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Abstract—This paper presents a dimensional synthesis method for
designing wide-band quarter-wavelength resonator bandpass filters. In
this synthesis method, an alternative lowpass prototype filter and
the edge frequency mapping method are proposed and applied. The
improved K- and J-inverter model with the exponent-weighted turns
ratio is also proposed in order to incorporate the frequency dependence
of inverters. Based on the edge frequency mapping method and the
improved inverter model, an iterative dimensional synthesis procedure
is then presented. As design examples, a four-pole rectangular
coaxial bandpass filter with 63% fractional bandwidth is designed and
fabricated. The simulation and measurement results show good equal
ripple performance in the passband.

1. INTRODUCTION

Design techniques for wide-band bandpass filters without excessive
global optimization have become more and more important. With the
improvement of these techniques, the accuracy, time, and complexity of
the design procedure can be improved significantly. And the excessive
use of optimization can be avoided especially in complicated structures
where there are numerous dimensions to be optimized.

In the classic bandpass filter theories [1], the network with
immittance inverters is employed. By using impedance or admittance
inverters, microwave bandpass filters can be designed conveniently.
However, the inverters have to be frequency-independent theoritically,
which is not true for practical cases. One of the most serious
degradations in frequency response of a bandpass filter from the ideal
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one is due to the frequency sensitivity of the inverters. The general
design procedure for direct-coupled filters was first devised by Cohn [4].
And then Matthaei, Young and Jones [1] introduced a bandwidth
contraction factor and a deviation of center frequency for direct-
coupled cavity filters to predict the change caused by the frequency-
dependent inverters using design graphs. Levy, [3], suggested “ideal
transformers with frequency-dependent turns ratio” on both sides of
the inverters.

These techniques discussed above are employed to design bandpass
filters with half-wavelength resonators which, however, have the
disadvantage of spurious response below 2f0 (twice of the passband
frequency). Comparatively, bandpass filters with quarter-wavelength
resonators have advantages that the length of the filter is shorter and
the second passband center is at 3f0 instead of 2f0 [5]. So far, however,
quarter-wavelength resonator bandpass filters are designed according
to the classic method in [5] and no improved synthesis method was
reported.

In this paper, we propose a dimensional synthesis method
for designing wide-band bandpass filters with quarter-wavelength
resonators without global optimization. It is realized in rectangular
coaxial structures, which have the advantage of low dielectric loss,
low radiation loss and weak cross coupling with other circuits in a
system [6]. As design examples, rectangular coaxial bandpass filters
are designed using the proposed synthesis method, and the results
show good equal ripple performance in the passband.

2. THEORY

2.1. Alternative Lowpass Prototype Filter

Immittance inverters have the ability to shift impedance or admittance
levels depending on the choice of K or J parameters. Making
use of these properties enables us to convert a filter circuit to an
equivalent form that would be more convenient for implementation
with microwave structures. Fig. 1 shows the classic lowpass prototype

0
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a1L a2L anL

0,1K 1,2K
2,3K K n, n+1

Figure 1. The classic lowpass prototype filter with impedance
inverters.
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filters with impedance inverters and the K parameters can be
calculated as in [1] and [2]:





K0, 1 =

√
Z0La1

g0g1

Ki, i+1 =

√
LaiLa(i+1)

gigi+1

∣∣∣
i=1,2,...,n−1

Kn, n+1 =

√
LanZn+1

gngn+1

, (1)

where the gi are the normalized elements of the lumped-element
lowpass prototype filter [1]. The element values Z0, Zn+1 and Lai in
Fig. 1 may be chosen arbitrarily and the filter response will be identical
to that of the original prototype, provided that the K parameters are
specified as indicated in (1). However, the lowpass prototype filters in
Fig. 1 have only K inverters and thus it can be only transformed into
bandpass filters with half-wavelength resonators. So we should propose
an alternative lowpass prototype filter with alternating impedance
inverters and admittance inverters, which can be transformed into
bandpass filters with quarter-wavelength resonators.

