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Abstract—In this paper, an approach based on a multi-scaling
strategy for the reconstruction of the non-measurable components of
equivalent current distributions is tested against experimental data.
An extensive set of simulations is carried out considering single
and multiple scatterers with homogeneous as well as inhomogeneous
properties. Selected results are reported and discussed to show
potentialities and limitations of the method.

1. INTRODUCTION

The retrieval of unknown targets embedded in inaccessible regions is
a problem still actual and of interest [1] that need the development
of efficient and reliable procedures for their application to real
world problems [2, 3, 27–31]. Many strategies in microwave imaging
reformulate the arising inverse scattering problem as the solution of an
equivalent inverse source problem to determine either the profiles [4]
or the dielectric properties [2–4] of unknown objects embedded in an
inaccessible region. Despite the linearity of the inverse source problem
with respect to the unknown equivalent current density within the
investigation domain [5–7], the problem still remains ill-posed in the
sense of Hadamard [11]. As a matter of fact, the presence of non-
radiating, or non-measurable contributions, causes the non-uniqueness
of the equivalent source [9, 10]. As regards the null space in source
type integral equations, several theoretical studies have been reported
in the scientific literature [11–13]. However, only a few techniques have
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been proposed [3, 4] to recover the contribute of the non-measurable
currents from measured field data. The lack of information on these
components results in too inaccurate reconstructions that generally
suffer from a strong low-pass effect [2, 14]. Since the achievable spatial
resolution is strictly related to the number of basis functions modeling
the unknowns, the higher is the spatial resolution the greater is the
number of basis functions required to obtain accurate reconstructions.
Consequently, the dimension of the null space turns out to be very
large [14] due to the band-limited nature of the scattered field [18].
Moreover, the number of local minima grows, severely affecting the
potentialities of the inversion procedures.

In order to avoid these drawbacks, an iterative multi-resolution
method for the reconstruction of the non-measurable components of
the equivalent current density has been recently presented in [19]. The
key features of the approach, called Iterative Multi-Scaling Approach
for Non-Radiating currents (IMSA-NR), are the ability to reduce
the dimension of the kernel space of the scattering operator and to
improve the accuracy of the reconstruction. In this work, the IMSA-
NR is further assessed by considering experimental data acquired in a
laboratory controlled environment.

The outline of the paper is as follows. The inverse scattering
problem is mathematically formulated in Section 2 where the multi-
resolution procedure is briefly summarized, as well. A representative
set of results is shown in Section 3 to assess the effectiveness of
the IMSA-NR when dealing with experimental data. Eventually,
some conclusions are drawn and possible developments are discussed
(Section 4).

2. MATHEMATICAL FORMULATION

Let us consider a 2D microwave imaging system where a set of V known
probing source generating TM-polarized fields (called incident fields),
Ev

inc(x, y) = Ev
inc(x, y)ẑ, v = 1, . . . , V , illuminates an investigation

domain Γinv. The scattered fields, Ev
scat(x, y), v = 1, . . . , V , are

collected on a set of M (v) electromagnetic sensors located in an
external observation domain Γobs. The IMSA presented in [20, 32–
36] considers a succession of s = 1, . . . , S steps aimed at enhancing the
reconstruction accuracy within a Region-of-Interest (RoI) belonging
to Γinv where the scatterer is supposed to be located. With
reference to the s-th step of the multi-scaling procedure, the unknown
contrast function, τ(x, y), and equivalent current densities, Jv

eq(x, y),
v = 1, . . . , V , are represented through a linear combination of
rectangular basis functions (Ωn(i) (x, y) and Υn(i) (x, y), respectively)
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having different resolution such that

τ(x, y)=
I∑

i=1

N(i)∑

n(i)=1

τ(xn(i), yn(i))Ωn(i)(x, y), I = s (1)

Jv
eq(x, y)=

I∑

i=1

N(i)∑

n(i)=1

Jv
eq(xn(i), yn(i))Υn(i)(x, y), I = s (2)

where the index i represents the spatial resolution level, i = 1, . . . , I,
I = s being the finer resolution and N(i) is the number of partition
sub-domains at the i-th resolution level. To solve the inverse problem
at hand, the Data and State equations are evaluated at each step of the
multi-resolution approach within the RoI where a synthetic zoom takes
place [21] and the dielectric properties of the remaining part of Γinv

are set to those of the background. More specifically, the Lippmann-
Schwinger integral equations [22] are expressed as

