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Abstract—In this paper, we describe a new full-wave integral
equation model to tackle electromagnetic scattering problems arising
from objects buried in layered media. Such a model is a rewriting
of the usually adopted Contrast Source integral equation and is
named Contrast Source-Extended Born (CS-EB) owing to this
circumstance and to the relationship existing among its linearization
and the Extended Born approximation. By means of this alternative
formulation, it is possible to modify the relationship among the
scatterer permittivity and the field it scatters, thus possibly reducing
the degree of non-linearity of this latter relationship. Accordingly,
in these cases, the adoption of the CS-EB model may be convenient
with respect to traditional ones in both forward and inverse scattering
problems.
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1. INTRODUCTION

In many geoscience applications, ranging from near surface geophysics
explorations to underwater reservoir detection and demining, the
development of approaches to achieve fast and accurate solutions
of forward and inverse electromagnetic scattering problems by lossy
dielectric objects buried in a lossy medium is of great interest.

In this framework, integral equation formalism [1] is widely used
to model the scattering phenomenon. As far as the forward problem
is concerned, the relevant integral equation is typically solved in a
discretized fashion via method of moments and involves a dense linear
system [2]. To avoid direct matrix inversion, the system is iteratively
solved by means of conjugate-gradient fast Fourier transform (CG-
FFT) algorithms [3]. However, the efficiency of CG-FFT depends
on the condition number of the original linear system, so that it can
still be computationally demanding. Hence, approximate solutions,
such as the Extended Born (EB) approximation [4] and its heuristic
extensions [5] or algebraic preconditioners [6, 7] are worth studying
as means to improve the convergence rate. The inverse scattering
problem is non-linear and ill-posed [8] and it is usually cast as the
global optimization of a suitable cost functional [9–15].

In this case, the difficulties that arise are not merely
computational. As matter of fact, the optimization task cannot be
tackled through global approaches, whose computational cost is not
affordable due to the large number of unknown parameters, and local
optimization methods are usually exploited. However, due to the
nonlinear relationship amongst the data and the unknowns, these latter
may lead to “false” solutions deeply different from the ground truth
[16], so that it is necessary to understand how to reduce the occurrence
of these false solutions (for instance by means of suitable a priori
information or proper regularization).

With respect to the case of objects embedded in an unbounded
homogeneous medium, an alternative full wave integral equation model
has been recently introduced to overcome, or at least reduce, the
aforementioned issues by taking advantage of the features of the
Green’s function [17–19]. This new formulation is named Contrast
Source-Extended Born (CS-EB) model owing to two circumstances:

i the integral equation underlying the model is a non-approximated
rewriting of the Contrast Source (CS) equation [20];

ii the linearization of this equation corresponds, for homogeneous
scatterers, to the EB approximation [4].

In particular, the CS-EB model can provide a convenient choice for
the forward problem, since its solution via series iterations is either
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more widely applicable or faster convergent than the traditional Born
series [17, 19]. Moreover, in the inverse problem, it can reduce the
degree of nonlinearity [21] of the relationship between the parameters
embedding the dielectric characteristics and the scattered field as
compared to the CS model, thus reducing possible occurrence of false
solutions [22–24].

Recently, a rigorous comparison between the two models has been
carried out [25], allowing to give criteria to select the most suitable
one to be exploited depending on the scenario and the targets at hand.
For instance, such an analysis has shown that when a sufficient amount
of loss is present in the embedding medium, the CS-EB model is the
most convenient choice to handle scattering problems. Conversely,
for lossless backgrounds and negative contrasts the CS model is more
appropriate.

In subsurface scattering problems, losses are usually present
within the embedding medium and/or the targets, so that it is worth
considering the CS-EB model also in this context. On the other hand,
owing to the different expression of the underlying Green function
with respect to the homogeneous background case, the adoption of
the model as previously formulated is not possible. Accordingly, in
this paper we derive a CS-EB formulation for the scattering from
dielectric objects buried in a lossy half-space. With respect to this
new CS-EB formulation, we then introduce the corresponding series
expansion to solve the forward problem and provide tools to foresee its
applicability and improve its convergence by means of the generalized
overrelaxation method [26]. Also, we recall how the obtained CS-EB
model can be exploited in the inverse problem by suitably adapting
previously developed strategies. Note that while we will consider the
2D scalar case, the achieved model can be readily generalized to the
3D case following the reasonings in [18, 19].

