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Abstract—A new method called Expanded Cholesky Method (ECM)
is proposed in this paper. The method can be used to decompose
sparse symmetric non-positive-definite finite element (FEM) matrices.
There are some advantages of the ECM, such as low storage,
simplicity and easy parallelization. Based on the method, multifrontal
(MF) algorithm is applied in non-positive-definite FEM computation.
Numerical results show that the hybrid ECM/MF algorithm is stable
and effective. In comparison with Generalized Minimal Residual
Method (GMRES) in FEM electromagnetic computation, hybrid
ECM/MF technology has distinct advantages in precision. The
proposed method can be used to calculate a class of non-positive-
definite electromagnetic problems.

1. INTRODUCTION

There are many numerical methods, such as the finite element method
(FEM) [1–4], finite-difference time-domain (FDTD) [5–9], and moment
of methods (MOM) [10], have been applied to analyze electromagnetic
problems. For the analysis of complex structures, the FEM is applied
to electromagnetic problems in this paper. It is a key of FEM to solve
the equations like AX = B, which are sparse symmetric linear. The
iterative algorithms [11, 12] and direct methods [13, 14] are employed
to carry out the equations usually. The convergence rate of iterative
methods is mainly determined by the condition number of coefficient
matrix. However, due to the complexity of targets’ material and
shape, the FEM matrix is ill-conditioned which leads to a very slow
convergence rate or even nonconvergence of the iterative solutions.
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As iterative methods are invalid in some cases, direct methods
are employed in this paper. One of the significant advancements in
direct methods for a sparse matrix solution is the development of the
multifrontal (MF) algorithm [15–18]. The algorithm is an effective
method for solving large-scale sparse linear equations. There are some
advantages of this approach over other factorization algorithms, such
as better data locality, effective vector processing on dense frontal
matrices, etc. [19].

MF algorithm is based on LU decomposition method, and it is
carried out in accordance with the order of elimination tree. LU
decomposition method is usually replaced by Cholesky decomposition
method in symmetric problems. Cholesky decomposition method only
operates half of the matrix. For the triangular decomposition, the
Cholesky decomposition method can save half of calculation of LU
decomposition method [20]. The Cholesky decomposition method is
simple and easy to perform parallel process. Cholesky decomposition
method is one of the most numerically stable algorithms [21].
Therefore, this method is employed in the MF technology.

As Cholesky decomposition method is based on the assumption
of a positive-definite pattern, the MF algorithm is a kind of
solution scheme for positive-definite systems. However, in many
electromagnetic (EM) problems, such as calculating the scattering from
a dielectric cube on the PEC plate, where the diagonal entries of
the coefficient matrix A may be complex. Obviously, it means that
AX = B are non-positive-definite finite element equations; Cholesky
decomposition method will be invalid. For the case that will generate a
sparse symmetric complex (not real) matrix whose sequential principal
minor determinants are not equal to zero, and it can be expressed as

Ak =

∣∣∣∣∣∣∣∣∣

a11 a12 , . . . , a1n

a21
. . .

...
...

. . .
...

an1 , . . . , , . . . , ann

∣∣∣∣∣∣∣∣∣
6= 0 (k = 1, 2, n) .

In order to decompose the matrices, a new method called Expanded
Cholesky Method (ECM) is proposed in this paper.

The ECM provides an exact solution of symmetric non-positive-
definite problems which can not be solved by Cholesky decomposition
method, and it is introduced to the MF algorithm for the FEM method.
The comparison with GMRES method shows that the MF algorithm
using ECM is correct and stable. Based on this method, the FEM
algorithm is applied successfully to solve the complex electromagnetic
problems. Numerical results demonstrate that the proposed algorithm
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can be used to calculate a class of non-positive-definite electromagnetic
problems.

This paper is organized as follows. Section 2 presents the basic
and optimized procedure of MF algorithm. In Section 3, the ECM
and its demonstration are presented, and the application of ECM in
MF algorithm is described. In Section 4, some FEM results obtained
by the hybrid ECM/MF approach are presented and compared with
GMRES method. Finally, conclusions are outlined in Section 5.