Ev
scat (xm, ym) =

N(i)∑

n(i)=1

Jv
eq

(
xn(i), yn(i)

)
Gext,v

2d

(
An(i), ρn(i),m

)
(3)

∀ (xm, ym) ∈ Γobs ; m = 1, . . . ,M (v) ; v = 1, . . . , V

with i = I = s and

τ
(
xn(i), yn(i)

)
Ev

inc

(
xn(i), yn(i)

)
= Jv

eq

(
xn(i), yn(i)

)− τ
(
xn(i), yn(i)

)




N(i)∑

u(i)=1

Jv
eq

(
xu(i), yu(i)

)
Gint,v

2d

(
Au(i), ρu(i),n(i)

)


 (4)

∀ (
xn(i), yn(i)

) ∈ Γinv ; v = 1, . . . , V

where the unknown contrast function is defined as

τ (x, y) = ε̃(x,y)
ε0

− 1 , (5)

ε̃ (x, y) = ε0

{
εR (x, y)− j σ(x,y)

ωε0

}
being the complex permittivity.

Moreover, εR and σ are the relative permittivity and conductivity,
respectively, and ε0 is the permittivity of the free-space. In (3) and
(4), Gext,v

2d and Gint,v
2d denote the discretized Green’s operators [20].

Moreover, An(i) (or Au(i)) is the area of the n-th (or u-th) cell at

the i-th resolution level, ρn(i),m =
√(

xn(i) − xm

)2 +
(
yn(i) − ym

)2 and

ρu(i),n(i) =
√(

xu(i) − xn(i)

)2 +
(
yu(i) − yn(i)

)2. It is well known [6] that
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the equivalent current densities Jv
eq (x, y) can be expressed through the

linear combination of two different contributions

Jv
eq (x, y)=

I∑

i=1





R(i)∑

n(i)=1

θv
n(i)Θ

v
n(i) (x, y)+

N(i)∑

n(i)=R(i)+1

φv
n(i)Φ

v
n(i) (x, y)



(6)

namely the minimum norm (MN) or radiating current density
and the non-measurable (NR) current density where in (2) it is
{Jv

eq(xn(i), yn(i))} = {θv
n(i)}∪{φv

n(i)} and {Υn(i)(x, y)} = {Θv
n(i)(x, y)}∪

{Φv
n(i)(x, y)}. The MN components of the equivalent source generate

the scattered fields in the observation domain Γobs. Their coefficients,
θv
n(i), can be defined at each step of the multi-resolution procedure

through a Singular Value Decomposition (SV D) of the Green’s
operator by solving Eq. (3). More in detail and according to the
guidelines in [7], these coefficients are given by

θv
n(i) =

1
ξv
n(i)





M(v)∑

m=1

[Uv
m(x, y)]∗Ev

scat(xm, ym)



 , n(i) = 1, . . . , R(i) (7)

where ξv
n(i), n(i) = 1, . . . , R(i), is the set of non trivial singular values,

R(i) being the rank of the Green’s operator, and {Uv
m(x, y)} is an

orthonormal system of eigenvectors obtained from the SV D. The
basis functions {Θv

n(i)(x, y)}, n(i) = 1, . . . , R(i), and {Φv
n(i)(x, y)},

n(i) = R(i) + 1, . . . , N(i), used in (6) are two sets of orthogonal
eigenvectors still defined through the SV D [7].