The paper is organized as follows. Section 2 is devoted to the
formulation of the CS-EB model for the half-space problem. In
Section 3, we discuss the features of the model. In Section 4, the
CS-EB series is introduced and discussed and a numerical example
is given to show how it can outperform the Born series. Section 5
describes the CS-EB inversion strategy and provide a numerical
example. Conclusions follow.

Throughout the paper the time-harmonic factor exp(jωt) is
assumed and dropped.
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2. CS-EB FORMULATION FOR THE HALF-SPACE
GEOMETRY

The geometry of the scattering problem is shown in Fig. 1. The
scenario is constituted of two half-spaces separated by a planar
interface parallel to the x-axis. The upper half space is air, while the
lower one is soil. One or more targets are buried in the soil, within the
search domain D, whose center is at a distance h from the interface.
The data are collected under a multistatic/multiview configuration
by exploiting NT time-harmonic TM-polarized line sources located
along a rectilinear domain ΓT at a distance yT from the interface
and NR elementary probes displaced along the rectilinear domain ΓR

at distance yR. All media are assumed to be linear, isotropic and
non-magnetic and described by their frequency-independent relative
permittivities εi and conductivities σi (S/m), i = 1, 2, D; εD and σD

are allowed to change with the position r = (x, y) within D. The
magnetic permeability is everywhere equal to that of free space, µo

(H/m). The complex equivalent permittivity of each medium is defined
as ε̃i = εi − jσi/(ωεo), εo being the permittivity of free space, ω the
angular frequency and j =

√−1.
Electromagnetic scattering problems are usually cast through the

CS integral equation model [20], which reads:

Es(r) =
∫

D
g21(r, r′)J(r′)dr′ = G21J r ∈ ΓR, (1)

J = χ(r)Einc(r) + χ(r)
∫

D
g22(r, r′)J(r′)dr′

= χ(r)Einc(r) + G22J r ∈ D. (2)

Figure 1. Geometry of the problem.
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In (1) and (2), Es is the scattered field observed in the upper medium
on ΓR, Einc is the incident field in D, χ(r) = ε̃D(r)/ε̃2 − 1 is the
contrast amongst the (complex) equivalent permittivities of the targets
and the background and J = χE is the contrast source, E being the
total field induced inside the investigated region D. G21, G22 denote
the radiation operators which relate the induced currents in D to the
scattered field on ΓR and inside D, respectively.

For the scenario at hand, the Sommerfield-Green’s functions g21

and g22 are expressed in terms of spectral integrals [1]. In particular,
g22 is given as the sum of two contributions, the first one coincides
with the Green’s function of a homogeneous background

gH
22(r, r

′) = −jk2
2

4
H

(2)
0 (k2|r− r′|), (3)

where r′ = (x′, y′), k2 = ω
√

ε̃2µ0, H
(2)
0 is the Hankel function of zero

order and second kind. The second contribution takes into account the
presence of the interface between the two half-spaces:

gI
22(r, r

′) = − ik2
2

4π

∫ ∞

−∞

β2 − β1

β2 + β1
(4)

× exp
[
iβ2

(
y + y′

)]
exp

[−iκ
(
x− x′

)] 1
β2

dκ.

where βi =
√

ω2ε̃iµo − κ2, i = 1, 2 and Im[βi] ≤ 0.
By using the above expressions, one can rewrite Eq. (2) as:

J(r) = χ(r)Einc(r) + χ(r)GH
22J + χ(r)GI

22J (5)

wherein

GH
22J =

∫

D
gH
22(r, r

′)J(r′)dr′ (6)

and

GI
22J =

∫

D
gI
22(r, r

′)J(r′)dr′. (7)

