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Abstract—For the inverse synthetic aperture radar (ISAR) imaging
of a target at a long range, range alignment using the existing
polynomial method brings about poor results because the flight
trajectory changes depending on the initial position, and the motion
parameters, meaning the polynomial cannot fit the trajectory. This
paper proposes an improved range alignment method that models
the trajectory using a combination of a polynomial and Gaussian
basis functions. Initial parameters of the polynomial and Gaussian
basis functions are determined by fitting the proposed model to the
center of mass curve of the range profile history using the least square
curve-fitting algorithm, and the optimum value is found using particle
swarm optimization. This method is computationally more efficient
and preserves the image quality.

1. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) imaging is a technique to
generate a high resolution two-dimensional image of a target [1–4].
An ISAR image of the target can be generated by synthesizing many
radar signals obtained from various observation angles. Its down-
range resolution is directly determined by the bandwidth using Fourier
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transform [5] or time-frequency transform [6]. The radar signal and
cross-range are obtained by the Doppler frequency caused by the
relative rotational motion between the target and the radar which is
generally stationary on the ground. Due to its efficient 2D features, it
has been applied for the purpose of automatic target recognition [7–9]
along with synthetic aperture radar (SAR) imagery [10, 11].

Among many ISAR imaging techniques, we confine the scope
to the range-Doppler algorithm [5]. The key step in this method is
the compensation for the translational motion which occurs between
pulses in chirp radar systems and bursts in stepped-frequency radars.
Without the translational motion compensation, ISAR images can be
seriously blurred because reflected signals from the same scatterers can
be located at different range bins in different range profiles.

The translational motion compensation is composed of two steps:
range alignment and phase adjustment. Range alignment aligns range
profiles so that the signals reflected from the same scatterer are placed
at the same range bin in different range profiles. Phase adjustment
compensates for the Doppler phase errors caused by shifting range
profiles in range alignment [12–14].

However, existing range alignment results were mostly obtained
when the simulated or the measured targets were at short ranges. In
this case, the flight trajectory required for the equal azimuth resolution
to the range resolution is relatively short, so the number of range bins is
small. Therefore, the alignment is relatively fast, and the polynomials
used to model the shifts fit the trajectory well, giving well-aligned range
profiles. However, real imaging situations require many range bins
because the flight trajectory can be long. In addition, the trajectory
is heavily dependent on the initial position and motion parameters.
For these reasons, problems such as the computation time arise if the
alignment is done using existing methods.

This paper proposes a fast and accurate range alignment method
which models the flight trajectory using a combination of a polynomial
and Gaussian basis functions. The initial values for the parameters of
the polynomial and the Gaussian basis functions are determined by
fitting the model to the center of mass (COM) curve of the range
profile history using the least square curve-fitting algorithm, which
utilizes the gradient descent rule. Then the parameters are optimized
using particle swarm optimization (PSO). Simulation results show
that the proposed polynomial describes the trajectory accurately and
outperforms the conventional methods in terms of the alignment time
and image quality.
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2. SIGNAL MODEL AND PROPOSED METHOD

2.1. Signal Model and Range-Doppler Algorithm

For the radar signal, we assume a monostatic chirp waveform because it
is widely used for high range-resolution. The transmitted chirp signal
can be expressed as follows:

r(t) = A0 exp
[
j2π

(
f0t +

Bt2

2τ

)]
rect

(
t

τ

)
(1)

where r(t) is a transmitted signal at time t; A0 is the amplitude of
the signal; f0 is the start frequency; B is the bandwidth; τ is the pulse
duration; rect is a function whose value is 1 for t−τ/2 ≤ t ≤ t+τ/2 and
0 otherwise. Then the received signal reflected from a target composed
of K scattering centers is:

g(t)=
K∑
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Ak exp
[
j2π
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where Ak is the amplitude of the kth scattering center, and dk is
the time delay between the radar and kth scattering center. dk is
calculated using the plane wave approximation, in which the distance
to a scattering center is projected onto the radar line-of-sight vector.
The range-Doppler algorithm compresses the reflected signal using the
matched-filter to obtain range profiles at a certain aspect angle. Then,
after translational motion compensation by range alignment and phase
adjustment, the fast Fourier transform (FFT) is applied to each range
bin to resolve scattering centers in the cross-range direction.

2.2. Translational Motion Compensation

Translational motion compensation is composed of two steps: range
alignment, which aligns range profiles, and phase adjustment, which
removes phase errors caused by the direct shift of each range profile. If
a target is stationary and rotating, the signals from the same scatterer
will remain in the fixed range bins. However, because targets may
travel several range bins between pulses, reflected signals are generally
located at different range bins in different range profiles. Therefore,
range profiles should be moved so that signals from the same scatterer
are placed in the same range bin. In addition, phase errors occur
in each range profile if range profiles are aligned without any phase
compensation. Thus, these errors should be compensated for.