The impedance inverter with series inductance can be equivalent
to an admittance inverter with parallel capacitance and two ideal
inverter added on both sides as shown in Fig. 2. The transfer matrix
of the ideal inverter is given by[

0 jZ0
j

Z0
0

]
, (2)

where Z0 is the input terminating impedance in Fig. 1. The transfer
matrix of the left side of Fig. 2 is[

0 jK
j
K 0

] [
1 jωL
0 1

]
=

[
0 jK
j
K −ωL

K

]
, (3)

and transfer matrix of the right side is
[

0 jZ0
j

Z0
0

] [
0 j

J
jJ 0

] [
1 0

jωC 1

] [
0 jZ0
j

Z0
0

]
=

[
0 −jZ2

0J

− j
Z2

0J
ωC
J

]
. (4)

To make (3) equivalent to (4), the following condition should be
satisfied: {

K
Z0

= − J
Y0

L
Z0

= C
Y0

, (5)

where Y0 = 1/Z0.
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Figure 2. The equivalence of two inverter networks.
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Figure 3. Alternative lowpass prototype filters: (a) n is even, (b) n
is odd.

According the equivalence introduced above, we can replace the
even number impedance inverters of the lowpass prototype filter in
Fig. 1 by the admittance inverters and obtain the alternative lowpass
prototype filters as shown in Fig. 3. By substituting (1) with (5), the
K parameters and J parameters in Fig. 3 can be expressed as



K0,1

Z0
=

√
La1

Z0g0g1

Ki,i+1

Z0
=

√
CaiLa(i+1)

gigi+1
|i=2,4,6,... ,

Ji,i+1

Y0
=

√
LaiCa(i+1)

gigi+1
|i=1,3,5,...

Kn,n+1

Z0
=

√
CanZn+1

gngn+1
|n is even ,

Jn,n+1

Y0
= 1

Z0

√
LanZn+1

gngn+1
|n is odd

. (6)

Here we only discuss the cases that the first inverter is the impedance
inverter and the other two cases that the first inverter is the admittance
inverter can be derived in a similar way.

2.2. Equivalent Network for the Quarter-wavelength
Bandpass Filter

Figure 4 shows the classic quarter-wavelength resonator bandpass
filter, which have alternating high and low impedance levels on two
ends of the quarter-wavelength transmission lines [5]. Here we only
discussed the case that the first inverter is impedance inverter and the
resonator number is even. Other cases can be derived in a similar way.
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In order to derive the equivalent network for the quarter-
wavelength resonator bandpass filter, we should first derive the
equivalent network for the quarter-wavelength transmission line, which
has been discussed in [5]. As shown in Fig. 5, the input impedance can
be expressed as

Zin = Z0 ·
ZL + jZ0 tan πΩ

2Ω0

Z0 + jZL tan πΩ
2Ω0

. (7)

If |ZL| À Z0, Equation (7) can be approximated by

Zin = Z0 ·
ZL + jZ0 tan πΩ

2Ω0

jZL tan πΩ
2Ω0

= jX(Ω) +
Z2

0

ZL
. (8)

According to (8), the equivalent network can be shown in Fig. 5(a) and
the series reactance is

X(Ω) = −Z0 cot
πΩ
2Ω0

. (9)

If |ZL| ¿ Z0, Equation (7) can be approximated by

Zin = Z0 ·
jZ0 tan πΩ

2Ω0

Z0 + jZL tan πΩ
2Ω0

=
1

jB(Ω) + ZL

Z2
0

. (10)
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Figure 4. The bandpass filter with quarter-wavelength resonators (n
is even).
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Figure 5. Equivalent network for the quarter-wavelength transmission
line: (a) ZL À Z0, (b) ZL ¿ Z0.
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Figure 6. Equivalent network for the quarter-wavelength resonator
bandpass filter.

According to (10), the equivalent network can be shown in Fig. 5(b)
and the shunt susceptance is

B(Ω) = −Y0 cot
πΩ
2Ω0

. (11)

By applying the equivalent network in Fig. 5, we can easily derive
the equivalent network for the quarter-wavelength resonator bandpass
filter as shown in Fig. 6.

