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Abstract—The common approaches to sample a signal generally
follow the well-known Nyquist-Shannon’s theorem: the sampling rate
must be at least twice the maximum frequency presented in the
signal. A new emerging field, compressed sampling (CS), has made
a paradigmatic step to sample a signal with much less measurements
than those required by the Nyquist-Shannon’s theorem when the
unknown signal is sparse or compressible in some frame.

We call a compressed-sampling filter (CSF) one for which the
function relating the input signal to the output signal is pseudo-
random. Motivated by the theory of random convolution proposed
by Romberg (for convenience, called the Romberg’s theory) and the
fact that the signal in complex electromagnetic environment may
be spread out due to the rich multi-scattering effect, two CSFs
via microwave circuit to enable signal acquisition with sub-Nyquist
sampling have been constructed, tested and analyzed. Afterwards, the
CSF based on surface acoustic wave (SAW) structure has also been
proposed and examined by the numerical simulation. The results have
empirically shown that by the proposed architectures the S-sparse n-
dimensional signal can be exactly reconstructed with O(S log n) real-
valued measurements or O(S log(n/S)) complex-valued measurements
with overwhelming probability.

1. INTRODUCTION

Advances in computation power have enabled digital signal processing
to become a primary modality in many applications, such as
communications, multimedia, and radar detection systems. Converting
analog signals to the digital ones avoids the complicated design
considerations for analog processing. The theoretical base of the

Corresponding author: L. Li (lianlinli1980@gmail.com).



256 Li et al.

traditional analog-to-digital converters (ADCs), such as flash ADCs,
pipelined ADCs and sigma-delta ADCs, is the so-called Nyquist-
Shannon theorem which guarantees the reconstruction of a band-
limited signal when it is uniformly sampled with a rate of at least twice
its bandwidth. Consequently, this physical limitation of traditional
ADCs is the main obstacle towards pushing their performances to the
GHz-regime and higher. It is well known that the uniform sampling
based on Nyquist-Shannon theorem is not a very efficient technique
in extracting information out of sparse signals because of only the
prior information, the signal bandwidth or approximate bandwidth, is
exploited. However, many signals of interest have additional structure
which can be fully exploited to reduce the sampling rate. The so-called
compressed sampling (CS), developed by Candes, Tao, Romberg and
Donoho, et al., plays this role and has made a paradigmatic step in the
way information is presented, stored, transmitted and recovered [1–4].

Most of nature signals are sparse or compressible in some basis,
which means that enough information of signal may be captured
by much smaller number of measurements than the length of the
signal. The sparsity of signals is a fact often exploited in the
signal/imaging/video processing. In particular, the common way to
compress a signal/imaging/video is to transform it into the basis in
which it is sparse and subsequently store only the locations and values
of the few non-zero elements. CS theory asserts that in addition to
storage, the signal sparsity can be leveraged to reduce the number
of measurements for signal/imaging/video acquisition and detection.
It has been shown that, if a signal/imaging/video is sufficiently
sparse, a small number of projections onto the random vectors are
enough to recover the signal. In summary, one can recover certain
signal/image/video from far fewer samples or measurements than
traditional methods required when the signal/image/video of interest
is sparse in some basis.

By considering the sparse signal/imaging/video recovery stochas-
tically, it has been shown that the random matrix with entries indepen-
dently drawn at random from a Gaussian distribution of zero mean and
unit variance can ensure the exact recovery of the signal/imaging/video
which is sparse in arbitrary orthobase with overwhelming probabil-
ity. Following this theory, the well-known single-pixel camera has been
constructed by Baraniuk et al. Later, many efforts to design the uni-
versal CS measurement instruments have been done by many authors,
for example, the chip-level Analogy-to-Information converter [5], the
single-shot compressive spectral imager [6], the random lens [7], and so
on. Unfortunately, these CS measurements can not be usually used in
practice (at least can not used for the real-time purpose) because of its
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time-consuming computation and the difficulty of physical realization.
To overcome this difficulty, many efforts have been done [8–12]. In the
[10], the random filter based on the fixed FIR filter having random taps
has been proposed and studied by the numerical simulations, by which
one can realize the recovery of sparse signals (in the time/frequency
domain, wavelet domain, etc.) from a small number of samples of the
output of this random filter. In the Ref. [11] Romberg generalized
above random filter, developed a strict theory for this universal CS
measurement and derived a bound on the number of samples need to
guarantee sparse reconstruction from a strict theoretical perspective.
Following the Romberg’s theory, L. Jacques et al. have constructed
the CMOS compressed imaging by using a lot of shift registers in a
pseudo-random configuration [12]. Of course, there are other excellent
results, for example [18, 19].

