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Abstract—The resonant characteristics of frequency selective surfaces
(FSSs) on in-plane biased ferrite substrates for the TE polarization
are described. An approximate formula for evaluating the resonant
frequency is presented. The tunable property of the resonant frequency
of a dipole FSS is firstly demonstrated by the results obtained from
the moment method (MM) and the waveguide simulator measurement.
Then the approximate formula is validated by the MM as well as
measured results already published in a previous paper. It is interesting
to note that two separate resonances occur at any magnetic bias field,
and both increase as the magnetic bias field increases. The fractional
tuning range is investigated based on the approximate formula. The
results show that it increases as the saturation magnetization increases
and decreases as the center frequency increases.

1. INTRODUCTION

Frequency selective surfaces are widely used as filters and absorbers in
microwave, millimeter wave and far infrared community [1–15]. They
basically consist of periodic arrays of conducting patches or apertures
on a conducting sheet. They exhibit total reflection or transmission
in the neighborhood of the element resonance. Ferrite materials have
a permeability tensor whose elements can be easily controlled through
the use of a DC magnetic bias field. The extra degree of freedom
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offered by the biased ferrite substrates can be used to obtain a number
of novel characteristics. FSSs on ferrite substrates are well investigated
for their tunable property [4–6]. In [5], a cross dipole FSS on a ferrite
substrate is studied and a tuning range from 17.2 GHz to 19.2GHz is
obtained. In [6], the resonant characteristics of square loop FSSs on
biased ferrite substrates are discussed based on the experiment results
measured in a waveguide simulator.

For tunable FSSs [4–6, 9, 11], the resonant frequency and the
tuning range are two important parameters. They can be accurately
obtained from the full-wave MM. However, the MM is computationally
intensive. In this paper, approximate formulas for evaluating the
resonant frequency and the fractional tuning range are developed.
Compared with the MM, the approximate formulas, which are simple
algebraic expressions, have the advantage of fast computation, and
they give us the algebraic relations between the resonant frequency
along with tuning range and the saturation magnetization along with
magnetic bias field. The tunable property of the resonant frequency of
a dipole FSS on an in-plane biased ferrite substrate placed in a WR90
waveguide simulator is examined. Good agreement between the results
obtained from the MM and the measured ones is observed. Then, an
infinite planar FSS is investigated by the MM and the approximate
formula. Again, good agreement is observed. A study on a square loop
FSS presented in [6] suggests that the resonant frequencies calculated
by the approximate formula agree well with the measured ones in [6].
Finally, a parametric study of the fractal tuning range is done based
on the approximate formula.

2. THEORY

2.1. Analysis of FSSs on Ferrite Substrates by Moment
Method

The analysis is carried out in the spectral domain. The electric field
integral equation (EFIE) is applied; and for a FSS with isotropic media
it can be written as [1]





Ei
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1
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where the symbol ‘∼’ denotes the Fourier transformation. G̃xx, G̃xy,
G̃yx, G̃yy are transverse components of the spectral dyadic Green’s
function. Ei

x, Ei
y are the incident fields due to the incident wave in the

absence of the metallic layer. J̃x, J̃y are the electric currents induced
on the metallic layer. Tx, Ty are the periodicities, and

αm =
2πm

Tx
+ k0 sin θ cosϕ

βn =
2πn

Ty
+ k0 sin θ cosϕ

where k0 is the wave number of free space, and θ, ϕ are the elevation
and azimuth angles of incidence, respectively.

The main difference of the spectral domain analysis of FSSs
with isotropic media and anisotropic media lies in different Green’s
functions. The spectral Green’s function for ferrite FSSs is calculated
by the recursive transformation method presented by Yang in [7]. The
EFIE is solved by the Galekin’s MM. The rooftop basis functions are
used to expand electric current [16]. After the electric current is solved,
the scattering parameters are ready to be known.

2.2. Approximate Formula

In this section, an approximate formula for evaluating the resonant
frequencies of FSSs on in-plane biased ferrite substrates for the TE
polarization is established.

