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Abstract—A novel scheme of combining non-uniform rational B-
splines (NURBS) model with higher-order moment method (HOMM)
is presented. The mesh precision of conforming to practical object is
a major factor for HOMM to yield accurate results. In the present
paper, NURBS technique is employed to model complex objects
accurately with large curved Bezier patches and no factitious geometric
discontinuities are introduced between the adjoining patches. The
higher-order modified Legendre basis functions are defined on Bezier
patch. As a result of the combination of NURBS model with HOMM,
the accuracy of results is greatly improved compared with HOMM on
curved parametric quadrilateral (CPQ) model, meanwhile, the number
of unknowns is much reduced. Numerical results show that NURBS-
HOMM is an efficient technique with good potential to solve the
electromagnetic (EM) problems of complex electrically large objects.

1. INTRODUCTION

The moment method (MM) is a powerful method to simulate
many electromagnetic (EM) problems by discretizing the integral
equations [1]. In traditional MM, the surfaces of 3D objects are divided
into many flat triangle or quadrilateral elements, the size of which is

Corresponding author: Z.-L. Liu (tslliuz@nus.edu.sg).



84 Liu and Yang

on the order of λ/10 in each dimension. Then the low order basis
functions are defined on these elements, such as Rao-Wiltong-Glisson
(RWG) [2] and rooftop [3]. It seems to be a precise technique, but
behind the scenes it’s inherently inaccurate and must be tolerance
dependent. When the electrical size of the object is large, a great
number of elements and unknowns are required, and these lead to the
cost of huge amount of memory and CPU time.

To reduce the computational cost, higher-order moment method
(HOMM) is investigated [4–6]. Higher order polynomials basis
functions are defined on curved parametric quadrilateral (CPQ)
patches of arbitrary order [7], which are used to approximate the
surfaces of 3D objects. The size of the CPQ patch is much larger
than that of the traditional MM mesh, so the number of unknowns is
decreased. However, the accuracy of the CPQ model is still not very
good, even if the order of the patch is high. The factitious geometric
discontinuities between the adjoining CPQ patches are unavoidable,
because no tangential continuous conditions are considered when the
CPQ model is built. So generating conformal mesh for HOMM is one
of the major factors for the accuracy of results.

In recent years, the modeling technique of non-uniform rational
B-splines (NURBS) is popular in computer aided geometric design
(CAGD). It can conformally represent complex bodies very accurately,
and no factitious geometric discontinuities are introduced because it’s
easy to meet the tangential continuous conditions by adjusting the
control points and weights. In 1991, international standardization
organization (ISO) published the standard for the exchange of product
(STEP) model data (identified as ISO 10303) where NURBS was
selected as the only mathematical method to define the shapes of
industrial products [8]. It has been widely used in aircraft design,
shipbuilding and other industries as the general format of model. And
a lot of commercial softwares of computer aided design (CAD) support
NURBS technique such as 3DMax, Maya, UG, etc. So if NURBS can
be combined with computational electromagnetics (CEM), not only
the accuracy will be improved, but also the application of CEM will
be extended.

In the past several years, NURBS has been tried to apply to CEM.
In 1994, Perez et al. analyzed the scattering characteristic of electrically
large objects with physical optics (PO) and NURBS model [9, 10].
Then M. Domingo et al. introduced the RANURS code [11], which is
based on PO+ECM (equivalent currents methods) and NURBS model.
In 1997, the uniform theory of diffraction (UTD) was combined with
NURBS surfaces to compute the radiation of onboard antennas [12]. In
2007, NURBS-UTD was used to solve radiation of antennas mounted
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on complex platform [13].
As mentioned above, several CEM techniques have been well

combined with NURBS model. However, most of them are high
frequency methods (HFM). Compared to low frequency methods
(LFM), HFM are easier to shift to NURBS surfaces, because only local
characteristics of the surfaces are needed to consider, and no normal
continuity and expansion accuracy of the current must be ensured.
Although the hybrid MM-PO method with NURBS [14, 15] has been
studied, triangle elements and RWG basis functions are still used in
MM region, and NURBS surfaces are only for PO region. The true
sense of combining MM with NURBS surfaces was proposed by L. Valle
et al. [16], and the generalization of the planar rooftop basis functions
are defined on Bezier patch. Actually, the advantage of NURBS model
is not well taken by Valle in [16], because the size of patch can’t be too
large (the largest size is λ/4). The limitation of the patch size is due
to low order basis functions, and they can not approximate the surface
current on large patch accurately. Another successful application of
NURBS in CEM is combining characteristic basis function method
(CBFM) with NURBS model [17, 18], and this technique is efficient in
analyzing electrically large objects. So it’s necessary and significant to
study more applications of NURBS in CEM.

