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Abstract—A propagation model is presented in this paper for
predicting the field strength in microcellular environments. According
to the Geometrical Theory of Diffraction, the total field at a given
observation point is calculated by summing the Geometrical Optics
contributions and the field diffracted by the edges of each structure.
The diffraction contributions are here evaluated by means of a Uniform
Asymptotic Physical Optics solution to the corresponding canonical
problem. Such a solution, expressed in terms of the standard transition
function of the Uniform Theory of Diffraction, has resulted to be
able to compensate the Geometrical Optics discontinuities at the
shadow boundaries. In this framework, the structures are treated as
constituted by lossy dielectric materials assumed to be non penetrable.
The effectiveness of the here proposed model has been tested in some
typical scenarios by means of comparisons with the Finite Difference
Time Domain method.

1. INTRODUCTION

The knowledge of the propagation characteristics is a basic step in the
design of mobile radio communication systems. As well-known, the
propagation prediction based on ray-tracing has emerged as the most
successful technique in the case of microcellular radio networks, where
base station antennas are usually positioned below the rooftop height
of the surrounding buildings in order to constrain the radio coverage
to a small number of roads. In this framework, due to the analytic
representation of the electromagnetic field as a complex vector, the ray-
based models provide detailed characterization of the channel and allow
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one to calculate magnitude and phase of the received field, and the
delay of each ray component arriving at the receiver after undergoing
propagation mechanisms. These last are complex and diverse, and can
generally be attributed to reflection, diffraction, and scattering.

The research activity on propagation mechanisms in urban
microcell has been mainly focused on the modelling of reflection and
diffraction from the exterior walls and corners of buildings, usually
considered opaque. Several models [1–6] have been recently developed
for estimating the field strength in two- or three-dimensional urban
scenarios by explicitly considering the edge diffraction terms. They are
based on the Geometrical Theory of Diffraction (GTD) for perfectly
conducting structures, first proposed by Keller [7], improved by
Kouyoumjian and Pathak [8] for removing the inaccuracies close to
the incident and reflection boundaries, and subsequently extended
by Luebbers [9] to finite conductivity wedges in heuristic way. The
solution proposed by Luebbers for the diffracted field is easy to handle
and to implement in ray-tracing tools. Despite its large use for solving
practical propagation problems, it must be stressed that it does not
possess a rigorous analytical and physical justification, and therefore
it should be used only with considerable attention.

The aim of this paper is to propose an alternative propagation
model for predicting the field strength in microcellular environments.
It is based on a Uniform Asymptotic Physical Optics (UAPO) solution
for the field diffracted by corners, assumed non-penetrable and with
finite conductivity. In particular, the UAPO solution proposed in [10]
is here extended to the three-dimensional case. The key point to
do this is the use of a PO approximation of the equivalent surface
currents induced by the incident field on the structure and of a uniform
asymptotic evaluation of the resulting radiation integral. The final
expression is in closed form and given in terms of the transition function
of the Uniform Theory of Diffraction (UTD) [8]. It is easy to handle
and to implement in ray-tracing tools like that developed in [9]. In
addition, even if approximate, it relies on a sound theoretical basis,
unlike that in [9].

The paper is organized as follows. The three-dimensional
canonical problem involving a lossy dielectric wedge with arbitrary
angle is described in Section 2. Some numerical examples are also
reported to show the effectiveness of the UAPO diffracted field for
compensating the GO field discontinuities at the shadow boundaries.
The UAPO-based model is then applied in Section 3 to solve radio
propagation in two real microcellular scenarios, and validated by
means of comparisons with the Finite-difference Time-domain (FDTD)
method [11]. Concluding remarks are reported in Section 4.
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2. FINITE CONDUCTIVITY WEDGE: A UAPO-BASED
SOLUTION

Let us consider the incidence of an arbitrarily polarized plane wave
on a finite conductivity wedge, which is considered opaque, infinite
in extension and surrounded by free-space (Fig. 1). The wedge has
complex relative permittivity εr = (ε− jσ/ω)/ε0, relative permeability
µr = 1, and interior angle γ = (2− n) π. The incidence direction
is fixed by the angles (β′, φ′). In particular, β′ is a measure of the
incidence direction skewness with respect to the edge (β′ = π/2
corresponds to the normal incidence). The observation direction is
specified by (β, φ). The reference coordinate system has the z-axis
directed along the edge and the x-axis on the upper surface S0, so that
this last corresponds to the zero value of the angles φ′ and φ.