For a FSS embedded in an in-plane biased ferrite material which
fills the entire space, the resonant frequency is given as

f =
f0√
εrµr

(2)

In practice, the FSS is always with substrates of finite thickness.
Then, (2) should be modified as

f =
f0√
εeµe

=
fd√
µe

(3)

where εe, µe are the effective permittivity and permeability,
respectively. And fd is the resonant frequency when µe = 1 (i.e.,
dielectrics). If the ferrite is unbiased, it can be considered as a dielectric
material. Therefore, fd is also the resonant frequency of the FSS on
an unbiased ferrite substrate, called unbiased resonant frequency.
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If the electric field of a TE incident wave is parallel to the bias
direction, µr in (2) can be given as [8]

µr =
µ2 − κ2

µ
(4)

where

µ = 1 +
γ2H04πMs

γ2H2
0 − f2

, κ =
fγH04πMs

γ2H2
0 − f2

(5)

where γ = 2.8 MHz/Oe, and H0, 4πMs are the magnetic bias field
and the saturation magnetization, respectively. It is assumed that the
ferrite is saturated. µe can be approximately obtained from (4) by
making 4πMs half of the original value.

After some algebraic manipulations of (3)–(5), we can obtain

f4 − (A + B)f2 + AC = 0 (6)

where A = f2
d , B = γ2(H0 + 4πM ′

s)
2, C = γ2H0(H0 + 4πM ′

s), and
4πM ′

s = 4πMs/2.
(6) has two positive roots, which are written as

f1,2 =

√
(A + B)±

√
(A + B)2 − 4AC

2
(7)

The two roots represent two resonant frequencies.
It is noted that the approximate formula is based on the unbiased

resonant frequency. It is proposed to investigate the relations between
the resonant frequency and the saturation magnetization as well as
the magnetic bias field of the ferrite substrate. The influences of
all other parameters, such as geometry of the element, periodicities,
the thickness and dielectric constant of the substrate, and angle of
incidence, are included in the unbiased resonant frequency.

3. NUMRICAL RESULTS

A dipole FSS prototype, as shown in Fig. 1, is fabricated and
measured in a WR90 waveguide simulator [17], which contains two
elements. Conducting patches are attached on the ferrite substrate.
The parameters are: εr = 12.8, 4πMs = 650G, d = 4.5mm;
Tx = 11.43mm, Ty = 10.16 mm, l = 8.1mm, w = 4.2mm. d is the
thickness of the substrate. Permanent magnets are used to bias the
ferrite along the y-axis.
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It is well known that the TE10 mode in a rectangular waveguide
can be decomposed into two plane waves with incident angles

θ = arcsinλ/2a (8)

and ϕ = 0, π, respectively. Where λ is the dielectric wavelength and
a is the broader side of the rectangular. It is noted that the frequency
responses of the FSS due to the two incident plane waves are not the
same because of the anisotropic property of the ferrite.

x

y
w xT

yTl

Figure 1. A patch FSS on a ferrite substrate and its dimensions.
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Figure 2. The transmission of the FSS shown in Fig. 1.

Figure 2 shows the transmission coefficients of the FSS versus
frequency; both the MM and measured values are given for comparison.
The results are in good agreement. It can be seen that the resonant
frequency fr increases from 8.70 GHz to 9.10 GHz as the magnetic bias
field H0 increases from 500 Oe to 1500 Oe.

Figure 3 shows the transmission of an infinite planar dipole FSS in
a wide frequency band. The parameters are: εr = 13.5, 4πMs = 650 G,
d = 0.5mm; Tx = Ty = 10mm, l = 8mm, w = 1 mm, θ = ϕ = 0.1◦,
TE polarized. The results are obtained from the MM. It is interesting
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Figure 3. Transmission of an infinite planar dipole FSS on a ferrite
substrate.

that the resonant frequency does not always increase as H0 increases.
For example, the resonant frequency is 8.95 GHz at H0 = 1000 Oe,
larger than 8.50 GHz at H0 = 5000 Oe. The approximate formula will
give a good interpretation for this characteristic.