The CSF can expand the space of the design of possible new
radar system, signal processor, and so on, allowing new trade-offs
in A/D and potentially adding new signal processes capabilities. In
this paper, two novel CSFs working within the 2.0 GHz to 4 GHz
based on microwave circuit to enable signal acquisition with sub-
Nyquist sampling has been developed, tested and analyzed. Of
course, the CSF also may be constructed along the identical idea by
many other structures, for example, the man-made electromagnetic
materials, the plasma with different electron density, and so on.
Afterwards, the CSFs operating within 3.0 GHz to 5.0GHz bandwidth
via the surface acoustic wave (SAW) random time delayer has
been proposed and studied by the numerical simulation. By the
proposed architectures, the N -dimensional K-sparse signal can be
exactly reconstructed with O(S log(N)) real-valued measurements
or O(S log(N/S)) complex-valued measurements with overwhelming
probability, which is consistent with the prediction of the Romberg’s
theory.

2. THE ROMBERG’S THEORY

The CS measurements, different from the traditional ADCs samples,
model the acquisition of signal x0 as a series of inner products against
different independent waveforms

{φk : k = 1, 2, 3, . . . , m} ,

in particular,
yk = 〈φk, x0〉 , k = 1, 2, 3, . . . , m (1)

It is well known that to exactly recovery x0 from series of measurements
{yk} which is a kind of classical linear inverse problem will need more
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measurements than unknowns, i.e., m ≥ n. But the CS theory tells us
that if the signal of interest x0 is S-sparse in the orthogonal framework
Ψ and {φk} are chosen appropriately, recovering x0 is possible even
when there are far fewer measurements than unknowns, m ¿ n. This
paper will focus on the CS recovery via the l1-constraint minimization.
Given the measurements y = Φx0, we solve the convex optimization
program

min
α
‖a‖l1

subject to y = ΦΨα (2)

where the size of measurement matrix Φ is m by n, the kth column of
Φ is φk. Equation (2) searches for the set of transform coefficients α
such that the measurements of the corresponding signal Ψα agree with
y. The l1-norm is used to measure the sparsity of candidate signals.

By considering recovery stochastically, it has been shown that
random matrix with entries independently drawn at random from a
Gaussian distribution of zero mean and unit variance can ensure the
exact recovery of signal which is sparse in arbitrary orth-basis with
overwhelming probability. As discussed above, these CS measurements
can not be usually used in practice (at least can not used for the
real-time purpose) because of its time-consuming computation and
the difficulty of physical realization. To overcome this problem,
Romberg proposed a novel approach (see Fig. 1), called as compressed
sampling filter (CSF) whose frequency-domain response is described
by H(f), (note: the bandwidth of H(f) should be larger than
signal’s bandwidth) and provided a strict theoretical bound about
measurements.

In terms of classical linear algebra, the received signal y(t) can be
expressed as

y = n−1/2SΩ · F ∗ · Σ · F · x ≡ Φ · x (3)

where F is a discrete Fourier matrix with size n by n, x denotes the
unknown signal of size n, in particular, x = [x(t1), x(t2), . . . , x(tn)]T .
As required by the Romberg’s theorem, the entries of diagonal matrix

Σ =




H (f1) 0 · · · 0

0 H (f2)
. . .

...
...