According to the GTD formulation, the total electric field at a
given observation point external to the wedge can be expressed as sum
of the GO field (EGO) and the field diffracted (Ed) by the edge. For
the considered canonical problem, the GO field includes the incident
field and the field reflected from S0 and Sn (the face at φ = nπ) with
the edge ignored, namely,

EGO = Eiui + Er
0u

r
0 + Er

nur
n (1)

wherein ui, ur
0, and ur

n are unit step functions equal to the unity in the
regions illuminated by the incident and reflected fields, and to zero in
their shadow regions.
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Figure 1. Geometry of the canonical problem.
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The incident electric field can be expressed as:

Ei =
(

Ei
β

Ei
φ

)
ejk0ρ sin β′ cos(φ−φ′)e−jk0z cos β′

= T i

(
Ei

β′

Ei
φ′

)
ejk0ρ sin β′ cos(φ−φ′)e−jk0z cos β′ (2)

where k0 is the free-space wave-number, Ei
β′ and Ei

φ′ are the
field components (at the origin) along β̂ ′ = φ̂ ′ × ŝ ′ and φ̂ ′ =
(ŝ ′ × ẑ)/|ŝ ′ × ẑ|, respectively, ŝ ′ being the unit vector in the
incidence direction (see Fig. 1). The matrix T i relates the basis β̂ ′, φ̂ ′

to β̂ , φ̂ , where β̂ = φ̂ × ŝ and φ̂ = (ŝ × ẑ)/|ŝ × ẑ|, ŝ being the unit
vector in the diffraction direction, and is given by:

T i =
(

cos2 β′ cos(φ− φ′)− sin2 β′ cosβ′ sin(φ− φ′)
− cosβ′ sin(φ− φ′) cos(φ− φ′)

)
(3)

The field reflected from the wedge surfaces can be conveniently
evaluated by means of the reflection matrices R0 and Rn related to
the ordinary planes of incidence for S0 and Sn. For what concerns the
reflection from S0, the following relation holds:

Er
0 =

(
Er

β
Er

φ

)
ejk0ρ sin β′ cos(φ+φ′)e−jk0z cos β′

= T roR0T ri

(
Ei

β′

Ei
φ′

)
ejk0ρ sin β′ cos(φ+φ′)e−jk0z cos β′ (4)

The reflection matrix R0 is:

R0 =
(

R‖ 0
0 R⊥

)
(5)

wherein

R⊥ =
cos θi −

√
εr − sin2 θi

cos θi +
√

εr − sin2 θi
(6)

R‖ =
εr cos θi −

√
εr − sin2 θi

εr cos θi +
√

εr − sin2 θi
(7)

are the standard Fresnel’s coefficients for both perpendicular and
parallel polarization and θi is the incidence angle (see Fig. 2). The
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matrices T ri and T ro are reported in the following:

T ri =
1√

1− sin2 β′ sin2 φ′

(
cosβ′ sinφ′ cosφ′
− cosφ′ cosβ′ sinφ′

)
(8)

T ro =
1√

1− sin2 β′ sin2 φ′

(
T ro

11 T ro
12

T ro
21 T ro

22

)
(9)

in which

T ro
11 = cosβ′

{
sinφ + sin2 β′ sinφ′

[
1 + cos

(
φ + φ′

)]}

T ro
12 = sin2 β′ cosφ′ − cos2 β′ cosφ

T ro
21 = cosφ− sin2 β′ sinφ′ sin(φ + φ′)

T ro
22 = cosβ′ sinφ

The field reflected by Sn can be obtained in a similar way.
The starting point for determining the diffracted field is to

consider a PO approximation for the electric and magnetic equivalent
surface currents induced by the incident field. In the far-field
approximation, the field generated by these currents on the wedge can
be expressed by means of the well-known radiation integral:

Es∼=E0+En =−jk0

∫∫

S

[(
I−R̂R̂

)(
ζ0J

PO
s

)
+JPO

ms ×R̂
]
G

(
r, r′

)
dS (10)

where S = S0 + Sn, G(r, r ′) = e−jk0|r−r ′|
/

(4π |r − r ′| ), ζ0 is the free-
space impedance, r and r ′ denote the observation and source points,
respectively, R̂ is the unit vector from the radiating element at r ′ to
the observation point, and I is the (3 × 3) identity matrix. Since the
two field contributions can be formally derived in a similar way, only
E0 is explicitly considered. With reference to this contribution, the
electric and magnetic PO currents can be expressed in terms of the
GO response of the structure as follows:

ζ0J
PO
s = ζ0J̃

PO

s ejk0(x sin β′ cos φ′−z cos β′)

=
[
(1−R⊥) Ei

⊥ cos θiê⊥ +
(
1 + R‖

)
Ei
‖t̂

]
· ejk0(x sin β′ cos φ′−z cos β′)(11)

JPO
ms = J̃

PO

ms ejk0(x sin β′ cos φ′−z cos β′)

=
[(

1−R‖
)
Ei
‖ cos θiê⊥ − (1 + R⊥) Ei

⊥t̂
]
· ejk0(x sin β′ cos φ′−z cos β′)(12)

where (x, z) are the coordinates of the integration point on the surface,
Ei
‖ and Ei

⊥ are the field components along êi
‖ and ê⊥ (see Fig. 2),

and t̂ = n̂× ê⊥.
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Figure 2. Ordinary plane of
incidence.
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Figure 3. Integration path C in
the complex α-plane.

As well-known, in the high-frequency approximation, the PO
integral extended to S0 can be reduced asymptotically to a sum of
ray field contributions from (isolated) interior stationary phase points
on S0 and an edge diffracted field contribution. Moreover, since the
diffraction is confined to the Keller’s cone for which β = β ′, the use of
the approximation R̂ = ŝ is permitted for evaluating the edge diffracted
field [12]. Accordingly, it results:

E0
∼=

[(
I − ŝŝ

) (
ζ0J̃

PO

s

)
+ J̃

PO

ms × ŝ
]
I0 (13)

where

I0 = −jk0

+∞∫

0

+∞∫

−∞
ejk0(x sin β′ cos φ′−z cos β′)G(r, r′)dz dx

=
e−jk0z cos β′

2(2πj) sin β′

∫

C

e−jk0x sin β′ cos(α∓φ)

cosα + cos φ′
dα (14)

C being an appropriate integration path in the complex α-plane (see
Fig. 3).

By applying the Cauchy’s theorem, the contribution to the field
related to the integration along C (distorted for the presence of
singularities in the integrand) is equivalent to the summation of the
integral along the Steepest Descent Path (SDP), passing through the
pertinent saddle-point, and the residue contributions associated with
all those poles that are inside the closed path C+SDP. A uniform
asymptotic evaluation of the integral along the SDP provides the
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UAPO edge diffraction contribution Ed
0 in terms of the UTD transition

function Ft(·) [8]:

Ed
0 = D

0

(
Ei

β′

Ei
φ′

)
A(s)e−jk0s (15)

wherein s denotes the distance from the diffraction point to the
observation point, A(s) = 1/

√
s and

D
0

=
e−jπ/4

2
√

2πk0 sin2 β′
Ft (k0La (φ± φ′))

cosφ + cosφ′
T

0
ud

0 (16)

In (16), ud
0 is the unit step function equal to 1 or 0 depending

on the fact that S0 is illuminated or not by the incident field, a(x) =
2 cos2(x/2) and L = s sin2 β′. The sign + (−) applies if 0 < φ < π
(π < φ < nπ).

The contribution Ed
n related to Sn can be evaluated in a similar

way, so obtaining:

Ed = Ed
0 + Ed

n =
(

Ed
β

Ed
φ

)
= D

(
Ei

β′

Ei
φ′

)
A(s)e−jk0s

=
(
D

0
+ D

n

)(
Ei

β′

Ei
φ′

)
A(s)e−jk0s (17)

with

D
n

=
e−jπ/4

2
√

2πk0 sin2 β′
Ft [kLa((nπ − φ)± (nπ − φ′))]

cos(nπ − φ) + cos(nπ − φ′)
T

n
ud

n (18)

The sign + (−) in (18) applies if (n − 1) π < φ < n π (0 < φ <
(n − 1) π). The explicit expressions of the matrices T

0
and T

n
are

reported in Appendix.
In a real propagation scenario, radio waves have a spherical wave

front. Consequently, the parameter L and the spreading factor A(s)
to be used must be changed according to [8].

Some numerical examples are reported in the following to test the
effectiveness of the proposed approach. They refer to a lossy dielectric
wedge characterized by ε = 5ε0 and σ = 0.01 S/m. The working
frequency is set to 2.4 GHz and the field is evaluated over a circular
path with radius 10λ0, λ0 being the free-space wavelength.