2.3. Edge Frequency Mapping Method

Since the lowpass prototype filter in Fig. 3(a) and the equivalent
network for the quarter-wavelength resonator bandpass filter in Fig. 6
have been obtained, the transformation from the lowpass filter to the
bandpass filter can be derived. Comparing the two networks, we can
get the mapping function

f :
{

ωLai → Xi(Ω), i = 1, 3, . . . , n− 1
ωCai → Bi(Ω), i = 2, 4, . . . , n

. (12)

The following condition should be imposed:
{

Xi(Ω0) = 0, Bi(Ω0) = 0
Xi(Ω1) = −ω1Lai, Bi(Ω1) = −ω1Cai

Xi(Ω2) = ω1Lai, Bi(Ω2) = ω1Cai

. (13)

where ω1 is the cutoff angular frequency of the lowpass filter, and Ω0,
Ω1, Ω2 denote the center angular frequency, lower and upper edge
angular frequency of the bandpass filter, respectively. By solving (12)
and (13), we can get

{
Lai = −Xi(Ω1)/ω1 i = odd
Cai = −Bi(Ω1)/ω1 i = even , (14)

{
Xi(Ω1) + Xi(Ω2) = 0 i = odd
Bi(Ω1) + Bi(Ω2) = 0 i = even . (15)
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Equation (15) denotes the condition imposed on the center frequency,
lower and upper frequency of the bandpass filter. By substituting (6)
with (14), the K parameters and J parameters can be calculated.

If the K-inverters and J-inverters in Fig. 6 are considered as ideal
inverters, we can get a simple case. By substituting (14) and (15)
with (9) and (11), we can get

{
Lai
Z0

= Cai
Y0

= 1
ω1
· cot πΩ1

2Ω0

cot πΩ1
2Ω0

+ cot πΩ2
2Ω0

= 0
. (16)

It is noted from (16) that the edge frequency mapping method
employs the resonator information both at the center frequency and
edge frequency, which is different from the classic mapping method [1]
in which the resonator reactance value and the slope parameter at the
center frequency are considered.

2.4. Frequency-dependent Inverter Model

The result in (16) is calculated on the condition that all the inverters
are ideal; however, the practical inverters are all frequency-dependent.
So we present a frequency-dependent inverter model here, which is
based on the “turns ratio” concept in [3]. However, the turns ratio we
propose here has a more general definition and we also bring in the
weight exponent in the decomposition of the inverter. The turns ratio
here is defined as

mi,i+1(Ω) =
{

Ki,i+1(Ω)/Ki,i+1(Ω0), i = 0, 2, . . . , n
Ji,i+1(Ω)/Ji,i+1(Ω0), i = 1, 3, . . . , n− 1 . (17)

It is noted from Fig. 6 that there is an ideal inverter on the left side
of every frequency-dependent inverter. So we consider them together.
The transfer matrix of the frequency-dependent K-inverter together
with the ideal inverter on the left can be presented as

[
0 jZ0
j

Z0
0

] [
0 jKi,i+1(Ω)
j

Ki,i+1(Ω) 0

]
=

[
− Z0

Ki,i+1(Ω) 0

0 −Ki,i+1(Ω)
Z0

]

=

[
m
−i/n
i,i+1(Ω) 0

0 m
i/n
i,i+1(Ω)

][
− Z0

Ki,i+1(Ω0) 0

0 −Ki,i+1(Ω0)
Z0

]

[
m

i/n−1
i,i+1 (Ω) 0

0 m
1−i/n
i,i+1 (Ω)

]
. (18)

According to (18), the decomposition for the K-inverter is shown in
Fig. 7. It can be seen that the transformer is added only on one
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Figure 7. Decomposition of the frequency-dependent K inverters. (a)
The first inverter, (b) The (i + 1)th inverter, (c) The last inverter.

side for the first and last inverter by using the weight exponent. So
the frequency dependence of the two end inverters can be distributed
equally to all the others. Similarly, the transfer matrix of the
frequency-dependent J-inverter together with the ideal inverter on the
left can be presented as

[
0 jZ0
j

Z0
0

] [
0 j

Ji,i+1(Ω)

jJi,i+1(Ω) 0

]
=

[−Z0Ji,i+1(Ω) 0
0 − 1

Z0Ji,i+1(Ω)

]

=

[
m

i/n
i,i+1(Ω) 0

0 m
−i/n
i,i+1(Ω)