2. BASIC THEOREM

According to the analysis of finite element method [1], the calculation
of scattering problems focus on the solution of the equations

AX = B, (1)
where A is a sparse linear matrix and B is a column vector, both of
them are not equal to zero.

Following by the LU decomposition, the coefficient matrix A in (1)
is decomposed as product of two triangular matrices

A = LU, (2)
where L and U are lower and upper triangular matrices respectively.
Then (2) can be rewritten as

LUX = B. (3)
Y is defined by

Y = UX, (4)

and (3) can be further rewritten as
LY = B. (5)

Then Y can be solved through forward elimination,

yi = bi −
i−1∑

k=1

likyk (i = 1, 2, . . . , n) (6)

and backward substitution is used to seek the ultimate solution X

xi =

(
yi −

n∑

k=i+1

uikxk

)/
ukk (i = n, n− 1, . . . , 1) . (7)

In the MF computation process, the sparse matrix is firstly
re-organized into a series of dense one, which is called fill-ins
reducing method. Then, dense matrices are carried out in low-
level decomposition, by which the matrices only with the low-level-
related border unknowns of wavefront matrix are obtained. Finally,
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all the adjacent public unknowns between the low-level matrices are
eliminated, and the process is given by formula (3)–(7).

The fill-ins reducing work is a key of the MF algorithm. In order to
minimize fill-ins number, some fill-ins reducing algorithms [21–23] are
developed. The approximate minimum degree ordering algorithm [23]
is chosen here as a fill-reducing method.

Besides the approximate minimum degree ordering algorithm,
a further optimization is needed. The optimization algorithm
is explained bellow. In accordance with the conclusions of the
literature [24], the fill-ins of the matrix A are identified firstly: If
j = parent(k), and lik 6= 0, then it certainly has lij 6= 0, where j
is the first row number of non-zero element following the diagonal
element in column k, and parent(k) is the father node of k. Then
the corresponding elimination tree can be constructed. After that,
the tree is updated in postorder to generate a new sequence of nodes.
According to the generated sequence, the fill-ins and the elimination
tree can be re-identified by the same way. In order to minimize the
storage consuming, the subtree of the node j needs to be reordered in
a descending order [24], which can be expressed as

max {ms(ci), |Fj |} − |Uci | , (8)

where ci is the son of node j in the elimination tree; |Fj | is the number
of non-zero elements of frontal matrix Fj ; |Uci | is the number of non-
zero elements of update matrix Uci ; ms(ci) is the minimum working
space. Subsequently, let r = size(col(j)), where r denotes the number
of non-zero elements of the column j; formulas can be obtained as
follows:

|Fj | =
1
2
r (r + 1) , |Uj | = 1

2
r (r − 1) , (9)

ms(j) = max
1≤k≤s

{
max {ms(ck), |Fj |}+

k−1∑

i=1

|Uci |
}

. (10)

In order to facilitate the description, the optimized equations are still
referred to as AX = B. The MF improves the calculating efficiency
by changing the order of the factorization.

As described in introduction, the complex linear finite element
equations obtained from most of the electromagnetic problems are
sparse symmetric that are not positive definite. Generally, LU
decomposition or the MF based on LU decomposition can be used
to deal with this kind of problems, but all of the direct methods
available except Cholesky decomposition method need to store and
compute non-zero elements and fill-ins of whole matrix, which is very
time and space consuming. As only half of matrix needs to be stored
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and calculated, the MF algorithm based on Cholesky decomposition
method is usually used, but only the positive-definite matrix can be
decomposed with this method. An Expanded Cholesky Method is
proposed here to decompose the non-positive-definite matrix in high
efficiency and accuracy.

3. EXPANDED CHOLESKY METHOD

The Cholesky decomposition method deals with only half of the
coefficient matrix, and the amount of calculation is reduced by nearly
half. However, the method has a strong constraint, namely positive
definiteness. For most of the electromagnetic analysis, the coefficients
matrices of FEM are complex and not Hermitian. As the algorithm
is invalid for the matrices are complex but not positive definite, the
ECM method is proposed here.

