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Abstract—The edge-based finite element method is used for the
solution of scattering problems. The factorized sparse inverse
preconditioner is considered for the conjugate gradient iterative
solution of the large sparse linear systems generated from the finite
element method. The efficiency of the proposed preconditioner is
illustrated on a set of model problems in the final of the paper. The
results suggest that the sparse inverse preconditioner is very efficient
for the solution of large-scale electromagnetic scattering problems.

1. INTRODUCTION

In the past several decades, full wave simulation methods such as
FDTD [1–3], MOM [4, 5], FEM [6–9] has gained great success in
theory and in practical applications. Of these methods, the finite
element method (FEM) is most popular for its ability in simulating
arbitrary geometries, nonlinear materials and eddy current effects.
Despite of its ability in modeling highly irregular geometries as well
as penetrable and inhomogeneous materials, an important drawback is
the huge computational expenses. When applied to three-dimensional
problems in electromagnetics, the number of unknowns escalates
rapidly as the size of the problem increases. Therefore, the limiting
factor in dealing with three-dimensional problems is the associated
demands on computer storage and solution time. For most wave
propagation problems, such as the waveguide discontinuities or the
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microwave integration circuits, the generated FEM linear system can
usually be solved efficiently with a craftily written direct method,
such as the multifrontal method [10]. However, direct methods scale
poorly with problem size in terms of operation counts and memory
requirements. When scattering problems are considered, the number
of unknowns is usually very large. This is because the absorbing
boundary conditions (ABCs) [11, 12] should be adopted to truncate
the computational domain. To obtain accurate results, ABCs should
be placed at least 0.2λ away in order to obtain accurate results. As
a result, the FEM unknowns generated are usually larger than 30,000
even a very small problem is considered, and systems with several
millions of unknowns are routinely encountered in many applications.
The large size of the problems usually precludes the consideration
of Gaussian elimination-based direct solution methods due to the
prohibitive memory requirement. Further more, FEM linear systems
are usually rather ill-conditioned [13] which is very challenging to solve
with classical iterative methods [14–16]. Optimal or quasi-optimal
multigrid (multilevel) methods [17], which work well for positive
definite systems, often run into serious difficulties when applied to
highly indefinite systems. The p-version multigrid method [18] needs
much memory to solve the inverse of the lowest order FEM matrix and
is unsuitable for large problems. The preconditioners based on shifted
Helmholtz operators [19], which is very efficient for wave propagation
problems, is very inefficient for scattering problems as we tested.
Further more, these methods are all highly sequential. Thus, the
solution of FEM linear systems is the main difficulty in FEM simulation
of scattering problems.

In the past years, most of research contributions on the
FEM algorithm are focused on wave propagation problems. The
consideration of scattering problems with FEM is comparatively
less. Though for perfectly conducting scatterers, the combination
of the boundary integral method (BEM) with the multilevel fast
multipole algorithm (MLFMA) [20] is very efficient. However, there are
many difficulties in dealing with inhomogeneous problems with BEM-
MLFMA. Till now, FEM is still the most powerful method in dealing
with inhomogeneous materials. Therefore, the development of efficient
iterative solvers, especially those with high parallelism for solving
large-scale problems, is of vital important for the FEM solution of
scattering problems. In this paper, the preconditioned Krylov subspace
iterative method [14] is considered. In the next section, a survey on
the preconditioned Krylov subspace iterative methods is given. Then
the approximate inverse preconditioner [21] is introduced for the FEM
simulation of scattering problems.
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2. THE FINITE ELEMENT FORMULATION

The FEM computational domain for a typical scattering problem is
shown in Fig. 1. The scattering target is formed with arbitrary media,
such as inhomogeneous dielectrics, metals, etc. The permittivity and
permeability of the media are denoted as εr and µr respectively. In
order to truncate the FEM computational domain, the outer boundary
of the scattering target is lined with absorbing perfectly matched layers
(PMLs). The distance between the PML interfaces with the scatter is
denoted with d1, and the thickness of the PML layer is denoted as d2.
For simplicity, the computational domain is denoted as Ω, the region
occupied by the scatterer is denoted as Ωsc, the bounding surface of the
scatterer is denoted as Γsc, the normal vector of the bounding surface
is n̂.

