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Abstract—A model for the two-dimensional analysis of microstrip
lines, named Rigorously Coupled Multi-conductor Strip (RCMS) is
introduced. In this model, the width of the strip of a microstrip line
is subdivided into a large number of rigorously coupled narrow strips.
So, a microstrip line can be considered as a coupled multi-conductor
transmission line. Determination of the capacitance and inductance
matrices of the model is introduced, also. The voltages and currents
induced by electromagnetic fields for the coupled multi-condutor strips
problem can be obtained using Bernardi’s method. The effect of an
external EM wave on a microstrip line with non-uniformity in its width
is computed by adding the circuit model of transverse discontinuity
(narrow slit) to the RCMS model. Finally, the validity and efficiency
of the introduced method is investigated using previous work and full
wave EM-simulation software.

1. INTRODUCTION

Microstrip transmission lines are widely used in microwave and
millimeter wave circuits and systems. There are several classical
methods for the analysis of such structures in the literature. Almost all
of these methods can be categorized into two methods, the transmission
line method [1, 2] and full-wave analysis [3, 4]. The transmission line
method is a simple model that cannot consider the current distribution
in the width of the strip, because the whole width of the strip is
considered as one line. To consider the non-uniformity of the current
along the width of the strip, full-wave analysis has to be used, which
is sometimes difficult and time-consuming.
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In this paper, a simple rigorously coupled multi-conductor strips
model (RCMS) is used to find the voltage and current induced by an
external electromagnetic field. In this method, a microstrip line with a
wide strip is modeled by a very large number of parallel microstrip lines
with narrow strips, as shown in Fig. 1(a). The air gap between these
narrow strips is very small and their total width is equal to the width
of the main strip. All the elementary strips are connected together
and a single load is set at each termination. This model is good
if one considers only longitudinal current on the strips (quasi-TEM
approximation). Also, Fig. 1(b) shows the RCMS model of terminal
conditions. Fig. 2 shows two types of such non-uniformities, a grounded
via and a transverse slit. To investigate the effect of an external EM
field on a non-uniform microstrip line, we simply add the circuit model
of the discontinuity to RCMS model.

First the capacitance and inductance matrices needed for the
RCMS method have been extracted in Section 2. The effect of
an external electromagnetic field on coupled transmission lines has
been investigated using Bernardi’s method, in Section 3. The forced
terms due to incident wave are then obtained, in Section 4. The
induced voltage and current along the uniform and non-uniform line
is evaluated using the RCMS model and modal decoupling method,
in Section 5. Finally, microstrip line structures with uniformity and
non-uniformity (transverse slit) in their width have been analyzed
based on the RCMS model and the validity and efficiency of the
introduced method has been verified by previous work and full wave
EM-simulation (HFSS).
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Figure 1. (a) The cross section of M rigorously coupled microstrip
lines with width of w = W/M (the RCMS model). (b) The terminal
conditions of the RCMS model.
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Figure 2. Two types of trans-
verse non-uniformities in a mi-
crostrip, a grounded via and a
transverse slit.
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Figure 3. The cross section of
the structure used for extracting
the capacitance matrix of the
microstrip line shown in Fig. 1.

2. DETERMINATION OF C AND L MATRICES

To use the RCMS model, one needs to find its C and L matrices. There
are some methods to derive C and L matrices in the literature [5, 6]. In
this section a simple method is introduced to obtain the capacitance
matrix C. The capacitance matrix can be obtained using the two-
dimensional analysis of the shielded structure as shown in Fig. 1(a).

The dimensions of the shielding box must be carefully selected, so
that the metal shield does not perturb the field lines localized around
the narrow strips. So, the conditions of a ≥ (10h + W ) and b ≥ 10h
must be satisfied.

The inductance matrix L can be obtained using the following
simple relation:

L =
1
c2

C−1
0 . (1)

where C0 is the capacitance matrix for εr = 1. In order to obtain
the capacitance matrix C, first we consider a charge Q distributed
uniformly in a very narrow width, w0, on the boundary y = h, as
shown in Fig. 3.

