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Abstract—This paper provides a reliable dielectric measurement
theory of the open resonator for non-planar objects such as convex-
concave objects. It is the first time that the complete analytical
formulas of the complex permittivity are presented by means of the
second-order theory of the open resonator and field matching method.
Furthermore, a measurement system is designed and built at Ka
band, and the consistency of the results between planar and non-
planar samples verifies the accuracy of the new theory. Finally, the
experimental error analysis is investigated.

1. INTRODUCTION

It is necessary to get the information of dielectric properties
of materials in designing any microwave and millimeter wave
circuit. Meanwhile, the permittivity and loss tangent need
to be known accurately in designing various components such
as dielectric waveguide, dielectric antenna, dielectric substrate,
protective window, radome and quasi-optical components. Most
classical methods to measure dielectric properties, such as the
transmission/reflection method [1, 2, 21, 22], closed cavity method [3],
perturbation method [23], time domain reflectometry method [24, 25]
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and traditional open resonator method [4], are destructive since they
require tedious sample preparation. Besides the cost and delays for
such operations, these destructive techniques are quite unsuited for on-
line control of industrial processes and some medical applications [5].
Hence, it is very necessary to achieve dielectric measurement of the
non-flat objects, particularly the low loss objects with concave-convex
surface geometry, in the design and application of lens, radome and
circuit substrate.

A number of nondestructive measurement methods have been
developed at the microwave band such as the open-ended coaxial
line method [6], open-ended waveguide method [7, 8] and free space
method [9, 10]. However, it is difficult to employ the traditional
transmission line methods measuring non-planar objects with low loss
materials at millimeter frequencies due to very large measurement
errors of the loss tangent. The free space method can be applied to
the non-planar measurement [10], but it has several disadvantages: (1)
for materials with dielectric loss tangent less than 0.1, the traditional
free-space method is found to be inaccurate since the measurement
of the reflection and transmission coefficient is non-sensitive to low
loss; (2) the inversion formulas of the non-planar case appeared in [10]
still adopt the formulas of the planar case, assuming that the plane
wave is incident to the flat plate with uniform thickness. Only if the
curvature radii of non-planar objects relative to the beam diameters
of the focused antennas are large enough, the above assumption is
approximately effective. Therefore, the measure range and accuracy
are limited.

The traditional open resonator technique has many advantages
such as good single-mode performance, high Q value and high
measurement accuracy. It has been proven to be a powerful tool for
measuring the complex permittivity of planar materials, particularly
for low loss materials at millimeter frequencies [4, 11–13]. However, the
traditional technique requires elaborate preparation to obtain planar
sample. So the improved open resonator technique is very necessary to
achieve dielectric measurement of non-planar objects in the millimeter
wavelength band. The topic is rarely reported in the literature.
Ref. [14] makes a meaningful attempt and provides a kind of guiding
method for the measurement of the convex-concave dielectric samples.
However, there are still some limitations in [14] as follows: (1) only
indicative formulas of the complex permittivity are provided; (2) there
are some errors in the calculation of the loss tangent; (3) its derivation
is based on the one-order theory (scalar theory) of the open resonator,
and the accuracy of measurement theory is to be improved.

Based on the second-order theory (vector theory) of the open
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resonator, an improved measurement theory for dielectric measurement
of low loss objects with convex-concave geometry is presented, and the
complete analytical formulas of the complex permittivity are derived
in this paper. Furthermore, a measurement system at Ka band is
constructed, and the comparison of the measurement results between
the flat samples and non-planar ones is used to verify the effectiveness
and accuracy of the new theory. Finally, the systematic error analysis
of the measurement system is discussed in detail.

2. MEASUREMENT THEORY

A hemispherical open resonator, which consists of a plane mirror and a
spherical mirror as shown in Fig. 1, supports a complete and orthogonal
set of resonant modes. Only the fundamental resonant mode (quasi-
TEM00q mode) is considered.