. . . . . . 0
0 · · · 0 H (fN )


 are unit magnitude complex

numbers with random phase. They are generated as follows:
H (f1) ∼ ±1 with equal probability,

2 ≤ k < n/2 + 1 : H(fk) = exp (jθf ) , where θf ∼ Uniform ([0, 2π]) ,

k = n/2 + 1 : H (fk) ∼ ±1 with equal probability,

n/2 + 2 ≤ k ≤ n : H (fk) = H∗ (fn−fk+2) .
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Figure 1. The CSF sampling system.

It is noted that due to the special selection of H(f), the received signal
y(t) is real-valued or Φ is a real-valued matrix. One choice of the
sampling matrix SΩ from Romberg’s theorem is: generate an i.i.d.
sequence of Bernoulli random variables {ιk : k = 1, 2, . . . , n}, each of
which takes a value of 1 with probability m/n, and samples locations
selected from ιk ∈ Ω = {k : ιk = 1}. Now, the outstanding result for
this universal compressive sampling strategy can be summarized as
the following theorem:
The Romberg’s Theorem [11]

Let Ψ be an arbitrary signal representation. Fix a fixed Γ of size
|Γ| = S in the Ψ domain, and choose a sign sequence z on Γ uniformly
at random. Let α0 be a set of Ψ domain coefficients supported on Γ
with sign z, and take x0 = Ψα0 as the signal to be acquired. Create a
CS measurement matrix as described above, and choose a set of sample
locations Ω of size |Ω| = m uniformly at random with

m ≥ C0S log (n/δ) (4)

and also m ≥ C ′
0 log3(n/δ) where m is the number of measurements,

n is the length of unknown S-sparse signal, C0 and C ′
0 are known

constants. Then given the set of samples on Ω, the program (2) will
recover α0 (hence x0) exactly with probability exceeding 1− δ.

From above discussion, the CSF’s goal is to expand the sparse
signal x by modulating the signal frequency-domain phase by random
waveform while the amplitude is kept. Moreover, the Romberg’s
theorem universally works because the generated CS measurement
matrix Φ will be incoherent with any fixed orthonormal matrix Ψ with
‘overwhelming’ probability.

3. DESIGN OF COMPRESSED-SAMPLING FILTER

Inspired by the key idea of Romberg’s theorem that the goal of CSF is
to expand the unknown sparse signals at the output port and the fact
that the signal in complex electromagnetic environment may be spread
out due to the rich multi-scattering effect, we constructed two kinds
of CSFs based on the microwave circuit. Afterwards, the CSF based
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on SAW random time delayers has been proposed and investigated by
numerical simulations. By using the proposed CSFs, one can enable
the sparse signal acquisition with uniform sub-Nyquist sampling ratio.
It should be pointed out that in practice the time-domain response of
the analogy CSFs usually is complex-valued instead of real-valued, in
particular, Φ is usually complex-valued matrix. Consequently, we have
to deal with two convex optimization program (for simplicity, assuming
Ψ = I; however, the proposed CSFs work for the general orth-basis,
such as, DCT, wavelet),

(PC) min
x
‖x‖l1

subject to
[

yR

yI

]
=

[
ΦR

ΦI

]
x (5a)

and

(PR) min
x
‖x‖l1

subject to yR = ΦRx (5b)

where ΦR, ΦI are respectively the real and imaginary part of sensing
or measurement matrix Φ, yR, yI are the real and imaginary part
of data y, respectively. Moreover, the output signal of CSF is
uniformly sampled with sub-Nyquist sampling ratio instead of the
uniformly random sampling. Though our CSFs can not satisfy
the strict requirements from the Romberg’s theorem, the empirical
results show that by the proposed architectures, the K-sparse N -
dimensional signal can be exactly reconstructed with O(K log N) real-
valued measurements or O(S log(N/S)) complex-valued measurements
with overwhelming probability.