To achieve the CS-EB formulation we are pursuing, let us add and
subtract the contrast source J(r) into the argument of the homogeneous
integral operator (6),

GH
22J =

∫

D
gH
22(r, r

′)[J(r′) + J(r)− J(r)]dr′ = J(r)
∫

D
gH
22(r, r

′)dr′

+
∫

D
gH
22(r, r

′)[J(r′)− J(r)]dr′ = IfDJ + ∆GH
22J, (8)
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where I denotes the identity operator. By doing so, we have split GH
22

into two terms, the first one being a point-to-point relationship for
the contrast source. Notably, this term dominates the second one as
long as losses are present in the background medium. As a matter of
fact, the exponential decay of gH

22 (increasingly fast with losses) makes
∆GH

22J negligible when r 6= r′, while, for r = r′, ∆GH
22 is null, being

is argument equal to zero.
By substituting Eq. (8) into Eq. (2) and grouping the terms in the

contrast source, one gets, after some manipulations, the new integral
equation:

J(r) = ξ(r)Einc(r) + ξ(r)GMOD
22 J r ∈ D, (9)

where

GMOD
22 J = GI

22J + ∆GH
22J, (10)

ξ(r) = χ(r)[1− χ(r)fD(r)]−1. (11)

Equation (9) is equivalent and formally analogous to the CS Eq. (2),
so that we can use it, together with Eq. (1), as an alternative way to
formulate the scattering problem at hand. In the so obtained CS-EB
model, the modified radiation operator GMOD

22 replaces G22, while the
the electromagnetic parameters of the scatterers are embedded into the
modified contrast function ξ rather than in χ. As we will discuss in the
next section, the adoption of these quantities allows some interesting
outcomes when solving scattering problems.

Let us explicitly note that the obtained equation is different from
the one that defines the CS-EB model in the homogeneous case,
wherein the modified radiation operator coincides with ∆GH

22 [17].
Conversely, the expression of the modified contrast ξ is unchanged,
since this latter has been herein defined in such a way that it is
independent from the depth at which the target is buried.

3. FEATURES OF THE CS-EB MODEL

The result obtained in the previous Section only descends from simple
algebraic passages, so that it is reasonable to ask what advantages (if
any) can be drawn from it.

A first interesting observation holds whenever the second term at
the right hand side of (9) is negligible, i.e., when J(r) ≈ ξ(r)Einc(r).
As a matter of fact, it is easy to verify that, for homogeneous targets,
this approximation for the contrast source coincides with the result
of the Extended Born approximation [4]. This circumstance tells us
that the CS-EB zero-th order approximation has an extended validity
with respect to the Born approximation, that is, the zero-th order
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approximation for the CS model. Accordingly, a number of cases exists
in which the linearization of the CS-EB equation provides a better
estimate of the contrast source with respect to CS equation [25].

In more general cases, where a linearized approximation may be
not sufficient to properly model the scattering problem, the question
arises of understanding the possible convenience of the proposed model.
As long as the effect of the interface on the contrast source can be
neglected (as for instance for deeply buried targets or highly lossy
environments), GMOD

22 ≈ ∆GH
22 and the formulation coincides with

that of the homogeneous case. Therefore, we can exploit our previous
results to assess the effectiveness of the CS-EB model [17–19, 22] as
well as of the analytical tools provided in [25] to foresee if and when
the CS-EB model will be a more convenient choice with respect to the
CS one.

When the effect of the interface cannot be neglected, let us
consider the formal inversion of Eq. (9), which reads:

J(r) =
[
I− ξGMOD

22

]−1
ξ(r)Einc(r). (12)

By substituting this expression into the data equation (1), one gets an
explicit relationship amongst the scattered field Es and the modified
contrast function ξ(r):

Es(r) = G21

[
I− ξGMOD

22

]−1
ξ(r)Einc(r). (13)

The nonlinearity of the above relationship is ruled by the L2 norm over
D of the operator ξGMOD

22 , ||ξGMOD
22 ||, which indeed represents the

degree of nonlinearity (DNL) of the scattering model [21]. As a matter
of fact:

• if ||ξGMOD
22 || ¿ 1, J ≈ ξEinc and (13) is a linear relationship;

• if ||ξGMOD
22 || < 1, the inverse operator in (12) can be expanded

into a Neumann series, whose truncation correpsonds to a
polynomial relationship ruled by ||ξGMOD

22 ||;
• if ||ξGMOD

22 || > 1 the relationship is non-polynomial.