Popular range alignment methods have utilized the similarity of
the envelopes of range profiles using cost functions such as entropy [12]
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or correlation [5]. Among several cost functions, 1D entropy is known
to be very efficient and robust to noise. It is defined as follows:

HGmGm+1 = −
N−1∑

n=0

Ḡ(τ, n) ln Ḡ(τ, n),

where Ḡ(τ, n) =
|Gm(n)|+ |Gm+1(n− τ)|∑N−1

n=0 (|Gm(n)|+ |Gm+1(n− τ)|)

(3)

Gm(n) and Gm+1(n) are the mth and (m + 1)th range profiles, and N
is the total number of range bins. In general, the average of the 1st
to mth range profiles is used instead of Gm(n) to minimize the error
accumulation in the alignment. According to this criterion, the τ that
minimizes the 1D entropy is the shift that best aligns the (m + 1)th
range profile.

In addition, efficient methods modeling the range shifts as a
polynomial have been proposed to solve the error accumulation
problem caused by integer shifts [13, 14]. These methods model the
shifts of the range profiles required for the alignment as a polynomial
and selects the parameters that maximize the total energy of the sum
of aligned range profiles for the alignment.

Phase adjustment uses methods such as the maximum-contrast
method and minimum-entropy method [15, 16], which can also be
applied even though no information on the motion is given.

2.3. Proposed Range Alignment Method

The range alignment methods mentioned above assume that an imaged
target is close to the radar. Therefore, the alignment can be done
in a relatively short time because there are not many range bins to
search for the minimum of (3). However, when a target is located at
a long range, a long flight trajectory is needed to obtain the aspect
angle variation required for the cross-range resolution equal to the
range resolution. For this reason, much computation time is required
to calculate (3) for all range bins; moreover, polynomials proposed to
solve error accumulation fail to fit the trajectory because the trajectory
is heavily dependent on the initial position and the motion parameters
of the target.

In this paper, we model the target trajectory using a combination
of a polynomial and Gaussian basis functions as follows. Assuming
that there are M range profiles having N range bins, the function that
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represents the target trajectory is expressed as

P (x) =
L∑

i=0

pix
i +

G∑

i=0

ai exp

[
−

(
x− bi

ci

)2
]

(4)

where P (x) is the trajectory function; x = 0 ∼ M − 1 with the
increment of 1; pi are parameters for the polynomial; ai, bi, ci are those
for the Gaussian basis functions. L is the order of the polynomial, and
G + 1 is the number of Gaussian functions. The first term of (4) was
originally introduced in [13, 14] to model the flight trajectory. However,
its main disadvantage is that high-degree fits can become unstable and
often fail to fit a trajectory. Therefore, we added the second term
to represent the error between the polynomial and the actual flight
trajectory. A Gaussian polynomial can be easily implemented, and
it was proven that any real function can be expressed by a linear
combination of Gaussian basis function [17].

Because N becomes large when the target trajectory is long, the
search space to find the parameters in (4) is very wide, and as a
result, much time is required when optimization algorithms are used.
Therefore, it is very important to set the initial values of the parameters
in (4) to save the computation time. In this paper, we initially use the
parameters that fit (4) to the center of mass curve of the range profile
history. The COM of each range profile is defined as

COMm =
N−1∑

n=0

|Gm(n)| × n∑N−1
k=0 |Gm(k)| (5)

where the parameters are the same as in (3). Because values in most
range bins are close to zero except for the target regions, the COM
is located in the target region. Therefore, we can approximate the
trajectory using the COM curve.

The parameters are the least square solution that minimizes
the error between the COM data given and the estimated function.
Let us assume that the center of mass curve is composed of values
(y1, y2, y3, . . . , ym) for x = (1, 2, 3, . . . , m), and the function to be
estimated is f(x, V ) calculated by (4), where V is a vector composed
of parameters in (4). Then, we find the parameters which minimize
the error defined by

E =
M∑

i=1

e2
i , where ei = yi − f(xi, V ) (6)
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The minimum of E is derived when the gradient is zero, that is, for all
parameters (elements in V ),

∂E

∂Vj
= 2

M∑

i=1

ei
∂ei

∂Vj
= 0, (7)

where Vj is the jth element of V . Because generally the parameters
are not determined in a closed-form, they are calculated in an iterative
manner as

V k+1
j = V k

j + ∆Vj , (8)

where ∆Vj is the shift vector which can be derived by the Gauss-
Newton algorithm [18] as follows:

(
JT

e Je

)
∆V = −JT

e e (9)

Here, e is a vector of ei, and Je is the Jacobian matrix of e with respect
to V , which can be calculated by differentiating (6) with respect to
each element of Vj . The iteration is performed until E is smaller than
a threshold value.