3.1. Compressed-sampling Filter (CSF) Based on the
Conventional Microwave Filter

To modulate the signal frequency-domain phase by random waveform
while the frequency-domain amplitude is kept, the signal phase
corresponding to different frequencies should be extracted without any
energy loss from the time-domain signal and be randomly modulated.
Naturally, if the infinite number of ideal conventional bandpass filters
with different working parameters (for example, the filters with
different bandwidth Bk is serially linked in the order of decreasing
band, in particular, Bk > Bk+1 and Bk − Bk+1 = ε → 0) are used
to extract the signal components with different frequencies, and the
transmission lines with random length used to modulate randomly the
signal phase is used to link these filters, the ideal CSF may be readily
realized. Of course, in practice only finite number N of conventional
filters and N transmission lines with random length di(i = 1, 2, . . . , N)
are used. Referring to Fig. 2, due to Bk > Bk+1, only the signal
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components with |f − f0| ≤ Bk+1 (f0 is the central frequency of
CSF or signal to be sampled) can encounter the kth band-pass filter
and the signal components with |f − f0| ≤ Bk survive after the k-th
bandpass filter. Because a transmission line with random length is
closely followed this bandpass filter, the signal phase within the range
of Bk+1 ≤ |f − f0| ≤ Bk will be randomly modulated.

Figure 2. The illustration of CSF based on the ideal conventional
band-pass filter.
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Figure 3. The scheme map of the compressive sensing filter by LPF.
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From above discussion, if the conventional band-pass filters are
used, the signal component with Bk+1 ≤ f − f0 ≤ Bk and one with
Bk+1 ≤ f0 − f ≤ Bk may be modulated in the identical way. To
avoid this point and taking the simplicity of design of conventional
filters into account [14], along the same line as above the CSF by using
the conventional low-pass filter (LPF) can be constructed. The sketch
map of the resulting CSF via conventional lowpass filters is shown
in Fig. 3, where ωc1 > ωc2 > . . . > ωcN , ωck is the cutoff radian
frequency of the kth lowpass filter. It can be found that the signal
components whose frequencies is within the range of ωc,i and ωc,i−1

are extracted by ith lowpass filter and modulated by the transmission
lines Lj(j = 1, 2, . . . , i). Obviously, through this system the original
sparse signal in time domain has been spread out at the output port!
To keep the uniform amplitude-frequency response or prevent from
energy loss as far as possible, the short or open at the ended port is also
specified. As mentioned above, to realize the idea Romberg’s filter, the
difference of bandwidth between two adjacent ideal LPF units should
be as small as possible, and the number of ideal LPF units should be
as much as possible. In practice, these strict requirements can not be
satisfied due to limited number of conventional filter units. Besides
these, many other reasons such as non-ideal LPF unit, the interaction
between different units, and energy loss, and so on can cause the non-
uniform amplitude-frequency and non-ideal random phase-frequency
response of resulting CSF. However, the results below show that one
can realize the exact reconstruction of sparse signal from sub-Nyquist
samples via proposed CSF.

To decrease the size of the proposed CSF, the microstrip filter
based on the well-known defected ground structure (DGS) proposed
by J. I. Park et al. [13] has been employed to design the CSF’s LPF
unit. Moreover, 9 DGS LPFs with cutoff frequencies 3.8 GHz, 3.6 GHz,

Figure 4. The photo of proposed CSF based on 9-DGS LPF. (Up:
top view, middle: ruler, down: bottom view).
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Figure 5. (a) The amplitude-frequency response and (b) the phase-
frequency response.

