The widths of all the four
bands corresponding to N values are same. For N = 5 the bandwidth
is 0.268(ωa/c) while for N = 10 and 15 it has the value 0.306(ωa/c) and
0.311(ωa/c). Further, it is seen that there is very small difference in the
bandwidths corresponding to N = 10 and 15; it is only 0.005(ωa/c),
i.e., the reflection bands get almost saturated for N = 15. Thus, for
MSWG structure one can get the appropriate range of reflection for
lower number of nodes.
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(a)

(b)

(c)

Figure 7. The reflectance curve of MSWG structure for ε1 = 2,
µ1 = 2, ε2 = 8, µ2 = 2; a = b; N ′ = 1 and (a) N = 5 (b) N = 10 and
(c) N = 15 respectively.

Table 3. The forbidden bands in normalized frequency of MSWG
structure for ε1 = 2, µ1 = 2, ε2 = 8, µ2 = 2; a = b; N ′ = 1 and N = 5,
10 and 15.

Forbidden bands in normalized frequency (ωa/c) for
(ε1, µ1); (ε2, µ2) = (2, 2); (8, 2) and (Z1, Z2) = (1, 0.5)
N = 5 N = 10 N = 15

0.317–0.585 0.314–0.620 0.314–0.625
0.985–1.253 0.950–1.256 0.945–1.256
1.888–2.156 1.885–2.191 1.885–2.196
2.556–2.824 2.521–2.827 2.516–2.827

4. CONCLUSION

In summary, we have investigated the photonic band structure and
reflection bands of a magnetic SWG structure for different values of
permittivity and permeability of the materials. Investigation of the
dispersion curves shows that the existence of band gaps in magnetic
SWG structures does not require the contrast in the wave impedance
of the constituent materials, which is unlike the usual magnetic
photonic crystal structure, where there must be the contrast in the
wave impedance for the existence of the band gaps. Also we have
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obtained that magnetic SWG structures have wider reflection bands
in comparison to normal magnetic photonic crystal (MPC) structure
for the same contrast in the wave impedance. Further, the analysis
shows that the width of forbidden bands for MSWG structure changes
with the change in permittivity and permeability of the backbone,
and side branches materials even the ratio of wave impedance is the
same, but it remains the same in case of MPC structure. We have also
seen the effect of variation of number of side branches on the band
structure and reflection spectra of MSWG structure. From this study
we find that when the number of side branches increases the width of
the reflection bands gets enhanced. Thus, we can tune the width and
range of reflection bands of MSWG structure by varying the number of
side branches without changing the other parameters of the structure.
The variation of number of nodes does not show much variation on the
reflection bands, so one can get the appropriate range of reflection by
using lower number of nodes. The proposed magnetic SWG structure
can be used to design tunable narrow band pass filter, wavelength
multiplexing devices etc. in any region of the electromagnetic spectrum
by the proper selection of material and geometrical parameters and
have potential applications in the filed of optical technology.
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