Figure 4 shows the resonant frequency calculated by (7) versus the
magnetic bias field H0. The MM results are also given for verification.
Good agreement is demonstrated except some minor variations, which
may be due to the errors from the approximation of µe. It is observed
that there exist two resonances at any H0: one is smaller than fd

(8.80GHz, obtained by MM), and the other larger. Both of them
increase steadily as H0 increases. The smaller one starts from zero
and has a maximum of fd, while the larger one starts from fd and goes
to infinity. In fact, for the larger resonant frequency, the curve has an
asymptote of

f = γ
(
H0 + 4πM ′

s

)
(9)

Now return to Fig. 3, the resonance fr = 8.95GHz at H0 =
1000Oe is the larger resonance, and it increases to 10.05 GHz,
15.45GHz, 18.25 GHz at H0 = 3000Oe, 5000 Oe, 6000 Oe, respectively.
While the resonance fr = 8.5GHz at H0 = 5000 Oe is the smaller
resonance. It can be seen that the smaller resonances at H0 = 5000 Oe,
6000Oe are almost the same. All these resonant characteristics are
well demonstrated in Fig. 4. It should be noted that besides the
two resonances there are other transmission minima that need further
investigation.

Another interesting result observed from Fig. 3 is that as the
resonance goes far away from fd, it becomes irregular: tends to
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Figure 4. The resonant frequency of a dipole FSS on a biased ferrite
substrate.

oscillate, or the bandwidth becomes extremely narrow. Besides, to
avoid grating lobes the frequency should be less than c0/D/(1 + sin θ)
for a square lattice, where c0, D are the light speed in free space and
the periodicity, respectively. Therefore, only the resonances near fd are
appropriate for use. For convenience, only the one nearer fd of the two
resonances is considered. This can be clearly seen from Fig. 4: only
the resonances between the two parallel lines, which have the same
distance from the line of fd, are considered. Under this assumption,
the fractional tuning range is defined as

δ =
2(f1(Hm)− fd)

fd
(10)

where Hm is the root of equation: f1 − fd = fd − f2 on H0.
For example, as shown in Fig. 4, when H0 = Hm = 2900Oe,

the resonant frequencies obtained from (7) are f1 = 10.24GHz, f1 =
7.36GHz, respectively. And f1 − fd = fd − f2 = 10.24 − 8.8 = 8.8 −
7.36 = 1.44. Therefore, the fractal tuning range is 2.88/8.8 = 32.7%.

Note that the tuning range is not continuous, and there is a small
gap between the smaller and the larger resonances because f2 can not
reach fd until H0 is infinitely large. Nevertheless, the fractional tuning
range defined by (10) will give significant information.

Figure 5 shows the resonant frequencies of a square loop FSS
presented in [6]. The unbiased resonant frequency fd can be read
from the figure at the point of zero magnetic bias field, which is about
11.6GHz. Although the angle of incidence varies with frequency, the
results obtained from the approximate formula are in good agreement
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with the measured ones presented in [6]. Note that in [6] the frequencies
below 7.5 GHz and above 15 GHz are not given.

Figure 6 shows the fractional tuning range versus 4πMs at different
fd. The results show that the fractional tuning range increases as 4πMs

increases, and decreases as fd increases. It is clear that the slope
increases as fd decreases. Therefore, great fractional tuning range is
easier to be achieved for small fd and large saturation magnetization
cases.
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Figure 5. Resonant frequencies of a square loop FSS in a waveguide
simulator.
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Figure 6. Fractional tuning range of FSSs on a biased ferrite
substrate.
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4. CONCLUSION

The resonant characteristics of FSSs on in-plane biased ferrite
substrates for the TE polarization are carefully investigated. An
approximate formula is developed for evaluating the resonant
frequencies. Waveguide simulator measurement of a dipole FSS on
a ferrite substrate is done. The MM results are in good agreement
with the measured. The approximate formula results are validated
by means of MM results and measurement results from the open
literature. Two resonances occur at any magnetic bias field: one is
smaller than the unbiased resonant frequency, and the other lager.
Both resonant frequencies increase as the magnetic bias field increases.
The fractional tuning range is discussed based on the approximate
formula. The center frequency of the tuning range is the unbiased
resonant frequency. The fractional tuning range steadily increases as
saturation magnetization increases, and decreases as center frequency
increases.
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