According to the constraint of the Cholesky algorithm, if A in (1)
has complex entries and is positive-definite Hermitian matrix, then
there exists a unique lower triangular matrix L with strictly positive
diagonal elements, that allows the factorization of A into A = LL∗,
where L∗ is the conjugate transpose of L. The entries on the main
diagonal of any Hermitian matrix have to be real. If A is complex
symmetric and not positive definite, the original Cholesky algorithm
does not work. In the case of complex symmetrical matrix whose
sequential principal minor determinants are not equal to zero, a method
called ECM is developed here. The ECM decomposes A as

A = LLT , (11)

where LT denotes the transpose of L. The following formula is for the
entries of L,





Li,j = 1
Lj,j

(
Ai,j −

j−1∑
k=1

Li,kLj,k

)
,

Li,i =

√
Ai,i −

j−1∑
k=1

L2
i,k,

when i > j.
The following is the proof of the proposed decomposition

approach.
According to the uniqueness of L̃D̃U decomposition, A has a

unique triangular decomposition when the sequential principal minor
determinants of A are not equal to zero,

A = L̃D̃U (12)
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where L̃ is a unit lower triangular matrix; U is a unit upper triangular
matrix; D̃ = diag(d1, d2, . . . , dn). The root of D̃ is computed in the
complex field, that is, D = diag(csqrt(d1), csqrt(d2), . . . , csqrt(dn)).
Thus, the new decomposition form of A can be given by

A = L̃ (D)2 U. (13)

A is symmetry, so
AT = A. (14)

Then (15) is obtained when (14) is substituted with (13).

UT (D)2 L̃T = L̃ (D)2 U (15)

By the uniqueness of the L̃D̃U decomposition, we can get (16) as
follows:

L̃ = UT , L̃T = U. (16)

With these substitutions, (12) takes the form shown in (17)

A = L̃ (D)2 L̃T = LLT (17)

where L = L̃D.
Only half of the matrix A needs to be stored and computed in

the proposed algorithm. For complex symmetric non-positive-definite
equations, the coefficient matrix A can be decomposed as (17).

The decomposition process of submatrix-ECM can be expressed
as

A =
[

d V T

V C

]
=

[ √
d 0

V
/√

d I

][
I 0
0 C − V V T

/
d

][√
d V T

/√
d

0 I

]

=

[ √
d 0

V
/√

d I

][
I 0
0 H

] [√
d V T

/√
d

0 I

]

=

[ √
d 0

V
/√

d I

][
I 0
0 LH

] [
I 0
0 LT

H

][√
d V T

/√
d

0 I

]

=

[ √
d 0

V
/√

d LH

][√
d V T

/√
d

0 LT
H

]

= LLT (18)

where d is the first diagonal element of the matrix; V T is the transpose
of V ; C is a (n−1)×(n−1)-order matrix which is derived after removing
the first row and column from the matrix A; C-VV T /d expresses the
subtree which will be decomposed by the similar process [18]. To the
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kth decomposition, the contribution Uk of the sub-tree of node k to its
ancestors can be expressed as

Uk = −
∑

p∈T [k]




li1,p

li2,p
...

lir,p




(
lTi1,p lTi2,p , . . . , lTir,p

)
. (19)

Let the children of node k in the elimination tree be c1, c2, . . . , cr, the
relationship between frontal matrix {Fk} and update matrix {Uk} can
be expressed as

Fk =




ak,k aT
i1,k

, . . . , aT
ir,k

ai1,k
... 0

air,k


 + Uc1 + Uc2+, . . . , +Ucr . (20)

The decomposition is repeated until the corresponding decompo-
sition and updating are completed. In the decomposition process, only
the first column of the Fk needs to be stored.

4. NUMERICAL RESULTS

The validity and the effectiveness of the MF algorithm based on the
ECM will be illustrated by numerical examples in this section.