][−Z0Ji,i+1(Ω) 0
0 − 1

Z0Ji,i+1(Ω)

]

[
m

1−i/n
i,i+1 (Ω) 0

0 m
i/n−1
i,i+1 (Ω)

]
. (19)

The decomposition of the frequency-dependent J inverter is shown in
Fig. 8. The turns ratio can be absorbed by the adjacent distributed
resonator elements. Fig. 9 shows the turns ratio absorbed by the series
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reactance. The transfer matrix of the new resonator elements is given
by
[
m

(i−1)/n−1
i−1,i (Ω) 0

0 m
1−(i−1)/n
i−1,i (Ω)

][
1 jXi(Ω)
0 1

] [
m

i/n
i,i+1(Ω) 0

0 m
−i/n
i,i+1(Ω)

]

=

[
m

(i−1)/n−1
i−1,i (Ω) ·mi/n

i,i+1(Ω) j ·m(i−1)/n−1
i−1,i (Ω) ·m−i/n

i,i+1(Ω) ·Xi(Ω)
0 m

1−(i−1)/n
i−1,i (Ω) ·m−i/n

i,i+1(Ω)

]
.(20)

Since the turns ratio m is very close to 1, the following approximation
can be made:

m
(i−1)/n−1
i−1,i (Ω) ·mi/n

i,i+1(Ω) ≈ 1. (21)

So the new distributed resonator elements can be also regarded as a
series reactance. By applying (9), it is expressed as

X∗
i (Ω) = m

(i−1)/n−1
i−1,i (Ω) ·m−i/n

i,i+1(Ω) ·Xi(Ω)

= −Z0m
(i−1)/n−1
i−1,i (Ω)m−i/n

i,i+1(Ω) cot
(

πΩ
2Ω0

)
. (22)

Similarly, we can derive the turns ratio absorbed by the shunt
susceptance as shown in Fig. 10 and the new shunt susceptance can be
expressed as

B∗
i (Ω) = m

(i−1)/n−1
i−1,i (Ω) ·m−i/n

i,i+1(Ω) ·Bi(Ω)

= −Y0m
(i−1)/n−1
i−1,i (Ω)m−i/n

i,i+1(Ω) cot
(

πΩ
2Ω0

)
. (23)

(Ω)J 0(Ω )J

1: (Ω)m1: (Ω)
-i/n

m

0K 0K

i, i+1
i/n-1
i, i+1

i, i+1i, i+1

Figure 8. Decomposition of the frequency-dependent J inverters.
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Figure 9. Turns ratio absorbed by the series reactance.
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By applying the edge frequency mapping method to the quarter-
wavelength resonator bandpass filters with the frequency-dependent
inverter model, the mapping function can be expressed as

f :





ωLai → −Z0m
(i−1)/n−1
i−1,i (Ω)m−i/n

i,i+1(Ω) cot
(

πΩ
2Ω0

)
i = odd

ωCai → −Y0m
(i−1)/n−1
i−1,i (Ω)m−i/n

i,i+1(Ω) cot
(

πΩ
2Ω0

)
i = even

. (24)

By applying (13), we can get




Lai
Z0

= 1
ω1

m
(i−1)/n−1
i−1,i (Ω1) ·m−i/n

i,i+1(Ω1) · cot
(

πΩ1
2Ω0

)
i = odd

Cai
Y0

= 1
ω1

m
(i−1)/n−1
i−1,i (Ω1) ·m−i/n

i,i+1(Ω1) · cot
(

πΩ1
2Ω0

)
i = even

, (25)

m
(i−1)/n−1
i−1,i (Ω1)m

−i/n
i,i+1(Ω1) cot

(
πΩ1

2Ω0

)
(26)

+m
(i−1)/n−1
i−1,i (Ω2)m

−i/n
i,i+1(Ω2) cot

(
πΩ1

2Ω0

)
= 0.

By substituting (6) with (25), the K parameters and J parameters
can be calculated. It can be seen from (26) that the edge
angular frequencies Ω1 and Ω2 satisfy different equations for different
distributed resonators. This is why the bandpass filters with
frequency-dependent inverters can never achieve the same ideal wide-
band performance as the lumped-element bandpass prototype filter.
However, if Ω1 is fixed, the Ω2 values calculated using (26) for every
distributed resonator are very close to each other and the performance
of the filters designed using this method is still very close to the ideal
performance. The design example in Section 4 will show that, by using
the fixed Ω1, the bandpass filters can still achieve good equal ripple
performance in a very wide bandwidth.