Numerical results reported in Figs. 4–6 refer to a wedge with
γ = 60◦. The incidence direction is β′ = 45◦, φ′ = 60◦. The incident
field is assumed to have only the β ′ component (Ei

β′ = 1, Ei
φ′ = 0) and
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Figure 4. Amplitudes of the β – component of the GO response and
the UAPO diffracted field contribution.

Figure 5. Amplitude of the β – component of the total field.

illuminates only the face S0. As a consequence, only the diffraction
contribution from its edge must be evaluated. The amplitudes of the
electric field β — component related to the GO response and to the
UAPO diffracted field contribution are reported in Fig. 4. As can be
seen, the GO pattern has two discontinuities in correspondence of the
reflection and incident shadow boundaries at φ = 120◦ and φ = 240◦.
Furthermore, as expected, the UAPO diffracted field is not negligible in
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Figure 6. Amplitude of the φ — component of the total field.

Figure 7. Amplitude of the β — component of the total field.

the neighbourhood of such boundaries. This guarantees the continuity
of the total field (see Fig. 5). As expected, also the φ — component
of the total field, reported in Fig. 6, is always continuous.

Results in Fig. 7 refer to a wedge with γ = 120◦ when illuminated
according to the direction β′ = 45◦, φ′ = 120◦. In this case, both
faces of the wedge are illuminated by the incident field and generate a
contribution to the total diffracted field. The results still confirm that
the UAPO diffracted field solution perfectly compensates the GO field
discontinuities.
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3. TEST-BED PROPAGATION SCENARIOS

The UAPO-based propagation model described in the previous section
is now employed to predict the field strength in two propagation
scenarios and compared with the FDTD technique. The analysis here
presented is only limited to the two dimensional case for saving time
and computer resources.

Both transmitting and receiving antennas are assumed to be
vertically polarized, so scalar problems can be tackled.

The first propagation case is relevant to a street canyon entrance.
The geometry of the considered radio propagation environment is
depicted in Fig. 8. The corners of the street are located at distances
d1 = 4.24 m and d2 = 8.54 m from the transmitter Tx. The incidence
direction on the wedges is specified by the angles φ′1 = 45◦ and
φ′2 = 110.6◦, and the receiver moves along the track AB. The working
frequency is set to 900MHz and the buildings are characterized by
ε = 5ε0 and σ = 0.01 S/m. The street width is equal to 5m and the
observation track is located at its centre. For what concerns the GO
field contributions, no more than two reflections are considered in the
non line-of-sight region and a single reflection of the field diffracted is
taken into account.

A FDTD code based on the Yee algorithm [13] has been developed
in order to have a reference solution. The number of used cell per
wavelength is 15. A Uniaxial Perfectly Matched Layer (UPML) [14]
backed with a PEC wall is employed to bound the computational
domain.

Figure 9 shows the amplitude of the GO response and the
amplitudes of the diffracted field evaluated by means of the UAPO

A

d
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B

2 1

2
1

'φ
2 'φ

1

Figure 8. Propagation at a street canyon entrance.
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Figure 9. Propagation at a street canyon entrance: GO field, UAPO
and Luebbers’ diffracted field.

Figure 10. Propagation at a street canyon entrance: Total field.

solution and the Luebbers’ solution. For what concerns the GO field,
it exhibits three discontinuities. By moving from A to B, they are
related to the boundary of the field reflected from the exterior face
of the wedge 1, the boundary of the field reflected from the interior
face of the wedge 2, and the boundary of the incident field. It is
apparent that the UAPO and Luebbers’ solutions for the diffracted
field are comparable especially in proximity of the GO field shadow
boundaries.
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The relative amplitude of the total field is reported in Fig. 10.
The free-space field is also represented to illustrate the attenuation
produced by the building walls and its maximum is here assumed as
normalization value. As expected, the UAPO diffracted field perfectly
compensates the GO field discontinuities. In addition, the good
agreement attained with the FDTD results validates its accuracy and
effectiveness.

The second example considered as test-bed is relevant to a
crossroads with the presence of two buildings (see Fig. 11). The
frequency and the electromagnetic parameters of the buildings are
the same used in the previous example. In addition, d1 = 5.66 m,
d2 = 9.05 m, φ′1 = 45◦, φ′2 = 83.7◦.
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Figure 11. Propagation at a crossroads.

Figure 12. Propagation at a crossroads: Total field along the track
AB.
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Figure 13. Propagation at a crossroads: Total field along the track
CD.

The receiver moves along two perpendicular paths. In particular,
the track AB is 2.5 m far from buildings 1 and 2, whereas the track
CD is 1.5m far from buildings 1 and 2.