3.4GHz, 3.2GHz, 3.0 GHz, 2.8 GHz, 2.6GHz 2.4 GHz and 2.2GHz,
respectively are specified. The designed CSF is shown in Fig. 4.
The detailed parameters about this CSF to reproduce the results
shown in this paper can be downloaded from to-cs.blog.sohu.com or
can be obtained by e-mail: lianlinli1980@gmail.com. The measured
amplitude-frequency and phase-frequency response are shown in
Fig. 5(a) and Fig. 5(b), respectively. It is noted that due to limited
number of LPFs unit, obvious energy lossy from DGS, the interaction
between different LPF units and many other reasons, the system
response of proposed CSF, especially for the amplitude-frequency
response, does not satisfy the requirement from Romberg’s theory.
However, the presented results below do show that one can realize
the exact reconstruction of sparse signal from the sub-Nyquist samples
via the proposed CSF. To investigate this point, the methodology
involved in the literatures of compressive sensing is used, in particular,
to investigate empirically the relation between K, N and M . Assuming
the length of unknown sparse signal x is 200, and the sampling ratio
is 1/3-Nyquist ratio, in particular, the size of measurement matrix
Φ is 66 by 200. For each of 200 trials we randomly generate such
sufficiently sparse signal envelope x (choosing the nonzero locations
uniformly over the support in random and their values from N(0, 1)).
The graph presented in Fig. 6 shows that the success rate for complex-
valued data (solid line) and real-valued data (dashed line) in recovering
the true sparse signal. It is shown that from Fig. 6 by the 1/3-Nyquist
sampling, one realize the exact reconstruction of 56-sparse signal for
complex-valued measurements by solving (PC) problem and 9-sparse
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signal for real-valued measurements by solving (PR) problem. Lots of
other results with respect to the CSF shown in Fig. 4 shows that the
for complex-valued measurements, the measurements with the order
of O(K log(N/K)) is enough to exactly reconstruct K-sparse N -dim
signal; for real-valued measurements, the required measurements is
order of O(K log(N)). Moreover, this conclusion for signal which is
sparse in the DCT and Harr-wavelet domain still exists.

The detailed parameters about this CSF for reproducing the
results in this paper can be downloaded from to-cs.blog.sohu.com, also
can be obtained by e-mail: lianlinli1980@gmail.com).

Finally, a simple example to demonstrate the application of
proposed CSF shown in 4 in signal reconstruction is provided in Fig. 7,
where the original signal is the combination of two differential Gaussian
pulses x1(t) = t exp(−3π t2

τ2 ) and a sine-modulated differential
Gaussian pulse x2(t) = sin(ω0t) exp(−4π t2

τ2 ), where τ = 0.6 ns and
ω0 = 2 ∗ 109 rad. The 1/3-Nyquist complex-valued measurements are
used to reconstruct the original time-domain sparse signal and the
reconstructed result is shown in Fig. 7.

Figure 6. Probability of success of developed CSF shown in Fig. 4
in the recovery of the sparest signal when the dimension of unknown
signal is 200 and measurements (the complex data represented by solid
line and the real data represented by dashed line) are 66, where x-axis
denotes the cardinality of the solution, y-axis denotes the probability
of success.
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Figure 7. (a) The original and reconstructed signal, (b) the real and
imaginary part of output signal.

3.2. Compressed-sampling Filter Based on Random
Microwave Structure

As mentioned above, the key goal of CSF is to expand the unknown
sparse or compressible signal. As we known, the signal embedded
in complex electromagnetic environment may be spread out due to
the rich multi-scattering effect. In addition, the exciting results from
time-reversal in random medium also show that exploiting the multi-
scattering can enhance the imaging resolution. As a matter of fact, the
Green’s function of random medium describing the system response
may be looked as the random sensing matrix involved in the field of
compressed sampling. Inspired by this point, the CSF (with size of
96mm by 60mm) as shown in Fig. 7 is proposed, and the detailed
parameters of this CSF can be download from to-cs.blog.sohu.com,
also can be obtained by contacting lianlinli1980@gmail.com. The
measured amplitude-frequency and phase-frequency response for this
CSF are provided in Fig. 9(a) and Fig. 9(b), respectively. So far there
is no theoretical formulation for designing such microwave structure;
however, one can design it under the guide of enriching the signal multi-
scattering or multi-path effect to the greatest extent. To demonstrate
qualitatively this point, we made the following simple analysis.
Assuming that the unknown sparse or compressible signal x(t), and
there are N independent propagation paths {di, i = 1, 2, . . . , N}. Then
the output signal can be expressed as

y (t) =
N∑

i=1

aix

(
t− di

c

)
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Figure 8. The photo of the proposed CSF based on the random
microwave structure.
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Figure 9. (a) The amplitude-frequency response and (b) the phase-
frequency response of developed CSF shown in Fig. 8.