By the field matching method, it is assumed that when the
convex-concave object is placed in an appropriate location, the two
curve air-dielectric interfaces SA and SB are coincident with the beam
wavefronts respectively. As shown in Fig. 1, the entire region of front
view is separated into three regions by two constant-phase surfaces.
As the center of the plane mirror, O is also the coordinate origin. t
represents the location of samples along the axis z; d represents the
axial thickness; D represents the cavity length.

output waveguideinput waveguide

Spherial mirror

Plane mirror
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d D
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z

Figure 1. The schematic of non-planar measurement of the open
resonator.
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The field of each region can be written as [15]:
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where the subscript i denotes i-th region (i = 1, 2, 3); Ai denotes the
amplitude factor of the i-th region; ρ denotes the distance from the
axis z in the cross section; n2 = n3 = 1, n1 is the refractive index of
the dielectric to be tested, n1 = n; k is the wave number of free space;
ψi is the matching factor of phase; Zi is the wave impedance of the
i-th region and Z2 = Z3 =

√
µ0/ε0 = η0, Z1 =

√
µ0/εrε0 = 1

nη0. The
virtual displacement z0i, waist w0i, curvature radius of the wavefront
Ri, extra phase shift φi and ξi are defined respectively by
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where zi represents the axial position of beam waist corresponding to
the i-th region.

2.1. The Formula of the Relative Permittivity

Since z2 = 0 and the standing-wave field of region 2 satisfies the
boundary condition Ex2 = 0 at ρ = 0, z = 0, we have

ψ2 = −[k · 0− φ2(0) + ξ2(0) + k · 0/2R2(0)] = 0 (3a)

Similarly, the standing-wave field of region 3 satisfies the boundary
condition Ex3 = 0 at ρ = 0, z = D, we have

ψ3 = −kD + φ3(D)− ξ3(D) (3b)

We wish to match the fields as accurately as possible across the
two air-dielectric interfaces. First-order matching of radial variation of
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amplitude and phase requires that the following equations hold, that
is, at SB

w1(t) = w2(t) (4a)
R1(t) = R2(t) (4b)

at SA

w1(t + d) = w3(t + d) (5a)
R1(t + d) = R3(t + d) (5b)

Equations (4) and (5) can be concluded by the ABCD law
of Gaussian beam and the spherical transition matrix of Gaussian
beam [16].

When the air-dielectric interfaces are coincident with the
wavefronts of Gaussian beam, the condition for resonance is that the
wave impedances on both sides of the two curved interfaces should be
equal. The results are

1
n

tan [nkt− φ1(t) + ξ1(t) + ψ1] = tan [kt− φ2(t) + ξ2(t)](6a)

1
n

tan [nk(t + d)− φ1(t + d) + ξ1(t + d) + ψ1]

= tan [k(t + d)− φ3(t + d) + ξ3(t + d) + ψ3] (6b)

where k is the wave number of the case of resonance; ψ3 is given in (3b);
ψ1 is an intermediate variable. φ1, φ2, φ3, ξ1, ξ2 and ξ3 are given in (2)
.

The beam parameters of Gaussian beam in each region can be
obtained by means of a series of complicated reduction operations.
According to (2), (4) and (5), the beam parameters of Gaussian beam
can be calculated from the following equations:
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√
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where R0 is the curvature radius of the spherical mirror. n is the initial
value of the refractive index, and from it we want to get real value of
n by iterative method.

To solve Eq. (7), the sample position t must be known. According
to the matching assumption, t shall satisfy the following equations:

Rf = R1(t) = R2(t) (8a)
Rb = R1(t + d) = R3(t + d) (8b)

where Rf and Rb represent the curvature radii of concave surface
(SB) and convex surface (SA) respectively, which can be obtained
by mechanical measurement.

Equation (7) can be classified as the non-linear equations of
variable z3. Its solutions will be multi-valued, which consist of real
and complex roots. The choice of unique root must accord with the
corresponding physical meaning, that is, the location of beam waist of
each region shall satisfy the following condition:

z1 < 0, z2 = 0, z3 > 0 (9)

The effectiveness of condition (9) can be verified from the
calculation of [17].

