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Abstract—In recent years, Computer Aided Design (CAD) based
on Artificial Neural Networks (ANNs) have been introduced for
microwave modeling, simulation and optimization. In this paper, the
characteristic parameters of edge coupled and conductor-backed edge
coupled Coplanar Waveguides have been determined with the use of
ANN model. Eight learning algorithms, Levenberg-Marquart (LM),
Bayesian Regularization (BR), Quasi-Newton (QN), Scaled Conjugate
Gradient (SCG), Conjugate Gradient of Fletcher-Powell (CGF),
Resilient Propagation (RP), Conjugate Gradient back-propagation
with Polak-Ribiere (CGP) and Gradient Descent (GD) are used to
train the Multi-Layer Perceptron Neural Networks (MLPNNs). The
results of neural models presented in this paper are compared with
the results of Conformal Mapping Technique (CMT). The neural
results are in very good agreement with the CMT results. When the
performances of neural models are compared with each other, the best
results are obtained from the neural networks trained by LM and BR
algorithms.

1. INTRODUCTION

Advances in Monolithic Microwave Integrated Circuit (MMIC)
technology and progress in CAD tools have led the researchers to
develop CAD models for the analysis and synthesis of the generic
transmission lines. The Coplanar Waveguides (CPWs) are ideally
suited for modern Microwave Integrated Circuit (MIC) as well as
MMIC applications and high speed integrated circuits. They have
been the most studied transmission lines because of their several
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advantages over conventional micro strips for MMICs [1]. These
include ease of parallel and series insertion of both active and passive
components and high circuit density, drilling of holes or slots through
the substrate is not needed [2], low radiation, low dispersion and
avoidance of need for thin fragile substrates [3]. The field of CPWs
are less confined than those of microstrip lines, thereby increasing
sensitivity to environmental constraint such as conductor backing and
line to line coupling [4]. Conventional edge-coupled coplanar waveguide
structure was proposed in 1970 to implement a CPW directional
coupler. However, the coupling effect is relatively weak due to its edge
coupled configuration. The coupling coefficient of edge-coupled CPW
structure can be enhanced by adding an extra floating conductor on
another side of the substrate [5]. Conductor backing is often introduced
in order to improve both the mechanical strength and the power
handling capability of the line. Moreover it allows easy implementation
of mixed coplanar micro strips circuits and lowers the impedance of the
line.

In MMIC’s, CPW has a complex structure in contrast with the
first proposal of Wen [6,7]. The full wave analysis is usually used
to characterize such complex structure. Most of the earlier study
efforts have been directed towards obtaining the design parameters
by full wave numerical methods [8] or quasi-static conformal mapping
methods [9]. Present analysis provides high precision in a wide
frequency band and also general characteristics suitable for CAD
analysis [4]. This novel method does not restrict the frequency limit as
being restricted in quasi-static analysis. Once trained, the complexity
of full wave computation is also dispensed with.

The fullwave methods mainly take tremendous computational
efforts and cannot lead to a practical circuit design feasible within a
reasonable period of time and require strong mathematical background
knowledge and time consuming numerical calculations, which need
very expensive software packages. So they are not very attractive
for the interactive CAD models. No closed form synthesis formulas
for coplanar wave-guide are available; in contrast, both analysis and
synthesis closed-form formulas for micro strip lines have existed for a
long time [10]. Such closed-form design equations obtained by CMT
method, which is the simplest & most often used quasi-static method,
consists of complete elliptic integrals which are difficult to calculate
even with computers. For this reason, the artificial neural networks
recently gained attention as a fast and flexible tool to microwave
modeling and design [11]. Neural network modeling is relatively new
to the microwave community. The learning & generalization ability,
fast real time operation features have made ANNs popular in the last
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decade. The process of neural model development is not trivial and
involves many critical issues such as data generation, scaling, neural
network training, etc. [13].

Furthermore, accurate and efficient microwave circuit components
and micro strip antennas have been designed with the use of ANNs. In
these applications, ANNs have more general functional forms and are
usually better than the classical techniques, and provide simplicity in
real time operation.

In this paper, the quasi-static parameters (effective permittivity,
characteristic impedance, mode-velocity ratio and coupling coefficient)
of Edge Coupled CPW (ECCPW) and Conductor-backed Edge
Coupled CPW (CB-ECCPW) have been determined with the use of
only one neural model. The neural model was trained with eight
different learning algorithms to obtain better performance and faster
convergence with simpler structures. The results obtained from ANN
models have shown that the determined characteristics parameters are
in very good agreement with the CMT results.