The DNL provides an explicit way to appraise the convenience and
limitations of an integral equation model with respect to the solution
of both the forward and the inverse problem. As a matter of fact, an
increasing value of the DNL corresponds to an increase of multiple
scattering interactions that slow down the convergence of iterative
forward solvers and increase occurrence of local minima in the inverse
one [17, 21, 25].

From the formal equivalence between the CS-EB model and the CS
one, it follows that the DNL for the CS is given by the norm ||χG22||.
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Hence, the comparison of the two DNLs gives a direct way to compare
the models. To this end, we consider in the following the upper bounds
obtained from the application of the Schwartz inequality, i.e.,:

||ξGMOD
22 || ≤ ||ξ|| ||GMOD

22 ||,
||χG22|| ≤ ||χ|| ||G22||.

(14)

Although these bounds do not give an exact quantification of the DNLs,
they are very convenient for our purposes, as they allow us to separately
discuss the effect of the targets features (embedded in ξ and χ) from
those of the scenario under test contained in the radiation operators.

As far as the effect of the scenario is concerned, observing that

||GMOD
22 || ≤ ||GI

22||+ ||∆GH
22||

||G22|| ≤ ||GI
22||+ ||GH

22||, (15)

one notices that the comparison essentially depends on the norms of
the homogeneous terms. These latter, as shown by the plots given
in [17, 23, 25] are comparable in most cases, so that the two models
can be considered as equivalent with respect to this factor.

Some interesting differences arise when considering the first factor.
As a matter of fact, from the definition of ξ given in Eq. (11), it
descends that if

||1− χ(r)fD(r)|| > 1, (16)

then ||ξ|| < ||χ||, so that the DNL of the CS-EB is lower than the
CS one. Conversely, when condition (16) is not fulfilled, the CS is
expected to be the more convenient model to exploit. In particular,
given the definition of ||ξ||, which only depends on the homogeneous
term of the Green’s function, we can again take advantage of previous
results [17, 25] to address the choice.

Another observation can be done concerning the DNL of the CS-
EB model. In the model’s derivation, the integration domain appearing
in the function fD coincides with the scattering region D. Such
a choice is not necessary. As a matter of fact, the choice of the
integration domain is a degree of freedom for the CS-EB model, as it
does not change the model’s features, provided the auxiliary function
ξ is defined consistently. As a consequence of this, a proper choice of
the integration domain in fD can modify the DNL of the model [23].
According to this observation, in the following we replace fD with fΩ

to remark that the integration domain Ω can be either equal to D or
chosen in such a way to optimize the model’s performances.
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4. USING THE CS-EB MODEL IN THE FORWARD
PROBLEM

4.1. CS-EB Series: Applicability and Rate of Convergence

As discussed in the previous Section, as long as ||ξGMOD
22 || < 1, the

inverse operator in (12) can be expanded into a Neumann series [27],
whose structure is the same as the usual Born series, as:

J(r) =
+∞∑

n=0

(
ξGMOD

22

)n
ξ(r)Einc(r). (17)

From a numerical point of view, the evaluation of such a series
is straightforward. As a matter of fact, by recalling the definition of
power of a linear operator [27], the contrast source solution can be
efficiently built using the iterative scheme

J (k+1) = J (0) + ξGMOD
22 J (k) k ≥ 0, (18)

where J (0) is the CS-EB approximation and the operator GMOD
22 is

evaluated using FFT codes. As a matter of fact, by exploiting Eq. (8)
in Eq. (10) one can rewrite this operator as:

GMOD
22 J = G22J − IfΩJ, (19)

wherein the integral fΩ is computed via FFT as the convolution
product between a function that assumes unitary value in Ω (and it
is zero elsewhere) and the homogeneous Green’s function, while the
radiation operator G22 is computed via FFT as usual.