where c is the light velocity, ai is assumed as the decay coefficient for
the ith propagation path. It is noted that this model is much similar as
one for the UWB communication [17]. Making the Fourier transform
of above equation, one has

ỹ (ω) =

[
N∑

i=1

ai exp
(

j
di

c
ω

)]
x̃ (ω)

It can be shown from above expression that if the suitable parameters
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{ai, di, i = 1, 2, ..., N} and N are chosen such that [
N∑

i=1
ai exp(j di

c ω)] ≈
exp(jϕ(ω)) with random phase ϕ(ω), the ideal Romberg’ filter may be
constructed. In practice, so far the ideal Romberg’ filter with uniform
amplitude-frequency response cannot be realized via analog circuit due
to energy lossy and many other reasons.

To investigate the performance of the proposed CSF, in
particular, how many measurements M are required to reconstruct
exactly the K-sparse N -dim signal by the proposed structure, the
methodology involved in the field of compressive sampling is used
to check empirically the relation between K, N and the number
of measurements M . To do this, assuming the length of unknown
sparse signal x is 400, and the sampling ratio is 1/3-Nyquist ratio, in
particular, the size of measurement matrix Φ is 133 by 400. For each
of 200 trials we randomly generate such sufficiently sparse vectors x
(choosing the nonzero locations uniformly over the support in random
and their values from N(0, 1/400)). The graph presented in Fig. 10
shows that the success ratio for complex-valued data and real-valued
data in recovering the true sparse signal. It is shown from Fig. 9
that by the 1/3-Nyquist sampling, one realize the exact reconstruction

Figure 10. Probability of success of developed CSF shown in Fig. 8
in the recovery of the sparest signal when the length of unknown signal
is 400 and 1/3-Nyquist measurements (the complex data represented
by the dashed line and the real data represented by the solid line),
where x-axis denotes the cardinality of the solution, y-axis denotes the
probability of success.



268 Li et al.

of 120-sparse 400-dim signal for complex-valued measurements by
solving (PC) problem and 30-sparse 400-dim signal for real-valued
measurements by solving (PR) problem. Lots of other results with
respect to the CSF shown in Fig. 8 shows that the for complex-valued
measurements, the measurements with the order of O(K log(N/K)) is
enough to exactly reconstruct K-sparse N -dim signal; for real-valued
measurements, the required measurements is order of O(K log(N)).
Moreover, this conclusion for signal which is sparse in the DCT and
Harr-wavelet domain still exists. It also can be founded that though
the constructed CSF not satisfied the requirements from Romberg’s
theory, in particular, nonuniform amplitude-frequency response due to
energy lossy dependent on frequency, and many other reasons, non-
conjugate symmetry phase-frequency response, and so on, from the
presented empirical results one can realize the exact reconstruction
from the sub-Nyquist measurement by the proposed structure.

(The detailed parameters about this CSF for reproducing the
results in this paper can be downloaded from to-cs.blog.sohu.com, also
can be obtained by e-mail: lianlinli1980@gmail.com).