In order to compute the non-radiating coefficients, φv
n(i), n(i) =

R(i) + 1, . . . , N(i), as well as the coefficients of the contrast function,
τ(xn(i), yn(i)), n(i) = 1, . . . , N(i), the following cost functional, Ψ(s) =
Ω(s)

C(s) , is minimized at each step of the multi-resolution procedure where

Ω(s) =
V∑

v=1

I∑

j=1

N(j)∑

n(j)=1

{
w

(
xn(j), yn(j)

) ∣∣τ (
xn(j), yn(j)

)
Ev

inc

(
xn(j), yn(j)

)

−



R(j)∑

t(j)=1

θv
t(j)Θ

v
t(j)

(
xn(j), yn(j)

)
+

N(j)∑

t(j)=R(j)+1

φv
t(j)Φ

v
t(j)

(
xn(j), yn(j)

)



+ τ
(
xn(j), yn(j)

) N(j)∑

u(j)=1




R(j)∑

t(j)=1

θv
t(j)Θ

v
t(j)

(
xu(j), yu(j)

)
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+
N(j)∑

t(j)=R(j)+1

φv
t(j)Φ

v
t(j)

(
xu(j), yu(j)

)

Gv

2d

(
Au(j), ρu(j),n(j)

)
∣∣∣∣∣∣

2
 (8)

and C(s) is the normalization coefficient

C(s) =
V∑

v=1

I∑

j=1

R(j)∑

n(j)=1

{
w

(
xn(j), yn(j)

) ∣∣∣θv
t(j)Θ

v
t(j)

(
xn(j), yn(j)

)∣∣∣
2
}

. (9)

Moreover, w is a weighting function defined as

w
(
xn(j), yn(j)

)
=

{
0 if

(
xn(j), yn(j)

)
/∈ RoI

1 if
(
xn(j), yn(j)

) ∈ RoI
(10)

The multi-step process stops (s = Send) when a stationary condition
based on the analysis of qualitative reconstruction parameters [19] is
achieved. To minimize the functional Ψ(s), a well assessed conjugate
gradient approach based on an alternate minimization strategy [23] is
considered.

3. EXPERIMENTAL VALIDATION

In this section, numerical results concerned with the inversion of
experimental aspect-limited data as reported and analyzed. The first
part of this section deals with the reconstruction of homogeneous
lossless as well as lossy dielectric targets [24]. The reconstruction
of inhomogeneous objects [25] is discussed in the second part. The
scattering data have been made available thank to the courtesy of the
Institute Fresnel, Marseille, France. A thoroughly description of the
experimental setup can be found in [24] and [25, 37].

In order to quantify the effectiveness of the proposed approach
and to compare with the single step (bare) procedure [7], the location
error, δ, and the occupation area error, ∆, are defined as

δ =

√[
xopt

c − xref
c

]2
+

[
yopt

c − yref
c

]2

λ
(11)

and

∆ =
{

Lopt − Lref

Lref

}
× 100 (12)

where the apexes “opt” and “ref” mean retrieved and actual quantities,
respectively. Moreover, (xc, yc) is the position of the barycenter of the
scatterer and L is its radius.
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3.1. Homogeneous Scatterers

The first experiment deals with the reconstruction of a single lossless
dielectric cylinder (test case “dielTM dec8f.exp”) which is supposed
to lie within a square region of side 30 cm. The object is located at
(xref

c = 0.0, xref
c = −30.0) mm and is characterized by a contrast value

equal to τ(x, y) = 2.0 ± 0.3. Fig. 1 shows the reconstructions of the
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Figure 1. Dataset “dielTM dec8f.exp” — Benchmark “Mar-
seille” [21]. Object function reconstruction — Retrieved distribu-
tions with the “bare” procedure (left) and the IMSA-NR approach
at s = Send (right). Working frequency: (a)(b) f = 1 GHz, (c)(d)
f = 2 GHz, (e)(f) f = 3 GHz, (g)(h) f = 4 GHz, (i)(l) f = 5GHz,
(m)(n) f = 6 GHz.
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object function of the bare approach (left column) and the IMSA-
NR (right column). Six different illumination frequencies in the range
[1; 6]GHz with step 1 GHz have been used. At each frequency, V = 36
different views have been considered and the data have been collected
on M (v) = 49 measurement points [24]. The side of the investigation
domain expressed in wavelengths varies from one λ at the lowest
frequency up to 6λ at the highest frequency. In each simulation, Γinv