Solving the two dimensional Laplace’s equation with boundary
conditions V (x, 0) = V (x, b) = V (0, y) = V (a, y) = 0 and the
continuity of voltage on the y = h, the voltage distribution is obtained
as follows:

V (x, y)=





V1(x, y)=
∞∑

n=1
An sin

(
nπ
a x

) sinh(nπ
a

y)
sinh(nπ

a
h) ; 0 ≤ y ≤ h

V2(x, y)=
∞∑

n=1
An sin

(
nπ
a x

) sinh(nπ
a

(b−y))
sinh(nπ

a
(b−h)) ; h ≤ y ≤ b

. (2)
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Using (2), the surface charge on the y = h boundary is obtained
as

ρs(x, h) = ε0

(
εr

∂V1

∂y

∣∣
y=h − ∂V2

∂y

∣∣
y=h

)
=

∞∑

n=1

BnAn sin
(nπ

a
x
)
. (3)

in which

Bn = ε0
nπ

a

[
εr coth

(nπ

a
h
)

+ coth
(nπ

a
(b− h)

)]
. (4)

It is assumed that the surface charge distribution on the y = h
boundary is zero except in a very narrow region x0 − w0/2 < x <
x0 + w0/2, shown in Fig. 3, in which it is equal to a constant value
Q/w0. Then using (3) the unknown coefficients An are obtained as

An =
4

nπBnw0

Q

w0
sin

(
nπ

x0

a

)
sin

(
nπ

w0

2a

)
. (5)

Using (5) in (2), the voltage on the boundary y = h becomes

V (x, h) =
4

πw0
Q

∞∑

n=1

1
nBn

sin
(
nπ

x

a

)
sin

(
nπ

x0

a

)
sin

(
nπ

w0

2a

)
. (6)

Now, the voltage of the j-th strip shown in Fig. 1(a) due to the
charge Qi on the i-th strip can be written as follows

Vj =
4

πw0
Qi

∞∑

n=1

1
nBn

sin
(
nπ

xj

a

)
sin

(
nπ

xi

a

)
sin

(
nπ

w0

2a

)
;

xi =
(

a−W

2

)
+ (2i− 1)

w0

2
+ (i− 1)s

xj =
(

a−W

2

)
+ (2j − 1)

w0

2
+ (j − 1)s, i, j = 1, 2, . . . , M. (7)

where s is the width of the gaps between narrow strips.
If the number of unknown coefficients is truncated by n ≤ N , the

relations in (7) can be written in a matrix form, as follows

VM×1 = PM×MQM×1. (8)

in which each element of the matrix P, i.e., P(j, i), is obtained using
the summation of N terms. So, the capacitance matrix is obtained, as

QM×1 = CM×MVM×1, C = P−1. (9)
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The number N must be carefully selected so that the N -th term
of the summation in (7) can be considered much smaller than its first
term. So, using (7) and (4), for the worst case one has

N À
√

εr coth(π
ah) + 1

εr + 1
1

sin(π w
2a) sin2(π x1

a )
. (10)

3. EFFECT OF AN EXTERNAL EM FIELD ON THE
COUPLED TRANSMISSION LINES

The structure of uniform coupled microstrip lines is depicted in Fig. 4,
where it is illuminated by a uniform plane wave. To determine the
disturbance induced in the coupled transmission lines, we follow the
procedure proposed in [9, 11].
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Figure 4. RCMS model for a microstrip line excited by the external
field.

Considering the equation ∇× ~E = −jωµ0
~H and integrating over

the rectangular area enclosed by the path 1–4 shown in Fig. 5, and
using Stokes’ theorem, we obtain [9]

− d

dy

∫ h

0
Ez(xk, y, z)dz = jωµ0

∫ h

0
Hx(xk, y, z)dz. (11)

Consider now the continuity equation ∇ · ( ~J + jωεr
~E) = 0.

Integrate this equation over the elementary volume containing the k-th
strip (Fig. 6) and apply the divergence theorem [9]

d

dy

∫ xk+
wk
2

xk−wk
2

~Js(x, y) · ŷdx =jω

∫ xk+
wk
2

xk−wk
2

ε0εrEz(x, y, h−)dx

−jω

∫ xk+
wk
2

xk−wk
2

ε0Ez(x, y, h+)dx. (12)
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in y-z plane.
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Figure 6. Elementary volume
containing the k-th strip.

where ~Js is the surface current on the strip excited by the external
field.