2. ANALYSIS OF CHARACTERISTIC PARAMETERS
OF PROPOSED STRUCTURES

2.1. Edge-coupled CPW (ECCPW)

When two transmission lines are placed in close proximity, there
is a strong interaction between their fields and power is coupled
from one line to the other. The amount of coupling is dependent
on the distance of separation between the lines and the interaction
length. An edge coupled coplanar waveguide with two parallel coupled
strip conductors symmetrically located between two grounds planes
are shown in Figure 1. This structure can support two modes of
propagation, the even and odd mode. For the even excitation a
magnetic wall is placed along the plane of symmetry. Through a
sequence of conformal mapping steps.

Figure 1. Cross section of edge coupled coplanar waveguides.
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The even-mode effective dielectric constant can be defined as [12]
K’ (1ks) K (6k1)
where K (6k1) and K’ (6k1) and K (¢k2) and K’ (1ks) are the complete

elliptic integrals of the first kind with modules ¥k .
The even-mode characteristics impedance Zg . is
!
o — 60r K’ (dk1) @)
VEeff,e K(ékl)
By using the similar procedure as that of the even mode, the odd mode
effective dielectric constant €. , is defined as

K (k3) K'(5)

K’ (k3) K (9)

The odd-mode characteristics impedance Zg, is
60 K’ (9)

T o K (0)

2.2. Conductor Backed Edge Coupled CPW (CB-ECCPW)

Eeffe = 1+ (€r — 1)

cero=1+ (e — 1) (3)

(4)

0,0

In the structure shown in Figure 2, a magnetic wall and an electric
wall is placed along the plane of symmetry for the even and odd mode
of excitation respectively and one-half of the structure is isolated.
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Figure 2. Cross section of conductor-backed edge-coupled CPW.

Through the sequence of conformal mapping steps the total
capacitance per unit length is obtained. From the capacitance value,
the effective dielectric constant, characteristics impedance, coupling
coefficient and mode-velocity ratio are obtained. The odd-even mode
effective dielectric constant .5 4 and the characteristics impedance
Zp, A is given by [11,12]

Eeff A = [2@ N K(y)} (5)
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K(X) | K(Y)
VEeff,A [QK’(X) R ds)
where A = e, x = K. and y = 0K for even mode and A = o, x = Ko
and y = § for odd mode respectively. Further K(K.) and K’ (K,) are
the complete elliptic integrals of the first kind with modulus K.
The coupling coefficient and mode velocity ratio of both structures
are given by

Zo,A =

)

even __ Z(())dd

Z
C =20xlog =0 =0 _ 7
* 108 ngen_'_Zé)dd ( )

M= Yo [Eello (8)
Vo Eeff,e

3. ARTIFICIAL NEURAL NETWORKS (ANNS)

Neural networks, also called Artificial Neural Networks are information
processing systems with their design inspired by the studies of ability
of human-brain to learn from observations and to generalize by
abstraction. Neural networks are first trained to model the electrical
behavior of passive and active components/circuits. These trained
neural networks, often referred to as neural network models (or simply
neural models), can then be used in high-level simulation and design,
providing fast answers to the task they have learned. Neural networks
are efficient alternatives to conventional methods such as numerical
modeling methods, which could be computationally expensive; or
analytical methods, which could be difficult to obtain for new devices;
or empirical models whose range and accuracy could be limited. Neural
network techniques have been used for a wide variety of microwave
applications such as embedded passives, transmission line components,
vias, bends, CPW components, spiral inductors, FETs, amplifiers etc..
Neural networks have also been used in impedance matching, inverse
modeling, measurements and synthesis [13, 14].

ANN learns relationships among sets of input-output data which
are characteristics of the device under consideration. It is a very
powerful approach for building complex and non-linear relationship
between a set of input and output data [15-17]. There are many
types of neural networks for various applications available in the
literature. The MultiLayered Perceptron Neural Network (MLPNN)
structure used in this work is shown in Figure 3. These structures
with three layers (input output and hidden) are feed-forward networks
and universal approximates. They are the simplest and therefore most
commonly used neural network architecture.
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Figure 3. Configuration of proposed ANN model.