Although (17) and (18) represent a simple way to solve the
problem, their practical usefulness is limited, unless a criterion is
available to assess the convergence. To this aim, it proves again
convenient to exploit the upper bound (14), as it provides a sufficient
condition to check the applicability of the new series (17), as well
as to achieve information on its rate of convergence. In particular,
results observed in the homogeneous case [17, 19] and a large number
of numerical simulations has suggested that an empirical condition that
has to be fulfilled to foresee the converge of the series is:

||ξ|| ||GMOD
22 || ≤ 2. (20)

In order to check this condition, one has to appraise the two
factors. As far as ξ(r) is concerned, given the characteristics of the
scatterer at hand, this norm is easily computed by recalling that any
scalar function is equivalent to a diagonal operator whose diagonal is
given by the values of the function (in this case the values of ξ for
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r ∈ D). Thus, by applying the definition of the norm of a diagonal
operator [27], one gets:

||ξ|| = max
r∈D

(|ξ(r)|). (21)

Note again that a proper choice of the integration domain Ω in fΩ

allows to act on the value of (21).
As far as the norm of the modified radiation operator is concerned,

this latter is defined as

||GMOD
22 || = λ1, (22)

λ1 being the leading singular value [27]. Hence, this norm can be
obtained by applying standard numerical routines to the matrix arising
from the proper discretization of the operator GMOD

22 .
As the properties of such an operator do not depend on

the scatterers but only on the geometric and electromagnetic
characteristics of the investigated domain, it is possible to build some
universal plots which completely describe the ||GMOD

22 || as a function of
those quantities. Some cuts of this diagram are shown in Fig. 2 wherein
the behavior of the norms ||GI

22|| and ||∆GH
22|| are also reported for the

sake of comparison. In Fig. 2(a) the dependence on the background
tangent loss is given, for a fixed dimension of the square scattering
region at hand (L is the side of D) and for a fixed depth, h. As it
can be observed ||GMOD

22 || decreases for increasing losses, moreover,
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Figure 2. Behavior of ||GMOD
22 ||, ||∆GH

22|| and ||GI
22|| versus the

tangent loss in the background medium (a), for L/λb = 1.0 and
h/λb = 1.5, λb being the wavelength in the host medium, and versus
the depth h/λb of the scattering domain (b), for L/λb = 1.0 and
ε′′/ε′ = 0.15.
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its behavior is almost completely dominated by the homogeneous term
∆GH

22. Conversely, when considering a fixed amount of loss in the
background and a fixed depth of the region D, the norms grow with
L. However, also in this case, the contribution of the inhomogeneous
term is one order of magnitude lower. Finally, for a fixed dimension of
the scattering domain and a fixed value of the tangent loss, ||GMOD

22 ||
exhibits a decrease with depth (see Fig. 2(b)) which is of course due to
the inhomogeneous term becoming more and more negligible when the
region under test moves apart from the interface. Note that, different
from the homogeneous case [17], it is not possible to introduce a single
universal plot for the behavior of ||GMOD

22 ||, due to the presence of
the inhomogeneous part GI

22 in the operator. On the other hand,
the inspection of the universal plot for a given depth allows one
to a priori understand whether the inhomogeneous scenario at hand
can be conveniently simplified into a homogeneous one, regardless of
the embedded scatterer. Of course, this brings benefits in terms of
computational burden and complexity as the evaluation of the spectral
integrals required to compute the Green’s function would be avoided.

4.2. Enhancing the CS-EB Series Using the Generalized
Over-relaxation Method

The introduced universal plots and Eq. (21) allow to obtain a priori
information on the applicability and rate of convergence of the
proposed series (the lower ||ξGMOD

22 ||, the faster the convergence). As
a matter of fact, for a given scatterer and a fixed scenario, one can
use them to check if condition (20) is matched. Hence, they provide
a practical way to appraise if the solution of the forward problem via
the simple series iterations (18) is possible or not. It is however worth
remarking that, in case the series is not applicable, the introduced CS-
EB model can be exploited in the framework of a traditional CG-FFT
which is expected to reach convergence faster than CS based schemes,
as long as ||ξGMOD

22 || ≤ ||χG22||.
As a further alternative to extend the applicability of the CS-

EB series, it is possible to devise a modified series solution based on
a generalized overrelaxation method [20]. Such a method consists in
deriving a Neumann series from a modified version of the relevant
integral equation achieved through the introduction of a relaxation
parameter.