1: (Ω)m
/

1: (Ω)
i n

m

(Ω)
i

B (Ω)
iB *

(i-1)/n-1
i-1, i i, i+1

Figure 10. Turns ratio absorbed by the
shunt susceptance.

a

b

c

d

Figure 11. Cross section
of the rectangular coaxial
cable.
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3. RECTANGULAR COAXIAL FILTERS SYNTHESIS

Rectangular coaxial cable has the advantage of low dielectric loss,
low radiation loss and weak cross coupling with other circuits in
a system [6]. They can be fabricated using the micromachining
techniques and many applications are reported in [6–8]. Fig. 11 shows
the cross section of the rectangular coaxial line. The dimensions are
chosen according to [9] and [10] to make the characteristics impedance
is close to 50 ohms and the cutoff frequency of the higher modes is
above the frequency band of the designed filter.

3.1. Realization of K -inverter and J -inverter

In order to apply the theories in the last section to the rectangular
coaxial filters synthesis, it is necessary to derive two rectangular
coaxial structures as the K-inverter and J-inverter. We employed an
inductive iris structure with two compensated transmission lines added
on both sides as the K-inverter as shown in Fig. 12. Its equivalent
model consists of a frequency-dependent K-inverter and two extra
transmission lines on both sides. The extra transmission lines are
added on both sides dueto the compensated transmission lines, whose
phases will change with the frequency as the wavelength changes with
the frequency. Fig. 13 shows the capacitive gap structure as the J-
inverter and its equivalent model. The extra transmission line phase
can be expressed as

∆ϕi(Ω) = ϕi(Ω)− ϕi(Ω0). (27)

ϕ
i 0(Ω )

, 1 (Ω)
i i

K +∆ϕ (Ω)
i

ϕ
i 0(Ω )

∆ϕ (Ω)
i

Figure 12. Realization of the K-inverter and its frequency-dependent
model.

ϕ
i 0(Ω )

(Ω)J∆ϕ (Ω)
i

ϕ
i 0(Ω )

∆ϕ (Ω)
ii, i+1

Figure 13. Realization of the J-inverter and its frequency-dependent
model.
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The frequency-dependent inverter can be decomposed into frequency-
independent inverter with exponent-weighted turns ratio on both sides
as is introduced in the last section and the extra transmission lines can
be absorbed by the adjacent quarter-wavelength resonators.

3.2. Filter Synthesis

By applying the equivalent model for the inductive iris and capacitive
gap structure introduced above together with the decomposition of
frequency-dependent inverter in the last section, we can derive the
expression for the series reactance and shunt susceptance, which absorb
the turns ratio and the extra transmission lines from the adjacent
inverters. They can be expressed as

Xi(Ω)/Z0 = −m
(i−1)/n−1
i−1,i (Ω) ·m−i/n

i,i+1(Ω)

· cot
[

πΩ
2Ω0

+ (φi−1(Ω)− φi−1(Ω0)) + (φi(Ω)− φi(Ω0))
]

i=odd. (28)

Bi(Ω)/Y0 = −m
(i−1)/n−1
i−1,i (Ω) ·m−i/n

i, i+1(Ω)

· cot
[

πΩ
2Ω0

+ (φi−1(Ω)− φi−1(Ω0)) + (φi(Ω)− φi(Ω0))
]

i=even. (29)

For derivation convenience, we take the following notations:

Ei(Ω) =
{

Xi(Ω)/Z0 i = odd
Bi(Ω)/Y0 i = even , (30)

Di =
{

Lai/Z0 i = odd
Cai/Y0 i = even , (31)

Ai, i+1(Ω) =
{

Ki, i+1(Ω)/Z0 i = 0, 2, . . . , n
Ji, i+1(Ω)/Y0 i = 1, 3, . . . , n− 1 . (32)

Substitute (17) with (32), we can get
mi, i+1(Ω) = Ai, i+1(Ω)/Ai, i+1(Ω0). (33)