When R0, D, d, t and the initial value of the refractive index
are known, all beam parameters of every region can be calculated
by (7) and (2). Hence, by eliminating intermediate variable ψ1, n can
be solved from the transcendental Eqs. (6a) and (6b) with iterative
method, and the relative permittivity can be obtained by εr = n2.

2.2. The Formula of the Loss Tangent

The loss tangent of the material under test can be obtained by
calculating the difference in energy losses between the empty resonator
and the resonator with sample. The formula of the loss tangent is as
follows:
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where

l = D − t− d (11a)
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QL is the measured Q value for the resonator containing the sample.
QLFS represents the Q value for the resonator containing an ideal loss-
free sample, which has the same dimensions and permittivity as the
real sample. z0i, w0i are given in Eqs. (2) and (7). ψ1, εr and n can be
calculated from (6).

Reference [14] mistakenly supposes that QLFS is equal to Q0. In
fact, QLFS and Q0 have the following relation:

QLFS = η ×Q0 (12)

where

η = B1/B2 (13a)
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where δP , δS are skin depth of the coating materials of the plane mirror
and spherical mirror respectively, z0i, w0i are given in Eqs. (2) and (7),
k0 = 2πf0/c; f0, w0 and w(D) represent the resonant frequency, waist
radius, and beam radius at the spherical mirror of empty resonator
respectively.

3. MEASUREMENT SYSTEM AND MEASUREMENT
RESULTS

As a test of the above theory, measurements are carried out at Ka band
for PTFE (Teflon) samples with one convex and one concave surface.
The measurement of empty resonator and planar samples are used to
confirm the credibility and high accuracy of our measurement system.
The comparison of the results between planar and non-planar samples
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Figure 2. The configuration of the open resonator.

with the same materials are used to verify the accuracy of the new
theory.

As shown in Fig. 2, electromagnetic energy in our system is
coupled into and out of resonator by two waveguides with small hole
on their end wall. The frequency variation technique is employed
since the available testing equipment is convenient to the measurement
of frequency sweeping. VNA (vector network analyzer) acts as a
transmitter and receiver. The signal passed through the open resonator
is input to the VNA and indicated on the display. The resonant
frequencies and Q values can be determined by S21 frequency response
curves after fitting in with 3-dB method.

By adjusting the misalignment between two mirrors and
comparing cavity lengths corresponding to different modes [18], the
cavity length over a broad band can be determined precisely. The
unique permittivity is obtained by choosing the group with minimal
standard deviation among groups of multi-valued permittivity [18].
From [19], we can know that an annular absorber sheet can be placed on
the plane mirror to identify the fundamental modes (TEM00q modes)
out of many resonant modes and how to obtain a certified measurement
system.

Take TEM0,0,25 mode of the empty resonator as an example
and combine with experimental data, Table 1 summarizes design
parameters of our open resonator, where ΦS , ΦP are the aperture
diameters of the spherical mirror and plane mirror respectively; Φc is
the diameter of coupling circle hole; QL represents the loaded quality
factor of empty resonator at resonant frequency of 36.648409 GHz.
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Table 1. Mechanical characteristics and basic parameters of the open
resonator.

Resonant
mode at

36.648409
GHz

R0

(mm)
D

(mm)
ΦS

(mm)
ΦP

(mm)
Φc

(mm)
QL

w0

(mm)

TEM0,0,25 150 107.64741 170 120 1.8 21179 13.26

The sample diameters shall be larger than three times of the beam
diameter so as to prevent the influence of diffraction at sample edge
on the measurement accuracy. Through a specially designed sample
holder, non-planar samples are placed inside the open resonator. The
sample holder consists of two hollow circular ring covers, the upper
and lower covers. The two covers have fixed pitch. By the rotation of
the lower cover, the location of the sample can be suitably adjusted
by 0.05 mm steps. According to all modes among 30GHz–40 GHz, the
resonant frequencies and Q values of empty resonator and resonator
containing the sample are measured, and the relative permittivity and
loss tangent are obtained by Eqs. (6) and (10).