The higher-order basis functions can describe the surface current
on large patch accurately and the NURBS model can well fit the
complex object conformally with large curved patches. So, in this
paper, we propose to combine NURBS model with higher-order basis
functions to take full advantages of them. In the authors’ opinion,
NURBS model is a good and necessary choice for HOMM, which may
be an efficient way to handle the EM problems of complex electrically
large objects.

This paper is organized as follows. In Section 2, the definitions
NURBS and Bezier patch are introduced, and the modified expression
of Bezier patch is deduced to meet the requirement of HOMM.
Section 3 presents the methodology of combining NURBS model with
HOMM in detail and gives the matrix equation. Some representative
results are illustrated in Section 4 to show the advantage and efficiency
of NURBS-HOMM. Finally, we give the conclusions in Section 5 to
close the paper.

2. DEFINITION OF NURBS MODEL

This section includes two parts. Firstly, the knowledge of NURBS and
Bezier patch is presented; secondly, the modified expression of Bezier
patch is deduced so that the higher-order basis functions can be defined
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on Bezier patch.

2.1. NURBS and Bezier Patch

The expression of NURBS surface is illustrated as follows [19]

⇀
r (ū, v̄) =

m∑
i=0

n∑
j=0

wij

⇀

P ijN
p
i (ū)N q

j (v̄)

m∑
i=0
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j=0

wijN
p
i (ū)N q

j (v̄)
, ū, v̄ ∈ [0, 1], (1)

where
⇀

P ij are the control points, wij are the weights, and Np
i (t) are

the normalized B-spline basis functions of degree p defined recursively
as [20, 21]

N0
i (t) =

{
1, ti ≤ t ≤ ti+1

0, otherwise

}
, (2)

Np
i (t) =

t− ti
ti+p − ti

Np−1
i (t) +

ti+p+1 − t

ti+p+1 − ti+1
Np−1

i+1 (t), (3)

where ti are the so-called knots which form a knot vector T =
{t0, t1, . . . , tm+p+1}.

Before applying NURBS to CEM, NURBS surface is needed
to transform to Bezier format. The underlying reason why a
transformation is required is the lack of simple numerically stable
algorithms for determining derivatives for NURB-splines. The
transformation is convenient to implement by using Cox-De Boor
algorithm [22].

Bezier patch is defined by the degrees, a set of control points and
weight values, as shown in Figure 1, and expressed in the following

Figure 1. A Bezier patch. The control points and the u-v coordinates
are displayed.
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way
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where
⇀

P ij are the control points, wij are the weights, and Bm
i (t) are

the Bernstein polynomials of degree m defined as

Bm
i (t) =

m!
i!(m− i)!

ti(1− t)m−i, (5)

where t ∈ [0, 1], and for mathematical convenience Bm
i (t) = 0 if

i /∈ {0, 1, . . . , m}.

2.2. Modified Expression of Bezier Patch

As shown in (4), the parameters of Bezier patch ū and v̄ are limited
within [0, 1]. However, higher-order modified Legendre basis functions
are defined on [−1, 1], so Eq. (4) must be modified to meet the
requirement of the basis functions. We now introduce the new
parameters u and v defined as

{
u = 2ū− 1
v = 2v̄ − 1 . (6)

So u, v ∈ [−1, 1], and the expression of Bezier patch can be written in
terms of u and v as

⇀
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j=0

wij

⇀
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wijBm
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. (7)

3. HIGHER-ORDER MOMENT METHOD
FORMULATION ON BEZIER PATCH

In this section, the integral equation for conducting scatter is
introduced first. To solve the integral equation, NURBS model and
HOMM are employed, and the definitions of higher-order modified
Legendre basis functions on Bezier patch and testing functions are
described. Finally, the impedance matrix terms of MM are derived.
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3.1. Integral Equation Formulation

Consider the surface S of an open or closed perfectly electrically
conducting (PEC) scatter with unit normal n̂. Let

⇀

Ei denote the
impressed electric field on surface S.