The field levels along the tracks AB and CD are shown in Figs. 12
and 13. As can be seen, both the comparisons with the FDTD results
confirm the accuracy of the proposed UAPO-based model once again.

4. CONCLUSIONS

A model for predicting the propagation in microcellular environments
has been presented in this paper. It is based on the UAPO solution
for the field diffracted by a non-penetrable lossy wedge illuminated at
oblique incidence. The expression of the diffracted field is here derived
in closed form and given in terms of the UTD transition function [8].
It is easy to handle and to implement in ray-tracing tools like that
developed in [9]. Moreover, it relies on a sound theoretical basis, unlike
that in [9], and can be extended to penetrable wedges as future work.

The analysis carried out in this work suggests that the proposed
UAPO-based model is reliable and accurate in making field level
predictions and can be surely applied to complex three-dimensional
radio propagation problems.
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APPENDIX A.

The expressions of the matrices T
0

and T
n

involved in the UAPO
solution for the diffraction coefficients (16), (18) are made explicit.

For what concerns T
0
, it can be expressed as follows:

T
0

= T
1

[
T 0

2
T 0

4
T 0

5
+ T 0

3
T 0

4
T 0

6

]
T 0

7
(A1)

where

T
1

=
(

cosβ′ cosφ cosβ′ sinφ − sinβ′
− sinφ cosφ 0

)
(A2)

is the transformation matrix for the edge- to ray-fixed coordinate
system components,

T 0
4

=
1√

1− sin2 β′ sin2 φ′

( − cosβ′ − sinβ′ cosφ′
− sinβ′ cosφ′ cosβ′

)
(A3)

is the transformation matrix relating the base ê⊥,0, t̂0 to x̂, ẑ;

T 0
7

=
1√

1− sin2 β′ sin2 φ′

(
cosβ′ sinφ′ cosφ′
− cosφ′ cosβ′ sinφ′

)
(A4)

relates the base β̂′, φ̂′ to êi
‖,0, êi

⊥,0 in the plane normal to the incidence
direction and, at last,

T 0
2

=




1− sin2 β′ cos2 φ − cosβ′ sinβ′ cosφ
− sin2 β′ sinφ cosφ − cosβ′ sinβ′ sinφ
− cosβ′ sinβ′ cosφ sin2 β′


 (A5)

T 0
3

=

( 0 − sinβ′ sinφ
− cosβ′ sinβ′ cosφ

sinβ′ sinφ 0

)
(A6)

T 0
5

=
(

0
[
1−R0

⊥
]
cos θi

0

1 + R0
‖ 0

)
(A7)

T 0
6

=

( [
1−R0

‖
]
cos θi

0 0
0 − [

1 + R0
⊥
]

)
(A8)

Note that the matrices T 0
5

and T 0
6

originate from the expressions
of the PO currents on the wedge. In analogous way, the matrix T

n
associated to Sn can be written as:

T
n

= T
1

[
Tn

2
Tn

4
Tn

5
+ Tn

3
Tn

4
Tn

6

]
Tn

7
(A9)
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Tn
2

=



1− sin2 β′ cos2 φ − sin2 β′ sinφ cosφ − cosβ′ sinβ′ cosφ
− sin2 β′ sinφ cosφ 1− sin2 β′ sin2 φ − cosβ′ sinβ′ sinφ
− cosβ′ sinβ′ cosφ − cosβ′ sinβ′ sinφ sin2 β′


(A10)

Tn
3

=

( 0 cosβ′ − sinβ′ sinφ
− cosβ′ 0 sinβ′ cosφ

sinβ′ sinφ − sinβ′ cosφ 0

)
(A11)

Tn
4

=
1√

1− sin2 β′ sin2 (nπ − φ′)( cosβ′ cosnπ − sinβ′ cosnπ cos (nπ − φ′)
cosβ′ sinnπ − sinβ′ sinnπ cos (nπ − φ′)

sinβ′ cos (nπ − φ′) cosβ′

)
(A12)

Tn
5

=
(

0 [1−Rn
⊥] cos θi

n
1 + Rn

‖ 0

)
(A13)

Tn
6

=

( [
1−Rn

‖
]
cos θi

n 0
0 − [1 + Rn

⊥]

)
(A14)

Tn
7

=
1√

1− sin2 β′ sin2 (nπ − φ′)(
cosβ′ sin (nπ − φ′) − cos (nπ − φ′)

cos (nπ − φ′) cosβ′ sin (nπ − φ′)

)
(A15)
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