A neural network consists of many processing elements called
neurons, each connected to many others. Every connection entering
a neuron has a weight assigned to it. This weight is used to amplify,
attenuate and change the sign in the incoming connection. An input
vector containing distinct input element is entered in to the network.
Each neuron operates on the output of the other neuron connected
to it according to its transfer function and delivers a single output.
Often the transfer function sums up the incoming signals to determine
the values of the neuron‘s next output signals. The result is an
output vector representing some characteristics associated with the
input. The process of training the network is the matter of altering
the connection weights systematically [18] to encode the desired input-
output relationships. Most microwave applications used the supervised
learning back propagation network in which the weights are adjusted
on the basis of the difference between the values of output units and
desired values. The eight learning algorithms used in this work are
summarized below.

3.1. Levenberg-Marquardt [LM]

The LM algorithm is a least-squares estimation method based on the
maximum neighborhood idea. It does not suffer from the problem
of slow convergence. The LM method combines the best features of
Gauss-Newton and Steepest-descent method and avoids many of their
limitations [28]. This algorithm is very efficient when training small
network [19, 20].
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3.2. Bayesian Regularization [BR]

This algorithm takes place within the LM and requires more training
and memory than the LM. This algorithm can train any network
as long as its weight, inputs and transfer functions have derivative
function [21]. Tt updates the weight according to LM optimization and
minimizes a linear combination of squared errors and weights, and then
determines the correct combination so as to produce a well generalized
network [22]. It also modifies the linear combination so that at the end
of training the resulting network has good generalization qualities.

3.3. Quasi-Newton [QN]

This is based on Newton’s method but doesn’t require calculation of
second derivatives. At each iteration of the algorithm, the Hessian
matrix (Ay) update is computed as a function of the gradient [28].
The line search function is used to locate the minimum. The first
search direction is the negative of the gradient of performance. In
succeeding iterations the search direction is computed according to
the gradient. Newton’s method often converges faster than conjugate
gradient methods. The weight update for the Newton method is
Wkr1 = wp — gg/Ar, where Ay is the Hessian matrix of the
performance index at the current value of the weights and biases [23].

3.4. Scaled Conjugate Gradient [SCG]

This algorithm was developed by Moller, and used to avoid the
time consuming line search. It combines the Model-trust region [24]
approach and the conjugate gradient approach. Backpropagation is
used to calculate the derivation of performance with respect to the
weight and bias variables.

3.5. Conjugate Gradient of Fletcher-Powell [CGF]

This method updates weights and bias values according to the
conjugate gradient with Fletcher-Reeves [29]. This version of conjugate
gradient uses the norm square of the previous gradient and the norm
square of the current gradient to calculate the weights and biases.

3.6. Resilient Propagation [RP]

This algorithm provides faster convergence than other algorithm and
avoids the bad influence of the size of the partial derivative on the
weight update [25]. It also has the nice property that it requires only
a modest increase in memory requirements.
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3.7. Conjugate Gradient Back Propagation with
Polak-Ribiere [CGP]

This algorithm is a network training function that updates weight and
bias values according to the conjugate gradient back propagation with
Polak-Ribiere updates. It can train any network as long as its weight,
net input, and transfer functions have derivative functions [26]. It
is used to calculate derivatives of performance with respect to the
weight and bias variables. The line search function is used to locate
the minimum point. In succeeding iterations the search direction is
computed from the new gradient. The search direction at each iteration
is determined by updating the weight vector as:

Wi+1 = Wk + apy,

Agl gk

where py, = —gr + Bipi—1, Bk = gF Lgk-1 g

and Agi ) = gi — gi_-

3.8. Gradient Descent [GD]

This is one of the line search minimization procedures. This method
smoothen the descent direction in the steepest decent method [27].
The weights and biases are updated in the direction of the negative
gradient of the performance function.