The vector Helmholtz equation based on electric field is written:
∇× µ−1

r · ∇ × E − k2
0εrE = 0 (1)

where k0 = ω
√

µ0ε0. In FEM simulation, it is more efficient to
work with the scattered electric field than the total electric field. By
substituting E = Esc + Einc into Eq. (1), one obtain:

∇× µ−1
r · ∇ × Esc − k2

0εrE
sc = −∇× µ−1

r · ∇ × Einc + k2
0εrE

inc (2)
According to the generalized variational principle, the functional
pertinent to the scattering field is written:

F (Esc) =
1
2

∫

Ω

[
µ−1

r (∇× Esc) · (∇× Esc)− k2
0εrE

sc · Esc
]
dV

+
∫

Ωsc

[
µ−1

r (∇× Esc) · (∇× Einc)− k2
0εrE

sc · Einc
]
dV

+
∫

Γsc

[
Esc · n̂×∇× Einc

]
dS (3)

n̂

scΩ

Γ

PML

ε  , µr r

Vacuum

d1

d2

Figure 1. Illustration of the FEM computational domain of scattering
problems.
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Note that in the derivation of Eq. (3), the following formulation
is used:

∇×∇× Einc − k2
0E

inc = 0 (4)

In this paper, tetrahedron elements are used for FEM mesh
discretization. The Whitney basis functions for tetrahedrons are of
the following form:

N = εi1∇εi2 − εi2∇εi1 (5)

Substituting Eq. (5) into Eq. (3), and forcing δF (Esc) = 0, the
FEM linear system can be obtained. In the next section, iterative
solution of the FEM linear system is discussed.

3. PRECONDITIONED KRYLOV SUBSPACE
ITERATIVE SOLVERS

For simplicity, the FEM linear system is written in the following form:

Ax = b (6)

where the coefficient matrix A = [aij ] ∈ Cn×n is a sparse symmetric
matrix. When problem is large, iterative methods are believed to
be the only viable solution means. Especially attractive are the
Krylov subspace iterative methods [14, 15] which involve the coefficient
matrix only in terms of matrix-vector multiplications and a few
vector operations (dot products, vector updates) and can be efficiently
parallelized on high-performance computers. Of these methods, the
general minimal residual solver (GMRES) and the conjugate gradient
(CG) solver is most popular. As FEM matrix is ill-conditioned,
GMRES is usually not so efficient as CG due to the loss of iteration
history by truncation. Further more, GMRES needs more memory
than CG. As a result, CG iteration is used in this paper. Standard
CG is only suit for self-adjoint, positive definite systems. For solving
the non-Hermitan FEM matrix, Eq. (6) should be changed into the
following form:

AHAx = AHb. (7)

Here AH is the conjugate transpose of A. The convergence rate
of CG is mainly determined by the condition number of the coefficient
matrix. For the ith iteration, the error is bound by the following
relation [22]:

∥∥∥x− x(i)
∥∥∥

A
≤ 2

∥∥∥x− x(0)
∥∥∥

A

(√
k − 1√
k + 1

)i

(8)



Progress In Electromagnetics Research, PIER 98, 2009 19

Here x denotes the exact solution and x(i) the approximate
solution at the ith iteration step. K is the condition number defined
as:

K =
λ∗maxλmax

λ∗minλmin
(9)

with λmax the largest and λmin the smallest eigenvalue of A. Therefore,
it is possible to obtain information about the convergence of CG
by interpreting the spectrum distribution of the system matrix [13].
As the FEM matrices are usually ill-conditioned, standard CG
converges very slowly. Fortunately, the efficiency and robustness
of such iterative method can be improved dramatically by applying
appropriate preconditioners to the linear system:

M−1AN−1y = M−1b, x = N−1y (10)

where M ,N are the preconditioning matrices. If M , N are skillfully
constructed, the modified linear system is better conditioned and the
convergence of CG may be substantially enhanced.

The most popular preconditioners are those based on incomplete
LU factorizations of A [23], which are fairly robust and exhibit
good convergence for positive definite matrices, yet may fail on
strongly indefinite matrices. Though the addition of a perturbed
diagonal matrix can stabilize the ILU algorithm, however, there
are still two difficulties to applying ILU preconditoners in FEM.
Firstly, the best perturbed diagonal matrix is hard to determine.
Secondly, when the fill-in elements increased, the efficiency of the
ILU preconditioner doesn’t necessarily improve, as is often the case in
the FEM analysis [24]. Thus the efficiency of the ILU preconditioner
cannot be improved through adding more fill-in elements. As have
been demonstrated in [25], the SSOR preconditioner is more stable
and efficient than the ILU preconditioner. Further more, as the ILU
factorization is based on Gaussian elimination, and the forward and
backward triangular solves that form the preconditioning operations
are highly sequential in nature, it is difficult to be implemented
efficiently on parallel computers, especially for unstructured problems.