The measurement results of the three PTFE (Teflon) samples
with convex-concave geometry are shown in Table 2. We adopt
the traditional open resonator method [4, 13, 18, 19] and obtain the
corresponding results for the three Teflon samples with flat form, and
the results are listed in Table 3.

Table 2. Measurement results of convex-concave Teflon at Ka band
(diameters of samples: 120 mm).

Sample
number

Rf

(mm)
Rb

(mm)
Relative

permittivity
Loss tangent

Teflon (1) 2000 429.7 2.011± 0.021 (3.91± 0.61)× 10−4

Teflon (2) 300 212.34 2.029± 0.045 (3.67± 0.8)× 10−4

Teflon (3) 180 160.4690 2.037± 0.032 (3.79± 0.7)× 10−4

where Rf and Rb represent the curvature radii of concave surface (SB)
and convex surface (SA) of the samples respectively as shown in Fig. 1.

For three groups of flat samples in Table 3, the relative standard
deviation of measurement results, corresponding to all modes from
30GHz to 40 GHz, is less than 0.172% in the permittivity and 18.35% in
the loss tangent. No significant change can be seen in the permittivity
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Table 3. Measurement results of flat Teflon at Ka band (diameters of
samples: 70 mm).

Name of
samples

Thickness
(mm)

Relative
Permittivity

Loss tangent

Teflon (4) 2.982 2.0322± 0.0035 (9.41± 1.4)× 10−4

Teflon (5) 5.959 2.0301± 0.0025 (7.46± 1.29)× 10−4

Teflon (6) 8.9210 2.0302± 0.0014 (9.40± 1.70)× 10−4

up to the third figure among the two samples. The above results
on the complex permittivity of Teflon are in good agreement with
those in literature [20]. Hence, the credibility and high accuracy of
our measurement system can be confirmed.

As can be seen from the comparison between Table 2 and Table 3,
the results on the relative permittivity of non-planar samples are in
agreement with those of the flat samples. They only have a small
difference of the second effective figures after decimal point. Errors
in the loss tangent are larger than expected, and this is thought to
be relevant to scattering at the air-dielectric interfaces, which arises
from the imperfect matching and has not been taken into account.
Meanwhile, the dielectric properties of these samples will change
with their different preparation methods, different purity and different
porosity rate. Hence, taking into account the influence of sample holder
and machining error of the samples, the larger standard deviation and
change in the complex permittivity among the samples with the same
material between Table 2 and Table 3 can be accepted.

Experimental errors are mainly caused by uncertainties in the
measurement of sample position, sample geometry, resonant frequency,
and Q value. According to theoretical calculations and experimental
data, we can obtain the following conclusions of error analysis:

(1) For the location of the sample, the deviation more than 0.5 mm
can influence the determination of the second effective figures after
decimal point of the relative permittivity.

(2) For the thickness of the sample, the deviation more than 0.05mm
can influence the determination of the second effective figures after
decimal point of the relative permittivity.

(3) For the cavity length, the deviation more than 0.005 mm can
influence the determination of the third effective figures after
decimal point of the relative permittivity.

(4) The influence on the loss tangent can be neglected when the
deviation of the Q value, thickness, cavity length and resonant
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frequency are less than 600, 0.05 mm, 0.005 mm, and several MHz
respectively.

4. CONCLUSION

By means of the second-order theory of the open resonator and field
matching method, a reliable dielectric measurement theory of the open
resonator for non-planar objects is provided for the first time. The
accuracy of the new theory and the high precision of our measurement
system are verified by the good consistency of measurement results
between flat samples and non-planar samples with the same material.

For an object with convex-concave geometry, we can determine
its complex permittivity accurately with the theory mentioned above
and perturbation theory after obtaining the values of curvature
radius of two interfaces and the thickness along axis through
mechanical measurement. For an actual object with complex shape, a
measurement system with thin beam, which has high spatial resolution
power, should be used to measure different local parts. The relative
research will be reported in future.
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