has been subdivided into N = 400 and N(i) = 100, i = 1, . . . , I, cells
for the bare and multi-resolution approach, respectively.
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Figure 2. Dataset “dielTM dec8f.exp” — Benchmark “Mar-
seille” [21]. Qualitative error figures for the reconstructions of Fig. 1:
(a) location error δ and (b) occupation area error ∆.
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Figure 3. Dataset “dielTM dec8f.exp” — Benchmark “Mar-
seille” [21]. Equivalent current density reconstruction — Retrieved dis-
tributions with the “bare” procedure [(a)–(c), (g)–(i)] and the IMSA-
NR approach at s = Send [(d)–(f), (l)–(n)]. Working frequency: (a)(d)
f = 1GHz, (b)(e) f = 2 GHz, (c)(f) f = 3GHz, (g)(l) f = 4 GHz,
(h)(m) f = 5 GHz, (i)(n) f = 6 GHz.
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As it can be observed (Fig. 1), the values of the object functions
retrieved with the IMSA-NR method are much closer to the actual
ones and, thanks the multi-scaling procedure, the scatterer is better
localized within the investigation domain Γinv where the actual position
of the scatterer is indicated by the dashed line. This fact is further
confirmed by the values of the error figures (11) and (12) in Fig. 2(a)
and Fig. 2(b) pointing out that the IMSA-NR solutions are definitely
better than those retrieved with the bare procedure. Although some
location errors (mainly in the high frequencies) for the IMSA-NR are
higher than those of the bare method [Fig. 2(a)], it should be noted
that the corresponding occupation area errors of the bare procedure
are one order of magnitude higher than those of the IMSA-NR
[Fig. 2(b)]. Consequently, although the position of the barycenter is
better estimated by the bare method, the qualitative reconstructions
turn out being worse as compared to the results of the IMSA-NR.

The reconstructions of the equivalent current densities for the
experiments in Fig. 1 are given in Fig. 3. On one hand, it is worth
noting that the solutions at the lower frequencies are better than those
retrieved at higher frequencies. On the other hand, the IMSA-NR
approach always outperforms the bare procedure in terms of retrieved
current distributions as well as absence of noise and artifacts in the
background. As far as the minimization of Ψ is concerned, the value
of the cost function at each iteration is reported in Fig. 4 for the data
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Figure 4. Dataset “dielTM dec8f.exp” — Benchmark “Mar-
seille” [21] (f = 4 GHz) — Behavior of the cost function value for
the “bare” procedure and the IMSA-NR approach.
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collected at 4 GHz, where Send = 4. In the simulations, K = 2000
iterations are considered for the bare procedure and K(s) = 2000
iterations are used at each step of the multi-resolution strategy, i =
1, . . . , I. For the sake of completeness, some computational indexes for
the results related to Fig. 4 are reported in Table 1 where U is the
number of problem unknowns, Ktot is the total number of iterations,
Ttot and Tk is the total CPU time and that required for a single
iteration, respectively. The numerical simulations have been run on
a 3 GHz PC with 1 GB of RAM.
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Figure 5. Dataset “twodielTM 8f.exp” — Benchmark “Mar-
seille” [21]. Object function reconstruction — Retrieved distributions
with the IMSA-NR approach at s = Send. Working frequency: (a)
f = 1 GHz, (b) f = 2 GHz, (c) f = 3 GHz, (d) f = 4GHz.
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Table 1. Dataset “dielTM dec8f.exp” — Benchmark “Marseille” [24]
(f = 4GHz). Computational Issues — Values of the computational
indexes in correspondence with the bare procedure and the IMSA-NR
approach.

Bare IMSA-NR

U 2.96× 104 7.4× 103

Ktot 2000 8000
Send − 4

Tk [sec] 6.08× 10−1 2.64× 10−2

Ttot [sec] 1224.3 214.4

In the second experiment, the data set “twodielTM 8f.exp” is
taken into account. Two objects identical to that of the previous
example are embedded within the region under test. The distance
between the two barycenters is d = 90mm and the data have
been collected as for the first experiment. The reconstructed object
functions obtained through the IMSA-NR approach are shown in
Fig. 5. The images are concerned with the inversions of the data at
f = [1, 2, 3, 4]GHz. The best reconstruction from both a quantitative
and qualitative point of view is achieved at 3 GHz [Fig. 5(c)]. It is
also interesting to notice that at lower frequencies the reconstructions
are characterized by a low-pass behavior [Fig. 5(a)], while sharper
edges result at higher frequencies. Moreover, the distance between
the barycenters is over-estimated at f = 2 GHz [Fig. 5(b)] and under-
estimated at f = 4 GHz [Fig. 5(d)].