In particular, by exploiting such a procedure, the iterative
process (18) is replaced by

J (k+1) = J (0) + LαJ (k) k ≥ 0, (23)
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where the operator Lα is defined as Lα = (1−α)I+αξGMOD
22 and the

relaxation parameter α is such that the residual at the first iteration
is minimized and it is expressed as:

α =

[
ξGMOD

22 J (0)
]
Lα

[
ξGMOD

22 J (0)
]∗

||Lα

[
ξGMOD

22 J (0)
] ||2 . (24)

Interestingly, while only requiring the low computational overhead
needed to evaluate the parameter (24), the modified series (23) has an
increased range of convergence with respect to the previous one, so
that it makes possible to solve in a larger number of cases the forward
problem via simple iterations [20].

4.3. Numerical Examples

Let us consider a homogeneous square target of side 0.6 m, of
permittivity ε = 10 and conductivity σ = 5 × 10−3 S/m, buried in
a lossy soil (ε2 = 4, σ2 = 10−2 S/m). The center of the target
is buried at a depth of 0.4m from the interface and the working
frequency is 100 MHz. In order to compute the field scattered by
such a target when probed by means of a line source placed above
the interface, one has to evaluate the bound (20). To this end we
use (21) for the factor ||ξ|| and the universal plots for ||GMOD

22 ||. From
the tools, it follows that the convergence condition is indeed satisfied as
||ξ||× ||GMOD

22 || = 0.96× 0.97 < 2. Hence, we can expect that the CS-
EB series (17) can be successfully applied to compute the field. This is
confirmed by the result shown in Fig. 3(a), where the behavior of the
relative error with respect to the actual solution computed via method
of moments is reported. For the sake of comparison, the divergent
behavior of the Born series is given as well. Note this result could
have been foreseen, since the convergence condition for the Born series,
computed replacing ||ξ|| with ||χ|| and ||GMOD

22 || with ||G22||, is not
fulfilled.

As a second example, let us consider the case of a square target
of side 10m having the characteristics of a water reservoir (ε = 80 and
σ = 0.2 [S/m]) buried in a lossy soil (ε2 = 4 and σ2 = 10−2 [S/m]).
The center of the reservoir is buried at 8m from the air-soil interface
and is probed by a line source working at the frequency of 5 MHz.
By again using the above described tools, one gets ||ξ|| × ||GMOD

22 || =
2.51 × 0.76 < 2, so that one can expected the convergence of the
series iterative scheme, which is indeed confirmed by the behavior of
the relative error plotted in Fig. 3(b). For the sake of comparison,
in this case we have reported the Born series (that diverges) and
the behavior of the over-relaxed CS-EB series which instead allows to
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Figure 3. Relative error for the CS-EB and the Born series defined as
the square amplitude of the difference between the field at the current
iteration and that computed via method of moments. (a) The case
of a shallow target of side 0.6 m (ε = 10, σ = 5 × 10−3 S/m), buried
in a lossy soil (ε2 = 4, σ2 = 10−2 S/m). (b) The case of a water
reservoir of side 10 m (ε = 80, σ = 0.2 S/m) buried in a lossy soil
(ε2 = 4, σ2 = 10−2 S/m). For this case, the relative error for the over-
relaxed CS-EB series is shown as well.

strongly reduce the number of the terms of the series to be considered
for a prescribed accuracy with respect the actual solution.