Let us define the following quantities:
Induced voltage of k-th strip

Vk(y) = −
∫ h

0
Ez(xk, y, z)dz. (13)

Induced current of k-th strip

Ik(y) =
∫ xk+

wk
2

xk−wk
2

~Js(x, y) · ŷdx. (14)

Electric charge per unit length of k-th strip

Qk(y) =

xk+
wk
2∫

xk−wk
2

ε0Ez(x, y, h+)− ε0εrEz(x, y, h−)dx. (15)

Magnetic flux per unit length of k-th strip

Φk(y) = −
∫ h

0
µ0Hx(xk, y, z)dz. (16)

With these definitions, (11) and (12) become

d

dy
Vk(y) = −jωµ0Φk(y) (17)

d

dy
Ik(y) = −jωQk(y). (18)
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We decompose the total field into a sum of a primary and a
secondary field. The primary field is defined as the field excited by the
incident wave in the presence of the ground plane and the dielectric
substrate, and in the absence of the metal strips. The secondary field
is the field scattered by the strips in the presence of the ground plane
and the dielectric substrate [9]:

E(x, y, z) = Ep(x, y, z) + Es(x, y, z)
H(x, y, z) = Hp(x, y, z) + Hs(x, y, z).

(19)

Substituting (19) into (15) and (16), (17) and (18) become

d

dy
Vk(y) = −jωΦp

k(y)− jωΦs
k(y) (20)

d

dy
Ik(y) = −jωQs

k(y). (21)

where

Φj
k(y) = −

∫ h

0
µ0H

j
x(xk, y, z)dz j = p, s (22)

Qj
k(y) =

xk+w
2∫

xk−w
2

ε0E
j
z(x, y, h+)− ε0εrE

j
z(x, y, h−)dx. (23)

Suppose that the incident field only excites the quasi-TEM
dominant mode in this structure. So, we have

Φs
k(y) = [Lk1, Lk2, . . . , LkM ][I1 (y) , I2(y), . . . , IM (y)]t

k = 1, 2, . . . , M. (24)

Substituting (24) into (20), a matrix differential equation can be
obtained

d

dy
[V ] + jω[L][I] = [VF ]. (25)

where

[V ]T = [V1(y)V2(y), . . . , VM (y)]

[I]T = [I1(y)I2(y), . . . , IM (y)]
[VF ] = jωµ0

[∫ h

0
Hp

x(x1, y, z)dz,

∫ h

0
Hp

x(x2, y, z)dz, . . . ,

∫ h

0
Hp

x(xM , y, z)dz

]T

(26)
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and the L matrix can be obtained from Section 2.
Under the quasi-TEM mode excitation assumption, we have

Qs
k(y) = [Ck1Ck2, . . . , CkM ] [V s] , k = 1, 2, . . . ,M. (27)

where

[V s] = [V1(y), V2(y), . . . , VM (y)]T − [
V p

1 (y), V p
2(y), . . . , V p

M (y)
]T(28)

V s
k (y) = −

h∫

0

Es
z(xk, y, z)dz = Vk(y)− V p

k (y)

=
∫ h

0
Ep

z (xk, y, z)dz −
∫ h

0
Ez(xk, y, z)dz. (29)

Substituting (27) into (21), a matrix differential equation will be
obtained

d

dy
[I] + jω [C][V ] = jω [C] [V p] = [IF ]. (30)

where

[IF ]=jω[C]
[∫ h

0
Ep

z (x1, y, z)dz,

∫ h

0
Ep

z (x2, y, z)dz, . . . ,

∫ h

0
Ep

z (xM , y, z)dz

]T

(31)
and the C matrix can be obtained from Section 2.

In the next section, we evaluate the forced terms in (25) and (30)
in terms of primary fields.

4. EVALUATION OF THE FORCED TERMS

To evaluate the forced terms in (25) and (30), we follow the same
procedure as in [9]. Suppose that the incident wave is a uniform plane
wave propagating in the β̂i direction that forms an angle θi with z
positive axis.

~Ei = E0e
−j~βi·~r

~H i =

(
β̂i × ~Ei

)

η0
.