The mapping function for the transformation from the lowpass
prototype filter in Fig. 3(a) to the bandpass filter in Fig. 6 can be
written as

f : ωDi → Ei(Ω). (34)
By applying (14), (28), (29) and (30), we can get

Di =
1
ω1
·
[

Ai−1,i(Ω1)
Ai−1,i (Ω0)

](i−1)/n−1

·
[
Ai,i+1(Ω1)
Ai,i+1(Ω0)

]−i/n

· cot
[
πΩ1

2Ω0
+(φi−1 (Ω1)−φi−1 (Ω0))+(φi (Ω1)−φi (Ω0))

]
. (35)
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By substituting (6) with (31) and (32), we can get




A0,1(Ω0) =
√

D1
g0g1

Ai,i+1(Ω0) =
√

DiDi+1

gigi+1

∣∣
i=1,2,...,,n−1

An,n+1(Ω0) =
√

Dn
gngn+1

. (36)

It is noted from (35) and (36) that the calculation of parameters
Di involves parameters Ai,i+1(Ω0) and the calculation of parameters
Ai,i+1(Ω0) involves parameters Di. In order to solve this problem and
calculate Ai,i+1(Ω0), we employ an iteration procedure.

A
(j)
i,i+1(Ω0), A

(j)
i,i+1(Ω1), φ

(j)
i (Ω0) and D

(j)
i are used to represent

all the parameters after j iterations. The parameters after j iterations
can be calculated using the parameters after (j − 1) iterations as

D
(j)
i =

1
ω1
·
[

A
(j−1)
i−1,i (Ω1)

A
(j−1)
i−1,i (Ω0)

](i−1)/n−1

·
[

A
(j−1)
i,i+1 (Ω1)

A
(j−1)
i,i+1 (Ω0)

]−i/n

· cot
[
πΩ1

2Ω0

+
(
φ

(j−1)
i−1 (Ω1)−φ

(j−1)
i−1 (Ω0)

)
+

(
φ

(j−1)
i (Ω1)−φ

(j−1)
i (Ω0)

)]
, (37)





A
(j)
0,1(Ω0) =

√
D

(j)
1

g0g1

A
(j)
i,i+1(Ω0) =

√
D

(j)
i D

(j)
i+1

gigi+1

∣∣∣
i=1,2,...,,n−1

A
(j)
n,n+1(Ω0) =

√
D

(j)
n

gngn+1

. (38)

It can be seen that (37) and (38) give the calculation formulae for
D

(j)
i and A

(j)
i,i+1(Ω0) but the formulae for A

(j)
i,i+1(Ω1) and ϕ

(j)
i (Ω0) are

not provided. Actually, these two parameters can be calculated from
A

(j)
i,i+1(Ω0) using the cubic spline data interpolation functions, which

will be introduced in the next part.
Since the synthesis is an iteration procedure, we should set

initial parameters for the iteration. The initial parameters A
(0)
i,i+1(Ω0),

A
(0)
i,i+1(Ω1), φ

(0)
i (Ω0) and D

(0)
i can be calculated from the ideal inverter

model. For the ideal inverter case, the exponent-weighted turns ratio
and the extra transmission lines are not considered. So the calculation
of D

(0)
i is a compact form of (35) and it is written as

D
(0)
i =

1
ω1
· cot

(
πΩ1

2Ω0

)
= D. (39)
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Substituting (36) with (39), we can get




A
(0)
0,1(Ω0) =

√
D

g0g1

A
(0)
i,i+1(Ω0) = D√

gigi+1

∣∣∣
i=1,2,...,,n−1

A
(0)
n,n+1(Ω0) =

√
D

gngn+1

. (40)

The other two initial parameters A
(0)
i,i+1(Ω1) and ϕ

(0)
i (Ω0) can be also

calculated from A
(0)
i,i+1(Ω0) using the cubic spline data interpolation

method introduced in the next part.

3.3. Element Parameters Extraction

Figure 14 depicts the quarter-wavelength resonator bandpass filter
realized in rectangular coaxial structures. In order to achieve the
required Chebyshev response, the iris widths, gap widths and the
resonator lengths must be derived.