In this paper, preconditioning techniques based on the sparse
approximate inverses (AINV) and factorized sparse approximate
inverses (FSAI) are investigated [21]. The basic idea underlying this
class of algorithms is that a sparse matrix M ≈ A−1 or MN ≈ A−1

is explicitly computed. Approximate inverse techniques rely on the
assumption that for a given sparse matrix A, it is possible to find a
sparse matrix M which is a good approximation, in some sense, of
A−1. It can be proved that the inverse of an irreducible sparse matrix
is structurally full. Nevertheless, it is often the case that many of the
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entries in the inverse of a sparse matrix are small in absolute value,
thus making the approximation of A−1 with a sparse matrix possible.
There are many methods to construct the approximate inverse
preconditioner, such as the incomplete biconjugation algorithm [26],
the Frobenius norm minimization algorithm [27], etc.. Compared
with the biconjugation algorithm and the ILU preconditioners,
the approximate inverse preconditioner based on Frobenius norm
minimization has many advantages: The preconditioning operation is
highly parallel, the construction and application of the preconditioner
is immune from such numerical difficulties as pivot breakdowns and
instability. As a result, the Frobenius norm minimization algorithm is
considered in this paper. The construction process of FSAI and AINV
is quite similar. However, the FSAI preconditioner can save about 50%
memory compared with AINV preconditioner. As the FEM matrix is
symmetric, the FSAI preconditioner is mainly proposed in this paper.
In the following, the construction of the FSAI preconditioner is mainly
discussed.

4. SPARSE APPROXIMATE INVERSE
PRECONDITIONING

Let A = (aij) be a n× n complex sparse symmetric matrix which can
be factorized into A = UT U . The FSAI preconditioning is searched
which is a good approximation to UT :

AZ ≈ UT (11)

where Z = (zij) is an upper triangular matrix that is completely
determined by its sparsity pattern S:

zij = 0 if (i, j) ∈ S (12)

The sparsity pattern S is assumed to satisfy the conditions:

{(i, j) : i > j} ⊆ S ⊆ {(i, j) : i 6= j} (13)

In this paper, S is chosen to be the same as the pattern of the
upper triangular part of the original matrix A. The Cholesky factor
U is unknown. However, Z can be computed to make the upper
triangular of AZ as minimal as possible. This can be realized by two
steps. Firstly, defining Z̄ = (z̄ij) an auxiliary matrix with the same
zero pattern as Z, the non-zero entries of Z̄ is searched by solving the
following least square problems [14]:

F
(
Z̄

)
=

n∑

k=1

min ‖Akz̄k − ek‖2
F (14)
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where Ak = (aij), 1 ≤ i, j ≤ k, z̄k = [z̄k1, z̄k2, . . . , z̄kk], ek = [0, 0 . . . , 1]
are vectors of order k. Denoting J the set of indices with non-zero
entries in Z̄k, and I the so-called shadow of J in Ak. I is defined as
the set of the indices of the non-zero rows in the submatrix Ak (:, J).
Hence (14) can be reduced to the solution of the following least square
problems:

F (Z̄) = min
∥∥A′kz̄

′
k − e′k

∥∥ , k = 1, . . . , n (15)

with
A′k = Ak (I, J) , z̄′k = z̄k (J) , e′k = ek (I)

This minimization problem (15) is embarrassingly parallel. To
solve the least squares problems, the classical method is to perform
QR-decompositions to A′k. However, to reduce the costs of computing
Z̄, the conjugate gradient (CG) iterative techniques is applied in this
paper to solve the least square problems in Eq. (15). To apply CG
iteration, the least square problems in Eq. (15) is firstly transformed
into the following linear equations:

A′Hk A′kz̄
′
k = A′Hk e′k, k = 1, . . . , n (16)

The matrix-vector multiplications during CG iterations can be
done in sparse mode in two steps with q = A′kp, r = A′Hk q, where
p, q, and r are small dense vectors. The sparse multiplication A′kp is
carried out by |J | SAXPYs (i.e., Scalar Alpha X Plus Y) of sparse
column vectors, while A′Hk q is computed as |J | inner products of a
sparse column of A′k with the full vector q. Through this scheme,
the construction of the preconditioner can take full advantage of the
sparsity of A′k. What’s more, as the number of nonzeros in z̄′k is
usually very small, CG iteration converges very rapidly. Thus the
preconditioner can be constructed efficiently.