(32)

where ~βi is the propagation vector and r the position vector.
The propagation vector can be decomposed into transverse and

axial components with respect to the z direction [9]:

~βi = ~βt + βz ẑ. (33)
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We choose new orthogonal coordinates u, v with the v axis oriented
in the βt direction. So, the plane of incident is the v-z plane, and the
field can be decomposed into the sum of TE and TM waves [9]:

~βt = βxx̂ + βyŷ = βtv̂ = K0

√
1−

(
ẑ · β̂i

)2
v̂. (34)

For the TE and TM waves, the transverse components of the
electromagnetic field satisfy transmission line equations, where the
wave impedances are [9]

ZTE
j =

ωµ0

βzj
, (j = 1, 2)

ZTM
j =

βzj

ωεj

(35)

and the propagation constants

βzj = K0

√
(εrj − 1) +

(
ẑ · β̂i

)2
. (36)

In (35) and (36), the index j = 1 refers to substrate and j = 2 to
the free space.

It is now possible to evaluate the forced terms

VFk = −j2ωµ0
sin (βz1h)

βz1{
~E0 · v̂

jZTM
1 sin (βz1h) + ZTM

2 cos (βz1h)
x̂ · û

+
~E0 · û

jZTE
1 sin (βz1h)+ZTE

2 cos (βz1h)
x̂ · v̂

}
·e−jβxxk−jβyy(37)

IFk = jω

M∑

i=1

Cki

(−2βt

ωε1

)
.
sin (βz1h)

βz1{
~E0 · v̂

jZTM
1 sin (βz1h) + ZTM

2 cos (βz1h)

}
e−jβxxi−jβyy,

(k = 1, . . . , M). (38)

where Cki is the ki-th element of C matrix.
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5. EVALUATION OF THE INDUCED VOLTAGE AND
CURRENT ALONG THE LINE

In this section, we solve the (25) and (30) using the modal decoupling
method [8]. We assume that the principal propagation mode of the
lines is TEM. This assumption is valid when the strip widths and their
distances from the shield are small enough compared to the wavelength.

The differential equations describing M coupled transmission lines
illuminated by a uniform plane wave are given by

dV(y)
dy

= −ZI(y) + VF

dI(y)
dy

= −Y V(y) + IF .

(39)

in which Z = jωL,Y = jω C. y is the position along the lines, and V
and I are voltage and current vectors, i.e., the voltages and currents
of the lines in RCMS model, defined as

V(y) = [V1(y) V2(y) . . . VM (y)]T

I(y) = [I1(y) I2(y) . . . IM (y)]T .
(40)

Also, L and C in (39) are inductance and capacitance matrices,
respectively introduced in Section 2.

The differential equations in (39) can be decoupled using the
definition of modal voltage and current vectors as

Vm(y) = T−1
V V(y)

Im(y) = T−1
I I(y).

(41)

where TV and TI are transfer or mode matrices determined from
inductance and capacitance matrices [5]. Setting (41) in (39), the
decoupled equations are obtained as

dVm(y)
dy

= −jωLmIm(y) + T−1
V VF (y)

dIm(y)
dy

= −jωCmVm(y) + T−1
I IF (y).

(42)

in which Lm and Cm are diagonal inductance and capacitance matrices
derived from the following matrix Equations [5]:

T−1
V LTI = Lm, T−1

I CTV = Cm. (43)

Now, we consider two cases of uniform and non-uniform microstrip
lines:
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5.1. Uniform Microstrip Line

In this case, the microstrip line has no non-uniformity in its width
and (42) can be solved as [11]

I(y) = TI(e−γyIm+ − e+γyIm−) + IFm(y)

V(y) = ZCTI(e−γyIm+ + e+γyIm−) + VFm(y).
(44)

where

IFm(y) =
([

β2
y

]
d

+
[
γ2

]
d

)−1
(jβy [IF ] + [Y] [VF ])

VFm(y) = jβy [Y]−1
([

β2
y

]
d

+
[
γ2

]
d

)−1

(jβy [IF ] + [Y] [VF ]) + [Y]−1 [IF ] .

(45)

in which Im+ and Im− are two constant vectors.
[
β2

y

]
d
,

[
γ2

]
d

are
diagonal matrices, βy is phase constant of incident wave, and

γ2 = T−1
V ZYTV = T−1

I YZTI

= −ω2LmCm = −ω2CmLm

ZC = Y−1TIγT−1
I = ZTIγ

−1T−1
I .