For a given inductive iris or capacitive gap dimension, we can
calculate the scattering parameters using the full-wave simulation or
mode-matching program. The K parameters and the compensated
transmission line phase can be derived as{

Ki,i+1(Ω)
Z0

=
√

1−|S11(Ω)i|
1+|S11(Ω)i|

φi(Ω) = 1
2(∠S11(Ω)i − π)

, (41)

where S11(Ω)i is the reflection coefficient of the inductive iris element.
The J parameters and the compensated transmission line phase can
be also calculated as{

Ji,i+1(Ω)
Y0

=
√

1−|S11(Ω)i|
1+|S11(Ω)i|

φi(Ω) = 1
2∠S11(Ω)i

, (42)

where S11(Ω)i is the reflection coefficient of the capacitive gap element.

Iris thickness(g)Iris width ( )w i,i+1

gapwidth ( )v i,i+1 Resonator length( )l i

Figure 14. Configuration of the quarter-wavelength resonator
bandpass filter realized in rectangular coaxial structures.
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From (41) and (42) we know that it is very easy and fast to
calculate the K or J parameters for the element with a given dimension
by employing the full-wave simulation or mode-matching program,
however, we usually need to calculate the element dimension for the
required K or J parameters, which will cost much time if a search or
matching program is employed.

Here we use the cubic spline data interpolation to calculate the
element dimension and other parameters Ai,i+1(Ω1) and φi(Ω0). First
we employ a full-wave simulation to calculate the scattering parameters
of the inductive iris with a series of widths [w] and the capacitive gap
with a series of widths [v]. Then the sampling data of [K(Ω0)], [K(Ω1)]
and [φK(Ω0)] can be calculated using (41). The sampling data of
[J(Ω0)], [J(Ω1)] and [φJ(Ω0)] can be also calculated using (42). With
these sampling data, we can build the cubic spline functions. The
widths of the inductive iris and the capacitive gap can be calculated
as {

wi,i+1 = S ([K(Ω0)], [w], Ai,i+1(Ω0)) i = 0, 2, . . . , n
vi,i+1 = S ([J(Ω0)], [v], Ai,i+1(Ω0)) i = 1, 3, . . . , n− 1 , (43)

where the function S([a], [b], x) denotes the cubic spline interpolation
function based on the sampling data [a] and [b] and x is the
interpolation variable. The calculations of Ai,i+1(Ω1) and ϕi(Ω0) can
be also expressed as

Ai,i+1(Ω1)=
{

S ([K(Ω0)], [K(Ω1)], Ai,i+1(Ω0)) i = 0, 2, . . . , n
S ([J(Ω0)], [J(Ω1)], Ai,i+1(Ω0)) i=1, 3, . . . , n−1, (44)

ϕi(Ω0)=
{

S ([K(Ω0)], [φK(Ω0)], Ai,i+1(Ω0)) i=0, 2, . . . , n
S ([J(Ω0)], [φJ(Ω0)], Ai,i+1(Ω0)) i=1, 3, . . . , n−1, (45)

After the compensated transmission line phase ϕi(Ω0) is calculated,
the transmission line resonator lengths are given by

li =
λg(Ω0)

2π

[π

2
+ φi−1(Ω0) + φi(Ω0)

]
. (46)

With this approach, the element parameters extraction using the
full-wave simulation is performed only one time and the sampling data
can be calculated. The approach, therefore, presents a calculation
procedure with the advantage that the solution is always possible and
occurs rapidly.

3.4. Design Procedure

Figure 15 shows the flow diagram of the design procedure, which
comprises the following steps.
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Ideal inverter modelInitial synthesis

Initial parameters

Improved inverter
model

Corrected parameters

Filter synthesis

Element parameters extraction

using full-wave simulation

Full-wave analysis of the designed filter

Determine the center frequency

and lower edge frequency

Converge ?

Y

N

Iterations

Figure 15. Flow diagram of the design procedure.