⇀

JS is the surface current density
induced by

⇀

Ei, and they satisfy the electric field integral equation
(EFIE) on surface S
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where G
(⇀
r ′, ⇀

r
)

is the Green’s function in free space defined as

G
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∣∣∣

4π
∣∣⇀
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k = ω
√

εµ = 2π/λ is the wavenumber, and ⇀
r ′ and ⇀

r are the source
and observation points, respectively.

3.2. Basis Functions on Bezier Patch

NURBS model is transformed to Bezier patches before combined with
HOMM, and the higher-order modified Legendre basis functions [7] are
defined on Bezier patch. For the definition domain of basis functions
is [−1, 1], Eq. (7), the modified expression of Bezier patch, is used.
Consider a PEC surface which is divided into Q Bezier patches of
arbitrary order, as shown in Figure 2.

Figure 2. A PEC surface is divided into Q Bezier patches of arbitrary
order.
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The surface current density
⇀

JS on each patch is described in terms
of the contravariant components as
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where ⇀
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av are the covariant unitary vectors given by
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are expanded as
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where bu
mn and bv

mn are the unknown coefficients, and Ja (u, v) =∣∣⇀
au × ⇀

av

∣∣ is the surface Jacobian. fu
mn (u, v) and fv

mn (u, v) are the
higher-order modified Legendre basis functions defined as

fu
mn (u, v) = P̃m (u) Pn (v) , (13a)

fv
mn (u, v) = P̃m (v) Pn (u) , (13b)

where Pm (u) and P̃m (u) are, respectively, Legendre polynomials and
modified Legendre polynomials expressed as

Pm (u) =
1

2mm!
dm

dum

(
u2 − 1

)m
, (14a)

P̃m (u) =

{ 1− u, m = 0
1 + u, m = 1
Pm (u)− Pm−2 (u) , m ≥ 2.

(14b)

The normal component of the surface current density is continuous
across the common edge, and the detailed discussion can be found
in [7].
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3.3. Matrix Equation Derivation

The Galerkin testing procedure is employed, and the testing functions
are represented as
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(⇀
r
)

=
1

Ja (u, v)
fu

st (u, v) ⇀
au, (15a)

⇀
wv

st

(⇀
r
)

=
1

Ja (u, v)
fv

st (u, v) ⇀
av. (15b)

With Sp and Sq being the observation and source patches,
respectively, the whole surface can be expressed as (Figure 2)
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The subscripts p and q hereafter are used to denote the observation
and source patches.

Equation (8) is tested with (15a), yielding
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is used to transfer the surface gradient operator ∇S to the testing
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Substitute (18) into (17), we obtain
∫

Sp

⇀
wu

st,p ·
⇀

Ei
(⇀
r
)
dSp = jωµ

∫

Sp

⇀
wu

st,p ·
∫

S

⇀

JS

(⇀
r ′

)
G

(⇀
r ′, ⇀

r
)
dS′dSp

+
1

jωε

∫

Sp

∇S · ⇀
wu

st,p

∫

S
∇′S ·

⇀

JS

(⇀
r ′

)
G

(⇀
r ′, ⇀

r
)
dS′dSp . (19)



Progress In Electromagnetics Research, PIER 96, 2009 91

The surface divergence of the testing functions and the surface current
density can be written as
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Substituting (10), (15a), (20a), and (21) into (19), and considering
dS = Ja (u, v) dudv, yield
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When p, q = 1, 2 . . . , Q, Eq. (22) can be expressed in matrix form as

[
[V u

st]p
]

=
[[

Zuu
st,mn

]
pq

[
Zuv

st,mn

]
pq

] [
[bu

mn]q
[bv

mn]q

]
. (23)

where [V u
st]p, [Zuu

st,mn]pq, [Zuv
st,mn]pq, [bu

mn]q and [bv
mn]q are submatrixes

for each value(s) of p and/or q. Elements of [V u
st]p, [Zuu
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are given by

V u
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Similarly, Eq. (8) is tested with (15b), we can obtain another
matrix equation