(a) (b)

Figure 1. Distribution of 3864-order coecient matrix. (a) Lower
triangular coecient matrix before optimizing after optimizing. (b)
Lower triangular coecient matrix.
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4.1. 3864-order Equations

There are 153,407 non-zero elements in the 3864-order matrix. The
coefficient lower triangular matrix distributions of non-zero elements
are given in Fig. 1. From Fig. 1, it can be seen more clearly that
the distribution of non-zero elements in the optimized matrix is more
regular and zoster than that of non-zero elements in the original matrix.
The extra storage space occupied by non-zero elements in the follow-up
calculation is significantly reduced. Let error(i) = A∗x(i) − b(i), i =
1, 2, . . . , 3864. Respectively, the real and imaginary parts of errors are
given as shown in Fig. 2, where A is the 3864-order coefficient matrix.
The errors are all −5 orders of magnitude. The proposed method is
considerable stable and accurate.
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Figure 2. Errors computed by the MF algorithm using the ECM.

Figure 3. A cube with the side
length is 0.755λ0.
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Figure 4. Field distribution at
z = 0 cross-section.
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4.2. Scattering of a PEC Cube

The second example is a PEC cube having a side length of 0.755λ0,
where λ0 is the wavelength in free space. By the proposed method,
the scattering cross-section field distribution map of the PEC cube is
shown in Fig. 3. Assuming a plane wave is exited, the incident wave
travels in the negative z direction, and the direction of polarization is
x direction. The finite element linear equations can be described as
follows: Its coefficient matrix has 16,307 unknowns, and the number
of non-zero elements is 234,605.

Figure 4 shows the field distribution at z = 0 cross-section.
With field amplitude increases, gray-scale deepens. Let error(i) =
A∗x(i) − b(i), i = 1, 2, . . . , 16, 307. A comparison of the results
obtained by the ECM and GRMES is shown in Fig. 5. Generally,
GMRES convergence setting uses the relative error norm δ0 = 0.001.
Comparative results show that the proposed method is more accurate.

4.3. Scattering of a Dielectric Cube on the PEC Plate

Finally, a dielectric cube on the PEC plate as shown in Fig. 6 is
computed. The parameters of the scatterer are given as follows: The
relative permittivity of the computational domain εr = 2.25; the size
of the dielectric thick layer is 0.4λ0 ∗ 0.4λ0 ∗ 0.2λ0; the size of PEC
bottom board is 0.4λ0∗0.4λ0, where λ0 is the wavelength in free-space.
Also assuming a plane wave is exited, the incident wave travels in the
negative z direction, and the direction of polarization is X direction.
The 3D problem has 39,688 unknowns, and the number of non-zero
elements is 626,146.
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Figure 6. A dielectric cube on
the PEC plate.

 -0.5 0 0.5
 -0.5

 -0.4

 -0.3

 -0.2

 -0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

|E|

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 7. Field distribution at
z = 0 cross-section.
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GMRES, respectively.

Due to computer error, the matrix from the finite element
calculation emerges 264 points (points of upper and lower triangular
matrix is 528) which have symmetric position and non-symmetric
values. Because |aij − aji| are all in the range of −20 the order of
magnitude, the matrix can be approximated as a symmetric matrix.
The field amplitude distribution calculated by the proposed method is
shown in Fig. 7. As field amplitude increases, gray-scale deepens in
figure.

Let error(i) = A∗x(i)−b(i), i = 1, 2, . . . , 39, 688. A comparison of
the results obtained by the ECM and GRMES is shown in Fig. 8. The
computation results show that the MF algorithm based on the ECM
is valid in complex non-positive definite electromagnetic problems.
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5. CONCLUSION

In this paper, an efficient approach for electromagnetic computation
of sparse symmetric non-positive-definite linear equations has been
proposed. This approach uses a proposed new decomposition method
called ECM and solves the FEM equations with MF technique.
Optimization methods for reducing the extra demand of fill-ins storage
space have been discussed. A number of non-positive-definite examples
of electromagnetic computation illustrate the successful application of
the hybrid ECM/MF approach, and the results show that the technique
proposed is better than GMRES. An apparent advantage of the ECM
is accuracy and potential hybridization with some iterative methods.
Future study on the ECM is to make greater use of non-positive-definite
hybridization techniques to increase the method’s efficiency while
retaining its inherent low storage, simplicity and easy parallelization.
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