Step 1) First we should determine the center frequency and lower
edge frequency according to the filter design requirement. And
then different inductive iris and capacitive gap elements with
a series of widths are chosen and the full-wave simulation is
employed to calculate the scattering parameters at the center
frequency and lower edge frequency. By applying (41) and (42),
the sampling data of the K and J parameters at the center
frequency and the lower edge frequency and the compensated
transmission line phase are calculated.
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Step 2) The ideal inverter model is employed to calculate the initial
parameters A

(0)
i,i+1(Ω0) by applying (39) and (40). The other two

initial parameters A
(0)
i,i+1(Ω1) and φ

(0)
i (Ω0) are obtained using the

cubic spline data interpolation in (44) and (45) together with the
sampling data in Step 1).
Step 3) Based on the initial parameters in Step 2), the improved
frequency-dependent inverter model is then established. And the
corrected K and J parameters at the center frequency A

(1)
i,i+1(Ω0)

are calculated according to (37) and (38). Using the cubic spline
data interpolation in (44) and (45) together with the sampling
data in Step 1), the other two corrected parameters A

(1)
i,i+1(Ω1)

and φ
(1)
i (Ω0) are obtained.

Step 4) A further improved inverter model is then established
based on the corrected parameters. By repeating Step 3), all
the parameters A

(j)
i,i+1(Ω0), A

(j)
i,i+1(Ω1) and φ

(j)
i (Ω0) will be further

corrected.
Step 5) The Step 3) and Step 4) are repeated until the K

and J parameters after N iterations A
(N)
i,i+1(Ω0) converge. With

the converged K and J parameters, the inductive iris and the
capacitive gap widths and the resonator lengths are calculated
using (43) and (46). Finally, a full-wave analysis of the computed
filter is carried out before the designed filter is fabricated and
measured.

4. DESIGN EXAMPLE AND RESULTS

The filters here are designed without global optimizations and are
expected to have good in-band equal ripple performance in a wide
bandwidth. Since no excessive global optimizations are needed,
the time and complexity of the design procedure can be improved
significantly. One example of rectangular coaxial quarter-wavelength
resonator bandpass filters with a center frequency of 5 GHz is designed
and presented here. The dimensions for the filter are listed in Table 1.
The dimension of the rectangular coaxial cable is chosen as a = 16 mm,
b = 6.5mm, c = 3 mm and d = 3 mm.

Table 1.

g w0,1, w4,5 v1,2, v3,4 w2,3 l1, l4 l2, l3
l 1.044 0.530 4.244 7.015 9.072
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The filters are designed for Chebyshev response with equal ripple
performance in the passband. Because the bandwidth of the filter
is very wide, the minimum passband return loss is chosen as -10 dB
so that the dimension is not too small and the filter is easier to be
fabricated. The designed filter is analyzed by full-wave simulations
using the commercial software Ansoft HFSS [11] before it is fabricated
without tuning screws. Fig. 16 shows the fabrication photo of the
four-pole filter and Fig. 17 shows the measured and simulated return
loss, insertion loss and group delay. It is noted from Fig. 17 that the
measured results agree well with the simulation results. The passband
ripple of the filter is nearly equal during the 63% fractional bandwidth
(3.84–6.97GHz). It can be also noticed from Fig. 17 that the measured
insertion loss above 6.5GHz does not agree very well with the simulated
results. It may be caused by the fabrication tolerance or calibration
tolerance during the measurement. In the practical applications, the
filter can be designed for 20 dB return loss and the insertion loss can
be improved.

 

Figure 16. Fabrication
photo of the designed filter.

Figure 17. Simulated and measured
return loss, insertion loss and group
delay of the four-pole rectangular
coaxial bandpass filter.

5. CONCLUSION

In this paper we have presented a dimensional synthesis method for
designing wide-band quarter-wavelength resonator bandpass filters.
In this synthesis method, the alternative lowpass prototype filter
and the edge frequency mapping method were proposed and applied.
The improved K- and J-inverter model with the exponent-weighted
turns ratio was also proposed in order to incorporate the frequency
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dependence of inverters. Based on the edge frequency mapping method
and the improved inverter model, an iterative dimensional synthesis
procedure has been presented. As design examples, a four-pole
rectangular coaxial bandpass filter with 63% fractional bandwidth was
designed and fabricated and the measured results agree well with the
simulated results. The simulation and measurement results show good
equal ripple performance in the passband. The proposed synthesis
method is expected to find more applications in designing wide-band
bandpass filters.
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