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Abstract—This paper obtains the topological 1-soliton solution of the
nonlinear Schrödinger’s equation in 1+2 dimensions, with power law
nonlinearity and time-dependent coefficients. The solitary wave ansatz
is used to obtain the solution. It will also be proved that the power law
nonlinearity must reduce to Kerr law nonlinearity for the topological
solitons to exist.
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1. INTRODUCTION

The dynamics of dark optical solitons, that is also known as topological
solitons, in 1+2 dimensions will be studied in this paper. The power
law nonlinearity will be considered. The coefficients of the dispersion,
nonlinearity and attenuation terms are all time-dependent. It will be
seen that these coefficients must be simply Riemann integrable, but
could be otherwise arbitrary, for the solitons to exist. It will also be
proved that for the solitons to exist, the power law nonlinearity must
reduce to Kerr law nonlinearity.

The governing equation will be the nonlinear Schrödinger’s
equation (NLSE) with power law nonlinearity. This NLSE in 1+2
dimensions with power law nonlinearity and having time-dependent
coefficients will not be integrable by the classical method of Inverse
Scattering Transform (IST) since the Painleve test of integrability
will fail in this case. However, there are various modern methods
of integrability that obtain the solution of many nonlinear evolution
equations when the IST approach fails [1–15]. Some of these commonly
studied techniques are G′/G method, exponential function method,
Adomian decomposition method, F -expansion method, sub-ODE
method and Lie symmetry approach [5], just to name a few. However,
one has to be extremely careful in using these techniques, simply
because it could lead to incorrect results [8, 9]. In this paper, there
will be one such method that will be used to carry out the integration.
This is the solitary wave ansatz method.

2. MATHEMATICAL ANALYSIS

The dimensionless form of the NLSE in 1+2 dimensions with power
law nonlinearity and time-dependent coefficients is given by [2, 12]

iqt + a(t) (qxx + qyy) + b(t) |q|2m q = iα(t)q (1)

In (1), the first term represents the evolution term, while the second
and third terms together in parentheses represent dispersion terms in
x and y directions respectively, and the coefficient of the dispersion
terms is a(t), while b(t) is the coefficient of the nonlinear term and
the parameter m dictates the power law nonlinearity. Finally, on the
right hand side, α(t) represents the coefficient of the linear attenuation
term. If the parameter m = 1, the power law nonlinearity collapses to
the case of Kerr law nonlinearity. In this paper the focus will be on
obtaining the 1-soliton solution to (1) using the solitary wave ansatz
method.
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In order to solve (1), it is first assumed that the solution is given
in the following phase-amplitude format [2, 12]

q(x, y, t) = Peiφ (2)

where P = P (x, y, t) is the amplitude portion while φ = φ (x, y, t) is
the phase portion of the soliton. It is assumed that

φ(x, y, t) = −κ1x− κ2y + ωt + θ (3)

where κ1 and κ2 are the frequencies of the soliton in the x- and
y-directions respectively while ω is the wave number of the soliton
and θ is the phase constant. Since the dispersion, nonlinearity and
attenuation terms have time-dependent coefficients, it is therefore
assumed that these soliton parameters κ1, κ2, ω and θ are all time-
dependent. Therefore, from (2) and (3)
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Substituting (2)–(6) into (1) and decomposing into real and imaginary
parts, respectively, yields
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For dark solitons or topological solitons, the assumption is [1, 8]

P (x, y, t) = A tanhp τ (9)

where

τ = B1x + B2y − vt (10)
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where the exponent p is unknown at this stage and this will be
determined in course of derivation of the exact soliton solution to (1).
The typical boundary conditions for this ansatz is q → ±A as |x|, |y| →
±∞. For dark solitons, the parameters A, B1 and B2 in (9) and (10)
are free parameters, while v is the velocity of the soliton. Again, since
the coefficients of dispersion, nonlinearity and attenuation terms are
all time-dependent, consequently, the soliton parameters A, B1, B2

and v are all time-dependent, in general. So, Equations (7) and (8)
respectively reduce to

A tanhp τ
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From (11), equating the exponents (2m + 1)p and p + 2 yields

(2m + 1)p = p + 2 (13)

that gives

p =
1
m

(14)

In (11), the functions tanhp+j τ , for j = −2, 0 and 2 are linearly
independent functions. Thus, setting the coefficients of tanhp−2 τ to
zero gives

p = 1 (15)

so that from (14),

m = 1 (16)

This shows that dark solitons exist for Kerr law nonlinearity only.
Now, in (11), setting the coefficients of tanhp τ and tanhp+2 τ to zero
respectively yields
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and

B2
1 + B2

2 = −b(t)A2

2a(t)
(18)

Equation (11) also implies that ω, κ1, κ2 and θ are all constants.
These follow from the fact that besides these two linearly independent
functions, the other linearly independent functions are t tanhp τ ,
x tanhp τ and y tanhp τ . Also, θ being a phase constant, is always a
constant. Again, from (12), equating the coefficients of tanhp τ yields

dA

dt
= α(t)A (19)

so that

A(t) = A0e
∫

α(t)dt (20)

provided the Riemann integral of α(t) exists. In (20), A0 is the initial
value of the free parameter A. Similarly, from this Equation (12),
setting the coefficients of the other linearly independent functions to
zero, one obtains B1 and B2 are also constants. Also, from (17), since
κ1, κ2 and ω are constants,

a(t) = constant (21)

Therefore, from (12),

v(t) = 2a (κ1B1 + κ2B2) (22)

Finally, from (18) and (20), it is possible to write

b(t)e2
∫

α(t)dt = c (23)

where c is a constant and also the restriction

ab(t) < 0 (24)

must be valid, as seen from (18), for the topological solitons to exist.
Thus, the topological or dark soliton solution to (1) is given by

q(x, y, t) = A tanh (B1x + B2y − vt) ei(−κ1x−κ2y+ωt+θ) (25)

with six degrees of freedom. The relation between the free parameters
A, B1 and B2 is given in (18) and the velocity of the soliton is seen
in (22). The variation of A with time is given by (20). These impose
the restrictions (23) and (24) for dark solitons to exist.
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3. CONCLUSION

In this paper, topological optical solitons were studied in 1+2
dimensions in presence of time-dependent dispersion, nonlinearity and
linear attenuation. The considered law of nonlinearity is the power
law. It was, however, proved that the dark solitons exists only when
the power law nonlinearity reduces to the Kerr law nonlinearity. It
has also been observed that the time-dependent coefficient of the
linear attenuation term must be simply Riemann integrable for these
topological solitons to exist. The other simple constrains for these
time-dependent coefficients have also been identified.

It needs to be noted that the study of solitons appears not only
in Nonlinear Optics, but also in the area of Hydrodynamics. Some
nonlinear evolution equations that are of the type in (1) are used to
study Fluid Dynamics, but the non-existence of solution sometimes
complicates this sort of result [3, 4, 11]. The NLSE in 1+1 dimensions
also appears in the context of Plasma Physics, Mathematical Biology
and others [1, 14, 15]. The NLSE given by (1) is the elliptic form
while the hyperbolic form of NLSE where the coefficients of a(t) have
opposite signs appear in the context of Fluid Dynamics [1, 13].
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