(46)

Using the following terminal conditions (Vs = 0)

V(0) = −ZsI(0), V(d) = ZLI(d). (47)

And inserting y = 0 and y = d in (44), one can determine the
following matrix equation to find unknown constant vectors Im+ and
Im−:[

(Zc + Zs)TI (Zc − Zs)TI

(Zc − ZL)TIe−γd (Zc + ZL)TIe−γd

][
Im+

Im−

]
=

[−VFm(0)−ZsIFm(0)
−VFm(d)+ZLIFm(d)

]
.

(48)
Finding these two constant vectors leads us to find the voltage and

current vectors using (44). In (47), ZL and ZS are the load and source
impedance matrices, respectively. These matrices for the structure
shown in Fig. 4 are as follows

Zs = Zs1M×M , ZL = ZL1M×M , Vs = Vs1M×1. (49)

in which 1 is a matrix or vector that all its elements are 1.
Once the voltage and current of each narrow strip are obtained,

the voltage V (y), and current I(y) microstrip line can be obtained as

V (y) =
1
M

M∑

n=1

Vn(y), I(y) =
M∑

n=1

In(y). (50)
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Figure 7. Model of the narrow transverse slit in a microstrip line.

5.2. Non-uniform Microstrip Line

To investigate the effect of an external EM field on a microstrip line
with a non-uniformity in its width, we apply the RCMS model to the
transverse discontinuity.

We consider a narrow transverse slit in a microstrip line. This
leads to a local concentration of the magnetic field which can be
described in terms of equivalent series inductivity [10]. Fig. 7 shows
a microstrip of width W containing a slit of depth Ws and width ds.
The equivalent series inductance is obtained as [10]

Ls

h
=

µ0π

2

(
1− Z0

Z ′0

)2 (
H

m

)
. (51)

where Z0 and Z ′0 are the characteristic impedances of the air-filled
uniform microstrip lines of width W and W −Ws, respectively.

Now, we solve the (43) for two segments of the line, i.e., 0 < y <
d1, d1 + ds < y < d.

I(y) = TI(e−γyI+
m − e+γyI−m) + IFm(y); 0 < y < d1

I(y) = TI(e−γy Î+
m − e+γy Î−m) + IFm(y); d1 + ds < y < d.

(52)

in which I+
m, I−m, Î+

m and Î−m are four unknown constant vectors. The
voltage vector can be obtained in terms of current vector using (52)
and (39).

In addition to the terminal conditions in (47), we have the
following boundary conditions

V(d1 + ds)−V(d1) = jωLslitI(d1), I(d1 + ds) = I(d1). (53)

where Lslit = Ls1M×M . Using (47) and (53), one can determine the
following matrix equation to find unknown constant vectors I+

m, I−m,
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Î+
m and Î−m:




(Zc + Zs)TI (Zc − Zs)TI 0 0

0 0 (Zc − ZL)TIe
−γd (Zc + ZL)TIe

γd

TIe
−γd1 −TIe

γd1 −TIe
−γ(d1+ds) TIe

γ(d1+ds)

(Zslit+Zc)TIe
−γd1 −(Zslit−Zc)TIe

γd1 −ZcTIe
−γ(d1+ds) −ZcTIe

γ(d1+ds)







I+
m

I−m
Î+

m

Î−m


 =




−VFm(0)− ZsIFm(0)
−VFm(d) + ZLIFm(d)

IFm (d1 + ds)− IFm (d1)
VFm (d1 + ds)−VFm (d1)− ZslitIFm (d1)


. (54)

where Zslit = jωLslit.
Finding these four constant vectors leads us to find the voltage

and current vectors using (52) and (39).
Once the voltage and current of each narrow strip are obtained,

the voltage V (y), and current I(y) microstrip line can be obtained
using (50).