[
[V v

st]p
]

=
[[

Zvu
st,mn

]
pq

[
Zvv

st,mn

]
pq

] [
[bu

mn]q
[bv

mn]q
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Combine (23) with (27), we get the matrix equation of NURBS-HOMM
[

[V u
st]p

[V v
st]p

]
=

[
[Zuu

st,mn]pq [Zuv
st,mn]pq

[Zvu
st,mn]pq [Zvv

st,mn]pq

] [
[bu

mn]q
[bv

mn]q
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The general form of (28) is [V ] = [Z][b], and [V ], [Z] and [b] are in
block form. The unknown coefficients [b] can be obtained by solving
the matrix Equation (28).

When p = q, the observation and source points are on the
same patch, and we have to solve the singularity of self-term matrix
element. A purely numerical annihilation procedure based on the
Duffy transform [24] is used in this paper, which has been applied
to hexahedrals by Sertel and Volakis [25], and the details can be found
in [7].

4. NUMERICAL RESULTS

In this section, three example will be illustrated, and bistatic RCS
obtained by NURBS-HOMM will be given. As comparison, the results
of HOMM on first order (bilinear) and second order (biquadratic) CPQ
model, Mie’s series (example 1), RWG (example 2), and fast multiple
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method (FMM) (example 3) are given, and the meshes of NURBS
models and bilinear quadrilaterals models (first order CPQ model) are
also displayed. The root-mean-square (RMS) error of the RCS is used
to describe the accuracy of results, and it’s defined as

RMS =

√√√√ 1
Ns

Ns∑

i=1

|σHOMM − σ0|2 (29)

where Ns is the number of bistatic observing points, σHOMM is RCS
in dB calculated by HOMM, and σ0 is that calculated by Mie’s series,
RWG and FMM in the three example, respectively. All examples run
on a PC of 1.86 GHz intel processor with 2 GB RAM.

4.1. PEC Sphere

The first example is a PEC sphere of radius 1 wavelength. The meshes
of NURBS and first order CPQ models consist of (a) 16 Bezier patches
and (b) 54 bilinear quadrilaterals are shown in Figure 3. Figure 4
plots the bistatic RCS of the sphere. The details of the orders of basis
functions, the numbers of patches and unknowns, and RMS errors are
list in Table 1. Obviously, NURBS-HOMM, needs fewer unknowns,
but gives more accurate result than the CPQ model compared with
Mie’s series solution.

(a) (b)

Figure 3. Sphere models consist of (a) 16 Bezier patches and (b) 54
bilinear quadrilaterals.

4.2. PEC Horn

Figure 5 shows a PEC horn modeled by (a) NURBS and (b) bilinear
quadrilaterals. The direction of the Ex-polarized incident plane wave
is θ = 0◦, ϕ = 0◦. Figure 6 plots the bistatic RCS in ϕ = 0◦ plane and
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Figure 4. Bistatic RCS of the sphere and the radius is 1 wavelength.

Table 1. The basis functions orders, number of patches and unknowns,
CPU time, and RMS error for PEC sphere.

Orders of

basis functions

Number of

patches

Number of

unknowns
CPU time (s)

RMS error

(dB)

NURBS M = 3, N = 2 16 276 61 0.451

biquadratic M = 3, N = 2 24 432 227 0.830

bilinear M = 3, N = 2 54 972 107 3.511

sweeping θ from 0◦ to 180◦ obtained from NURBS-HOMM and HOMM
with first and second order CPQ models compared with RWG solution.
The orders of basis functions, the numbers of patches and unknowns,
RMS errors for NURBS, CPQ models are illustrated in Table 2. With
the same orders of basis functions, the result from NURBS model is
more accurate than that from CPQ models, and much fewer patches
and unknowns are needed by NURBS model than by CPQ models.

4.3. Aircraft-like Geometry

The last example is a PEC aircraft-like geometry modeled with (a) 176
Bezier patches and (b) 550 bilinear quadrilaterals, as shown in Figure 7.
The working frequency is 600MHz. The length and wingspan of the
geometry is about 12.86λ and 15.71λ, respectively. The surface area of
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(a) (b)

Figure 5. Horn models consist of (a) 8 Bezier patches and (b) 72
bilinear quadrilaterals.