After Z̄ is constructed, the FSAI preconditioning matrix Z can be
obtained through the following operation:

Z = Z̄D (17)

where:
D =

[
diag

(
Z̄

)]−1/2 (18)

Once Z is obtained, the preconditioned matrix is written:

A → ZT AZ (19)

and the preconditioned equations is written:

ZT AZy = ZT b, x = Zy (20)

In Eq. (15), if the sparsity pattern of z̄k is chosen the same as
the kth column of A, the AINV preconditioner will be constructed.
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The construction process is the same with that of FSAI, except the
operation in Eq. (17) is not needed, i.e., the AINV preconditioner is
Z̄. Note that to guarantee accuracy, right preconditioning is used for
AINV in this paper.

As the solution of the normal equations is needed, version 3 of the
CG algorithm in [6] is used. In this algorithm, the residual is the same
as that of the original system each iteration. Thus no digits of accuracy
are lost. To show the validity and capability of the FEM technique
and the efficiency of FSAI preconditioning, a set of electromagnetic
problems are tested in the next section.

5. NUMERICAL RESULTS

In the experiments, unless otherwise stated, the initial approximate
solution is taken to be zero, and the iterative procedures terminated
when the normalized residual norm reaches −60 dB.

The first example considered is a perfectly conducting (PEC)
sphere with diameter 1.0λ. The distance from the inner interface of
PML to the outer surface of the sphere is 0.5λ, and the thickness of the
PML layer is 0.25λ. In order to apply FEM simulation, the problem
is divided into 674972 tetrahedrons. The number of FEM unknown
edges generated is 771156, and the number of nonzero elements in the
FEM matrix is 3910031. As the FEM matrix is symmetric, only half
of the matrix is needed to be stored, the memory needed to store the
FEM matrix is 399.2 Mb.

VV polarization HH polarization

(a) (b)
VV polarization HH polarization

(a) (b)

Figure 2. Bi-static radar cross sections of a PEC sphere with diameter
1λ.
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Figure 3. Convergence history of different PCG iterative solvers in
the solution of scattering by the PEC sphere with diameter 1λ.

Firstly, the bistatic radar cross sections of the PEC sphere is
computed. The incident elevating angle is 90◦. The comparison of
FEM results with the exact Mie series solutions is depicted in Fig. 2.
In this example, a maximum error is about 0.16 dB in the VV -polarized
case, and 0.06 dB in the HH -polarized case, which is good agreement
considering the dynamic range of over 20 dB in the RCS. This showed
that FEM can give accurate results when PML is placed enough far
away from the targets.

Secondly, the efficiency of the FSAI and AINV preconditioner is
tested. The SSOR and standard IC0 preconditioner is adopted in this
paper for comparison. The convergence histories of SSOR-CG, IC0-
CG, FSAI-CG, and AINV-CG are plotted in Fig. 3. From the figure,
we can see that both AINV-CG and FSAI-CG converges much faster
than SSOR-CG and IC0-CG. The construction time of FSAI-CG, and
AINV-CG are respectively 63 s and 228 s, and the iteration time for
SSOR-CG, IC0-CG, FSAI-CG, and AINV-CG are respectively 28440 s,
38031 s, 12820 s, and 11463 s. It can be seen that the efficiency of
standard IC0 preconditioner is poor in this example. A perturbation
to the diagonal would improve the efficiency of the IC preconditioner.
However, the best perturbation matrix is hard to determine. Further
more, IC is not suit for parellel computation, thus it is not further
discussed in this paper. It can be seen that the efficiency of AINV-
CG and FSAI-CG is comparable. However, the memory used by the
AINV preconditioner is 650.3 Mb, while the memory used by the FSAI
preconditioner is 399.2Mb. Note that in [24], the comparison of FSAI
and SSOR is made. However, [24] is mainly aimed at wave propagation
problems. Further more, the number of unknowns tested in [24] is
much small compared with scattering problems. By comparison, it can
be seen that the FSAI preconditioner is more efficient for scattering
problems.
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Next, a dielectric sphere is simulated. The diameter of the sphere
is 1λ, and the dielectric constants are εr = 4.0 − 1.0j, µr = 1.0.
The distance from the inner interface of PML to the outer surface
of the sphere is 0.2λ, and the thickness of the PML layer is 0.3λ. The
computational region is divided into 197428 tetrahedrons. The number
of FEM unknown edges generated is 220604. The memory to store the
FEM matrix is 111.6 Mb. The bi-static RCS parameters computed
with FEM and the Mie series solutions are plotted in Fig. 4. From the
figure, it can be seen that both curves are totally coincident.