3.3. Compressed-sampling Filter Based on SAW

In this subsection, the CSF is proposed by using the SAW random
time delayers. The SAW operates passively, taking the place of high-
powered, high-speed digital electronics; therefore, it may be used
for designing light, much small and highly temperature stable RF
components, for examples, the band-pass filter, the time delayer,
correlator, oscillator, and so on [15, 16]. Refer to Fig. 10, the input
transducer of the SAW time delayer converts the electrical signal into
an acoustic Rayleigh wave, with its energy confined to the surface.
The wave travels across the crystal surface, in this case YZ-cut lithium
niobate, and interacts with the output interdigitated transducer (IDT)
converting the acoustic signal into electrical one. From the Romberg’s
theorem, the basic requirement of CSF is that the frequency-domain
response H(f) is of unit magnitude complex numbers with random
phases. We designed the compressive sensing filter on YZ-cut lithium
noibate due to the high (4.5%) electromechanical coupling coefficient
and our previous experience with the material. By controlling the
size of IDT, one can obtain frequency-domain response function.
Interestingly, compared with the design of traditional SAW time
delayer, the CS filter may be much easily constructed because just
the random phase variations are required instead of the requirement
of some special form of phase. Maybe, some defective product of
SAW time delayer may be an excellent candidate for the purpose of
compressed sampling measurement.
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Figure 12. The simulated frequency-domain response of proposed
CSF based on SAW (a) the amplitude-frequency response, (b) the
phase-frequency response.

For simplicity, the δ-function model of IDT, firstly proposed by
Tancrell et al., is used to make the simple theoretical analysis. Refer
to Fig. 10, one has the frequency domain response of CSF as

H (f) =
[n/2]∑

i=1

2Ii cos
(

ωdi

2v

)
exp

(
−j2πf

xi

v

)
(6)

where n is the number of fingers and specified as 400 in the paper, v
is the acoustic velocity (3.485 m/s for YZ-LiNbO3), Ii is the intensity
of acoustic source depending mainly on the envelope of finger w(x).
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From Equation (6), it can be found that if w(x) is specified according
some random number, the frequency-domain response H(f) is also
random. In this presentation, di is selected as 1

8λ0 and the pitch
of fingers is 1

2λ0, where λ0 is the acoustic wavelength corresponding
to the center frequency. Of course, di and xi can also be randomly
specified. Setting above parameters and w(x) shown in Fig. 11, one
can obtain the frequency-domain response provided in Fig. 12. To
check the performance of the proposed CSF, assuming the length
of unknown sparse signal x is 200, and the sampling ratio is 1/4-
Nyquist ratio, i.e., 50 measurement data. For each of 200 trials we
randomly generate such sufficiently sparse signal envelope x (choosing
the nonzero locations uniformly over the support in random and their
values from N(0, 1/200)), we generate vectors measured data y with
size 50. The graph presented in Fig. 13 shows that the success rate for
complex-valued data and real-valued data in recovering the true sparse
signal. It is shown that from Fig. 13 by the 1/4-Nyquist sampling, one
realize the exact reconstruction of 33-sparse signal for complex-valued
measurements by solving (PC) problem and 9-sparse signal for real-
valued measurements by solving (PR) problem.

Figure 13. Probability of success of proposed SAW-CSF in the
recovery of the sparest signal when the dimension of unknown signal is
200 and measurements (complex data represented by dashed line and
real data represented by solid line) are 50, where x-axis denotes the
cardinality of the solution, y-axis denotes the probability of success.
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4. CONCLUSION

In this paper, motivated by the theory of random convolution proposed
by Romberg (for convenience, called the Romberg’s theory) and the
fact that the signal in complex electromagnetic environment can
be spread due to the rich multi-scattering effect, two CSFs based
on microstrip circuit to enable signal acquisition with sub-Nyquist
sampling have been constructed, tested and analyzed. Of course, the
general compressive sensing filter can be constructed along the identical
idea by many other structures, the plasma with different electron
density corresponding to different critical frequency. As a matter of
fact, the ionosphere can be looked as the natural compressive sensing
measurement system. Afterwards, the CSF based on surface acoustic
wave (SAW) structure has also been proposed and examined by the
numerical simulation. The primary results has empirically shown that
by the proposed architectures the n-dimensional S-sparse signal can
be exactly reconstructed with O(S log n) real-valued measurements
or O(S log(n/S)) complex-valued measurements with overwhelming
probability.
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