4. APPLICATION TO THE PROBLEM

The proposed technique involves training an ANN to calculate the
effective dielectric permittivity, characteristics impedance of odd and
even mode, coupling coefficient and mode velocity-ratio of ECCPW
and CB-ECCPW when the values of s, w, d, h and ¢, are given. Only
one neural model is used to calculate the characteristic parameters of
both structures with different geometrical dimensions and electrical
properties. The CMT was used to generate data for the input ranges
of 0.1 < d/(d+2S) <0.9,0.2 < (d+2S5)/(d+ 25 +2w) < 0.7 and
[(d/2) + S]/h = 0.5. The MLPNN used in this work is trained by eight
different algorithms. Training the ANNs with the use of a learning
algorithm to calculate the characteristic parameters of ECCPW and
CB-ECCPW involves presenting them sequentially and/or randomly
with different sets (s, w, d, h and &,) and corresponding characteristic
parameters (e.4 and Zp). First, the input vectors (s, w, d, h and ¢;)
are presented to the input neurons and output vectors (e and Zy) are
computed. ANN outputs are then compared to the known outputs of
the training data sets and errors are computed. Error derivatives are
then calculated and summed up for each weight until all the training
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examples have been presented to the network. These error derivatives
are then used to update the weights for neurons in the model. Training
proceeds until errors are lower than prescribed values.

Even if there have been a number of approaches to find suitable
number of neurons and layers in the literature, most of all are
application specific. The number of neuron and hidden units for the
application presented in this work were selected after several trials. It
was found that a network with two hidden layer achieved the task with
better accuracy. The most suitable network configuration found was
4 x 12 x 10 x 2; this means that the number of neurons were 4 for the
input layer, 12 & 10 for the first & second hidden layers and 2 for the
output layer. The tangent hyperbolic activation function was used in
the input and hidden layers. Linear activation function was employed
in the output layer.

5. NUMERICAL RESULTS AND DISCUSSION

ANNSs have been successfully introduced to compute the odd-and even-
mode characteristic impedances and effective permittivities of ECCPW
and CB-ECCPW. In order to obtain the fast convergence with better
performance & simpler structure, the proposed network were trained
with eight different learning algorithms as mentioned above. The
performance of learning algorithms are compared with each other and
obtained training and test RMS errors are represented in the Figures 4
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Figure 4. Bar chart comparison of training RMS error for different
eight learning algorithms.
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Figure 5. Bar chart comparison of test RMS error for different eight
learning algorithms.

& 5 using bar chart for easy understanding. As it can be seen from all
figures and bar chart that, the best network results were achieved from
the models trained with LM and BR algorithms for both ECCPW and
CB-ECCPW. In order to prove the validation of the proposed neural
networks for the determination of characteristic parameters of ECCPW
and CB-ECCPW, a comprehensive comparison has been made between
the CMT results and the obtained network results. With the values of
h =100pm, [(d/2) + S]/h = 0.5 &, =13, (d+2S)/(d+2S +2w) =
0.3, 0.5 and 0.625 the variation of characteristic parameters with
respect to d/(d+2S) for ECCPW and CBECCPW are illustrated
in Figures 6 & 7 respectively. As it was proved, among the eight
algorithms the best LM training algorithm was used to obtain the
characteristic parameters of both structures.

A distinct advantage of neural computation is that, after proper
training, ANN completely bypasses the repeated use of complex
iterative processes for new cases presented to it. The proposed method
having the main advantage is that only one neural model is used
to calculate the characteristic parameters of both ECCPW and CB-
ECCPW.

Without possessing strong background knowledge, the MLPNN
models presented in this work can be used easily, simply and accurately
to determine the characteristics parameters of both structures. Since
the proposed models presented in this paper have good accuracy,
require no tremendous computational effort and less background
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knowledge about CPW, they can be very useful for development of
fast CAD algorithms. For engineering applications, the simple models
are very usable. Thus the neural models given in this work can also be

used for many engineering applications and purposes.
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Figure 7.
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6. CONCLUSION

Models and formulas are proposed allowing the presence of ECCPW
and CB-ECCPW for MMIC applications has been discussed.
Compared with the ECCPW, the CB-ECCPW has provides better
coupling co-efficient.  Even though the CB-ECCPW lower the
impedance level the usual trend is to improve the mechanical properties
of the circuit and power capabilities without affecting the electrical
behavior in comparisons with the free standing ECCPW. The ANN
method proposed allow designers to obtain the physical dimensions of
ECCPW and CB-ECCPW in very simple and convenient way rather
than iteration approach of applying conventional design equation.
Even if training takes a few minutes, the test process only takes a
few microseconds to produce the results. The real time and high speed
computation feature of proposed neural model strongly recommends
their use in MMIC & other microwave application.
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