VV polarization HH polarization

(a) (b)

Figure 4. Bi-static radar cross sections of a dielectric sphere with
diameter 1λ.
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Figure 5. Convergence history of different PCG iterative solvers in
the solution of scattering by the dielectric sphere with diameter 1λ.
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Figure 6. Number of iterations of different PCG when the diameter
of the dielectric sphere varies from 0.5 to 2.5.

In this example, the CPU time needed for construction the FSAI
and AINV preconditioner are respectively 18 s and 63 s. The CPU
time needed by SSOR-CG, IC0-CG, FSAI-CG, and AINV-CG are
respectively 2823 s, 7184 s, 1592 s and 1444 s. The convergence histories
of SSOR-CG, IC0-CG, FSAI-CG, and AINV-CG for the dielectric
sphere are depicted in Fig. 5. For this example, it can be seen
that FSAI-CG, and AINV-CG still exhibit a much better convergence
behavior than SSOR-CG. To examine the scaling of the proposed
method with λ, the diameter d of the dielectric sphere is varied from
0.5 to 2.5, while other parameters remain unchanged. The variation of
iteration numbers with d is plotted in Fig. 6. From the figure, it can
be seen that the FSAI and AINV preconditioner scale well with λ.

To examine the ability and efficiency of FEM in simulating
inhomogeneous and anisotropic targets, the third example examined
is an anisotropic sphere with a diameter of 1λ. The FEM model and
meshes are the same as the above example except that the relative
permittivity in the r, θ, φ direction is:

εr =

[ 2.0− 4.0j
2.5− 5.0j

2.5− 5.0j

]

Note that in the x, y, z direction, the permittivity is a 3× 3 full
tensor, and is varied with the value of θ and φ. The bi-static RCS
parameters computed with FEM and the hybrid FEM/BEM method
(FEBI) [28] are plotted in Fig. 7. As can be seen, both results agreed
quite well. This proved that our code is very accurate in simulating
anisotropic targets. In this problem, SSOR-CG used about 8000
iterations to converge, while FSAI-CG used 2944 iterations, AINV-
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CG used 2623 iterations. Fig. 8 showed the convergence curves of
different iterative solvers. Compared with Fig. 5, the iteration number
of SSOR-CG increased greatly, while the iteration number of AINV-
CG and FSAI-CG is nearly invariant.

The last example is a conducting-dielectric compound cylin-
der [29]. The dielectric part is formed by plexiglass (εr = 2.6), the
metal part is aluminum. The configuration and dimensions of the
structure are illustrated in Fig. 9. In our FEM simulation, aluminum
is treated as PEC for simplicity. This example is divided into 232893
tetrahedrons, and the number of unknown edges is 262007. The com-
puted and measured backscatter cross sections at 3.0GHz are depicted
in Fig. 10. In the figure, the simulated results agreed very well with
the measured data.

HH polarization VV polarization

(a) (b)

Figure 7. Bistatic RCS of the anisotropic sphere, the circle represents
data given by the FEBI method.
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Figure 8. Convergence history of different PCG iterative solvers in
the solution of scattering by the anisotropic sphere with diameter 1λ.
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Figure 9. Configuration of the conducting-dielectric compound
cylinder, a = 5.08 cm, b = 10.16 cm, d = 7.62 cm.

VV polarization HH polarization

(a) (b)

Figure 10. Computed and measured backscatter cross sections at
3.0GHz for the inhomogeneous conducting-dielectric cylinder.

For comparison, the problem is computed repeatedly using SSOR-
CG FSAI-CG and AINV-CG with incident angles from θ = 0◦ to
θ = 180◦. The iteration numbers at different angles are recorded
and depicted in Fig. 11. From the figure, FSAI-CG and AINV-CG
showed a much better convergence behavior than SSOR-CG at all
angles. Once again, the efficiency of FSAI-CG in solving scattering
problems of inhomogeneous media was demonstrated.
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Figure 11. Number of iterations of AINV-CG and FSAI-CG for the
inhomogeneous conducting-dielectric.

6. CONCLUSION

In this paper, the FSAI preconditioner is proposed to solve the
linear systems obtained from FEM simulation of scattering problems.
The comparison of FSAI-CG, AINV-CG and SSOR-CG are made.
From the illustrated results, the efficiency of FSAI and AINV
preconditioners is comparable. However, FSAI needs much less
memories. Compared with the SSOR preconditioner, the FSAI
preconditioner is very robust and can greatly reduce iterations and
CPU time for the tested problems. These results demonstrate that the
FSAI preconditioning strategy is especially effective for solving large-
scale FEM linear systems generated from scattering problems even in
sequential algorithms.
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