The reconstruction of a lossy target is performed in the third
experiment (“rectTM cent.exp”). The rectangular cylinder is located
at the center of the investigation domain. It has been illuminated
by a TM-polarized wave [24] at f = 4 GHz. The dimensions of
the scatterer in wavelengths turns out being equal to 0.17λ × 0.34λ.
Fig. 6 gives the reconstructions of the object function [Figs. 6(a)–
(b)] and the equivalent current density [Figs. 6(c)–(d)] from the bare
procedure [Figs. 6(a)–(c)] and the IMSA-NR approach [Figs. 6(b)–
(d)]. Although some artifacts are present in the background [see
Figs. 6(b) and 6(d)], the enhancement in the reconstruction is non-
negligible.
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Figure 6. Dataset “rectTM cent.exp” — Benchmark “Marseille” [21]
(f = 4 GHz) — Reconstruction of (a)(b) the object function and of
(c)(d) the equivalent current density retrieved with (a)(c) the “bare”
procedure and (b)(d) the IMSA-NR approach.
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Figure 7. Dataset “FoamDielExtTM” — Benchmark “Marseille” [22].
Object function reconstruction — Retrieved distributions with the
“bare” procedure (left) and the IMSA-NR approach at s = Send

(right). Working frequency: (a)(b) f = 2 GHz, (c)(d) f = 3GHz,
(e)(f) f = 4 GHz, (g)(h) f = 5GHz.
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3.2. Inhomogeneous Scatterers

In this section, the reconstruction of inhomogeneous scatterers is dealt
with. Two different experiments are taken into account, namely
the data set “FoamDielExtTM ” and “FoamDielIntTM ” [25]. Two
scatterers of radius L1 = 80mm and L2 = 30 mm and contrast
value equal to τ1(x, y) = 0.45 and τ2(x, y) = 2.0 are considered. In
the first experiment, the objects are placed one close to the other
(Fig. 7 — dashed line). In the second one, the smaller scatterer
is located within the bigger one (Fig. 8 — dashed line). For each
illumination frequency, V = 8 different views and the same number
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Figure 8. Dataset “FoamDielIntTM” — Benchmark “Marseille” [22].
Object function reconstruction — Retrieved distributions with the
IMSA-NR approach at s = Send. Working frequency: (a) f = 2 GHz,
(b) f = 3GHz, (c) f = 4 GHz, (d) f = 5 GHz.
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of measurement points as for the previous examples (M (v) = 49) are
used. Moreover, the dimension as well as the discretization of Γinv are
set to those considered for homogeneous scatterers. As far as the test
case “FoamDielExtTM ” is concerned, the distributions of the object
function retrieved by means of the bare procedure and the IMSA-NR
approach are compared in Fig. 7 where f ∈ [2; 5] GHz. Whatever the
case, the two objects can be clearly distinguished both in terms of
dimension as well as contrast function value when using the IMSA-
NR. The same cannot be stated for the reconstructions with the bare
approach. As a matter of fact, many artifacts are present in Fig. 7(a)
and Fig. 7(e) when f = 2 GHz and f = 4 GHz, respectively.

Finally, the IMSA-NR approach is tested against the experimen-
tal data set “FoamDielIntTM ” and the solutions obtained at the fre-
quencies f = [2, 3, 4, 5]GHz are given in Fig. 8. Although the two
objects can be identified in all the reconstructions, the scatterers are
better localized and the best result is obtained when working at 4 GHz.

4. CONCLUSIONS

In this paper, the IMSA-NR approach for the solution of inverse
scattering problems has been validated against experimental data.
The results have confirmed the effectiveness of the multi-resolution
approach as compared to the single step method. In all the
reported examples, the reconstructions of the IMSA-NR resulted
quite accurate both in terms of qualitative and quantitative imaging.
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