Figure 6. Bistatic RCS of the PEC horn.

Table 2. The basis orders, number of patches and unknowns, CPU
time, and RMS error for PEC horn.

Orders of

basis functions

Number of

patches

Number of

unknowns
CPU time (s)

RMS error

(dB)

NURBS M = 3, N = 2 8 132 20 0.477

biquadratic M = 3, N = 2 18 306 106 0.556

bilinear M = 3, N = 2 72 1458 228 1.128

RWG n/a 1276 1877 78 0
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the aircraft is about 184.53λ2. The direction of the incident plane wave
is θ = 90◦, ϕ = 45◦, and the polarization is Eϕ. Figure 8 displays the
results of bistatic RCS in xoy plane obtained from NURBS-HOMM and
HOMM on first order CPQ model. For comparison, the result of FMM
with RWG and Galerkin testing is also given in the Figure. Table 3
shows the basis functions orders, numbers of patches and unknowns,
and RMS errors.

Table 3. The basis orders, number of patches and unknowns, CPU
time, and RMS error for PEC aircraft.

Orders of

basis

functions

Number of

patches

Number of

unknowns
CPU time (s)

RMS error

(dB)

NURBS M = 3, N = 2 176 3000 5081 2.365

bilinear 1 M = 3, N = 2 550 9366 8706 4.373

bilinear 2 M = 5, N = 4 550 26610 10360 3.862

FMM n/a 25105 37655 2143 0

When the orders of basis functions are M = 3 and N = 2, NURBS-
HOMM gives the result which agrees well with FMM solution, and only
176 Bezier patches and 3000 unknowns are needed. Compared with
NURBS-HOMM, HOMM on CPQ model can just give the very rough
result (bilinear 1), while more than 3 times numbers of patches and
unknowns are required. Then we increase the basis functions orders of
HOMM on CPQ model and let M = 5, N = 4, which results in 26610
unknowns. But the obtained result (bilinear 2) is still less accurate

(a) (b)

Figure 7. Aircraft models consist of (a) 176 Bezier patches and (b)
550 bilinear quadrilaterals.
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Figure 8. Bistatic RCS of the aircraft.

than that of NURBS-HOMM. Combining NURBS with HOMM can
much reduce the number of unknowns and improve the accuracy of the
result because NURBS model can describe the arbitrary object more
accurately than CPQ model with fewer curved patches as described
in Figure 7. Even if HOMM with CPQ model employs higher basis
functions orders, it still can not provide result of good accuracy.

The mesh precision of conforming to practical object is a major
factor for HOMM to yield accurate results. For simple geometries, the
accuracy of CPQ model is as same as that of NURBS model, such
as the results of second order (biquadratic) CPQ model in example 1
and 2. Actually, sphere and horn are quadratic surfaces in differential
geometry, which have their corresponding second degree expressions

x2 + y2 + z2 = 1 and {z =
√

1− (1−
√

x2 + y2)2, x2 + y2 ≤ 1}.
The second order CPQ model is just another form of expressions in
the local coordinates of each patch. For flat plate and polyhedron,
first order CPQ model also has the same accuracy with NURBS
model. However, practical objects always have arbitrary shapes; they
are complex and usually we can’t find expressions for them, such as
example 3. For these cases, CPQ model is not accurate enough, while
NURBS can conformally represent complex curved surfaces very well,
and no factitious geometric discontinuities are introduced by adjusting
the control points and weights to meet the tangential continuous
conditions.
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5. CONCLUSION

A new scheme that combines NURBS model with HOMM has been
presented. Good quality conformal mesh is a major factor for
HOMM to yield accurate results. NURBS is capable to describe
complex objects conformally with much larger curved patches than
bilinear quadrilaterals, and no factitious geometric discontinuities are
introduced between adjoining patches. So combining NURBS with
HOMM can greatly improve the accuracy of results compared with
HOMM on CPQ model, meanwhile, the number of unknowns is much
reduced. Numerical results show that NURBS-HOMM gives more
accurate results than HOMM on CPQ model and reduces the number
of unknowns by 60–90%. Therefore, NURBS-HOMM is an efficient
technique which has good potential to solve the EM problems of
complex electrically large objects.
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