6. NUMERICAL RESULTS

In this section, two unshielded microstrip line structures using two-
dimensional analysis have been analyzed based on the RCMS model.
Consider the first microstrip line as shown in Fig. 1 with W = 3.85mm,
h = 1.57mm, εr = 2.55, and a = b = 100W . The second structure
is a microstrip line with a narrow transverse slit with W = 3.85mm,
h = 1.57mm, εr = 2.55, a = b = 100W , and d1 = 6 cm, ds = 0.785mm,
and Ws = W/2 = 1.925mm. Both lines are d = 15 cm long and are
terminated in their characteristic impedance at both ends (Zo = 50).
Then consider the RCMS model as shown in Fig. 1 containing M = 51
narrow strips with the same width and with very small air gap between
them. The incident field is a uniform plane wave with an electric field
intensity of 1 V/m, whose plane of incidence is the x-z plane or the y-z
plane and θi is the incidence angle with respect to z axis.

Figure 8 shows the voltage and current magnitude induced along
the first line for θi = 0 at frequency of 3 GHz. In both figures, it
is seen that there is a good agreement between the results obtained
using the method proposed in [9], the RCMS method and the HFSS.
The amplitudes of the induced voltage and current are symmetric with
respect to the center of line. So, the induced powers at terminal loads
are equal.

To investigate the sensitivity of the number of the segments (M)
and the width of the gap (s) to the overall performance, we present
the effects of these parameters on the current distribution excited in
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(a)

(b)

Figure 8. (a) Voltage magnitude and (b) current magnitude induced
along the microstrip line (ϕi = 90◦, θi = 0) at f = 3 GHz.

the cross-section (y = 0) of a non-uniform microstrip line in Fig. 9 at
f = 3 GHz.

Selection of the number of segments and the width of the gap
for a non-uniform microstip line depends on the type of transverse
discontinuity and the desired precision. In Fig. 9(a), the current
distribution in the cross-section of the microstrip line with a narrow
transverse slit is shown for s = 0.05W/M with the M as a parameter.
It is seen that the effect of the number of the strips on the current
distribution in the cross-section of this structure can be ignored for
M > 50. Also, the effect of the width of the gap on the current
distribution is depicted in Fig. 9(b) for M = 50.
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(a)

(b)

Figure 9. (a) The effect of the number of strips (s = 0.05W/M)
and (b) the effect of the width of the gap (M = 50) on the current
distribution in the cross-section (y = 0) of the non-uniform microstrip
line at f = 3 GHz (ϕi = 90◦, θi = 45◦).

Consequently, if the conditions of M > 50 and s < 0.05W/M are
met simultaneously, the error caused by segmentation of a wide strip
into multi-conductor strips will be negligible.

For the second structure, the induced voltage on the source and
load terminals versus frequency is shown in change to Figs. 10 and 11
for ϕi = 90◦, θi = 45◦, respectively. In both figures, it is observed
that there is a good agreement between the results obtained using the
RCMS method and HFSS. The execution time of the proposed method,
using MATLAB software, on a desktop computer with Pentium-4
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processor and 512 MB RAM, is about 8minutes while the running time
of the HFSS is approximately 2 hours and 18 minutes. It is obvious
that this method is very efficient in terms of the running time and the
computation load.

In Fig. 12, the induced voltage and current along the line are
shown for different incidence angles in the y-z plane. For θi = 0, the
amplitude of the induced voltage and current is symmetric with respect
to the center of line. The magnitude of the induced voltage for θi = 45◦
is greater than in the other cases (4.6 versus 4.1 and 3.6mV). Also, the
magnitude of the induced voltage is greater than in the first structure.

Figure 10. Induced voltage on the source terminal versus frequency
for ϕi = 90◦, θi = 45◦.

Figure 11. Induced voltage on the load versus frequency for ϕi =
90◦, θi = 45◦.
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(a)

(b)

Figure 12. (a) Voltage magnitude and (b) current magnitude induced
along the microstrip line with slit (ϕi = 90◦) at f = 3 GHz.

7. CONCLUSION

The RCMS model and its capacitance and inductance matrices are
introduced for the two-dimensional analysis of microstrip lines. This
model is much simpler and faster than full wave analysis and can be
used for structures with some non-uniformity in their width. This
model has been used to find induced voltage and current along
microstrip lines that have or do not have non-uniformity in the width
of their strips and are illuminated by a uniform plane wave. The effect
of incident angle on induced voltage and current has been investigated.
We have compared the results with previous work and full wave results.
The effectiveness of this approach to solve the microstrip structures
that contain non-uniformity in their width has been shown.
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