5. EXPLOITING THE CS-EB MODEL AS A BACKBONE
FOR INVERSION APPROACHES

In the framework of the CS-EB model, the inverse problem is
formulated through Eq. (13), wherein Es represents the measured and
thus noise affected scattered field data and the modified contrast ξ
embeds the electromagnetic characteristic of the unknown scatterers.
Then, from the formal analogy with the traditional model, it follows
that it is possible to directly exploit all usual solution schemes, such as
for instance the modified gradient approach [16, 20], the distorted [5]
or the quadratic [13] ones.

On the other hand, a remarkable difference is due to the specific
DNL pertaining to the models. As a matter of fact, by again taking
advantage of the observations done in Section 3, as well as of our
previous studies [17, 19, 23, 25], we can argue that in a wide range
of cases ||ξGMOD

22 || < ||χG22||, so that, the CS-EB model will be
generally characterized by a lower degree of nonlinearity. As recalled,
this means that use of the CS-EB model as the backbone of a
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reconstruction algorithm based on a local iterative scheme can be
expected to be more robust against false solution occurrence (without
taking into account additional a priori information or enforcing
regularization). Let us remark, that this is not always the case, as
examples of interest in practical applications can be found wherein the
traditional model has to be preferred to the proposed one [25].

Another important difference that arises when using the CS-
EB model in the inversion framework is that extracting the electric
parameters from ξ does not appear as immediate as extracting them
from the contrast χ. However, once an estimate ξ̂ of the auxiliary
function has been achieved, such a difficulty is simply tackled by
minimizing the functional:

Φ(χ(r))) =
||[1 + ξ̂(r)fΩ(r)]χ(r)− ξ̂(r)||2D

||ξ̂(r)||2 (25)

which provides, in a straightforward way, the reconstructed contrast
χ̂. Interestingly, at this stage possible a priori information about the
scatterers can be take into account.

An interesting feature of inverse scattering problems from buried
targets is the decrease of the achievable spatial resolution for increasing
depth, according to which the faster spatial variation of the unknown
contrast can be retrieved only for shallow targets [12]. Although such
an observation has been derived for the traditional formulation, it can
be applied to the CS-EB formulation as well, again owing to its analogy
with the CS model. Accordingly, in order to take into account this
spatial resolution variability in the CS-EB framework, on can adopt a
regularization by projection strategy in which the unknown modified
contrast is expanded onto a wavelet basis as:

ξ(r) =
NW∑

n=1

xnψn(r) (26)

so that the actual unknowns of the problem are the NW wavelet
coefficients x = (x1, . . . , xNW

) pertaining to the set of wavelet basis
functions [ψ]NW

1 , whose number NW is fixed on the basis of degrees of
freedom of the available data [12].

The optimization problem is then cast as the iterative
minimization of the functional

Φ(x, J1, . . . , JNT ) =
NT∑

v=1

||Jv − ξEv
inc − ξGMOD

22 (Jv)||2D
||Ev

inc||2D

+
NT∑

v=1

||Ev
s −G21(Jv)||2ΓR

||Ev
s ||2ΓR

(27)
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wherein Jv denotes the contrast source in D corresponding to the v-th
transmitter. The details of the iterative scheme can be deduced, with
some simple changes, from the expressions given in [14].

As a final remark, note also that, when information on the
support of the scatterers is available, either a priori or though suitable
preprocessing, the function fΩ(r) in (25) can be evaluated taking
advantage of the optimization rule given in [23]. Otherwise, fΩ(r)
is computed with respect to the whole region under test D, as it is
done in the evaluation of the operator GMOD

22 .

6. CONCLUSION

In this paper, we have derived a CS-EB formulation for 2D subsurface
scattering problems. In several situations, the new scattering model,
which is different from the corresponding one obtained in free space
owing to the different nature of the Green’s functions, allows to reduce
the degree of nonlinearity of the scattering problem. Hence, in these
cases, it provides a reliable alternative to methods based on the
traditional source type integral equation. In particular, we have given
tools and (empirical) criteria to evaluate the DNL, so that one can
appraise which model is the convenient one to be adopted. Possible
future developments include the extension to the 3D geometry (along
the lines drawn in [19, 20]) and the derivation of a CS-EB formulation
for a non-homogeneous embedding medium.
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