Then, the parameters can be optimized by performing a global
optimization algorithm such as a genetic algorithm (GA) [19–25] or
PSO. This paper utilizes PSO because it is easier to implement and
has been proven to be efficient for several engineering problems [10, 26–
31]. PSO is a population based stochastic optimization technique based
on the social behavior of bird flocking or fish schooling. The system is
initialized with a population of random solutions, called particles, then
minimizes the cost function and searches for the optima by changing
the velocity of each particle toward the local and the global particle
best. The particle dynamics which update each particle is as follows:

~vi(t) = φ~vi(t− 1) + ρ1(~xpbest − ~xi(t) + ρ2(~xgbest − ~xi(t)),
where ρ1 = r1c1, ρ2 = r2c2, r1, r2 ≈ rand, c1, c2 > 0, c1 + c2 < 4

(10)

t is the number of generation, rand is a uniform random number having
a uniform distribution between 0 and 1. The velocity vector in the tth
generation is then added to the particle ~xi(t) to move this particle.

After setting several random vectors with elements of the uniform
probability distribution between V ±ηV , where η is a constant smaller
than 1, we can utilize the cost function introduced in [14], which
represents the energy in the sum of the envelope of the total range
profiles, which is defined by

E =
N∑

i=1

|S(i)|2, where S(i) =
M∑

k=1

Gk(i) (11)
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Gk is the kth range profile, and M and N are the number of range
profiles and range bins respectively. It can be proven that the
shifts that maximize (11) also maximize the contrast of the aligned
range profiles. Maximization of the energy can also be achieved by
maximizing the following cost function after performing DFT of the
envelope of each range profile. (See [14] for the detailed procedure.)

E′=
N/2−1∑

k=1

|S(k)|2, where S(k)=
M−1∑

m=1

Am(k) exp
(
−j

2π

N
knm

)
(12)

Am is the DFT of the envelope of the mth range profile, and nm is
the shift needed for the mth range profile. N and M are the same
as in (11). Once the COM curve is calculated using the parameters
optimized, they are rounded to the nearest integers, and each range
profile is directly shifted by the number of the corresponding value in
the rounded COM curve.

3. EXPERIMENTAL RESULTS

This section presents several examples using targets consisting of
point scatterers and a real Boeing 737 aircraft in flight in order
to demonstrate the performance of the proposed range alignment
algorithm.

3.1. Simulation Results Using a Target of Point Scatterers

A target consisting of 50 isotropic point scatterers was used for the
simulation (Fig. 1). To be more realistic, it is modeled using the

Figure 1. 3D target consisting of 50 point scatterers.
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3D CAD data of a real F-14 fighter. The simulation data were
obtained by assuming that the target flew from the initial position
[x0 y0 z0] = [1 100 4] km in the [−1 − 1 0] direction with v = 280 m/s
and a = 10 m/s2. The pulse repetition frequency (PRF), center
frequency f0, bandwidth (BW), and sampling rate associated with the
radar system were 2 kHz, 9.15 GHz, 200MHz (0.75 m range resolution),
and 512MHz respectively. The signal-to-noise ratio (SNR) used was
10 dB. Based on the theory discussed in Section 2, the simulated flight
distance required for an equal cross-range resolution was 2.1741 km,
and the corresponding number of pulses transmitted at 2 kHz was
31252. For the faster computation, the pulses were down-sampled to
128. Fig. 2 shows the range profiles obtained from the given radar and
motion parameters.

The efficiency of the proposed method was demonstrated by
comparison with the alignment results of the polynomial method. The
polynomial used in [14] is defined as

nm =
inf∑

i=1

βi

(
2m

M
− 1

)i

, 0 ≤ m ≤ M − 1 (13)

where nm and M are the same as in (12). For each iteration, βi

is increased by a given step size as long as (12) increases with it.
When (12) stops increasing (or decreases), the step size is halved, and
βi decreased until it stops increasing. Then the step size is again
halved, and the process repeated until the cost function converges. In
this step, initial step size is very important because the wrong value
can be selected if there are local maxima.

Figure 3 shows the alignment results using nm derived for
each iteration. The initial step size of N/4 was used to obtain

Figure 2. Range profiles for long-range imaging.
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(a) Iteration 1 (b) Iteration 2 

(c) Iteration 3 (d) ISAR image

Figure 3. Alignment results using the polynomial method.

Figure 4. COM curve and estimated curve.

Fig. 3, where N is the number of range bins in each range profile.
Even though 8 iterations were carried out, serious alignment errors
occurred basically because the polynomial does not represent the flight
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trajectory correctly. For this reason, an unrecognizable image was
produced.

In contrast, the center of mass curve calculated using (5) and the
estimated curve using (6)–(9) closely resemble the flight trajectory in
Fig. 2 (Fig. 4). In the estimation of COM curve, L was set to 2, and
G was 6. Starting from V with random initial elements between 0
and 1, the program was run until the average difference between the
COM curve and the estimated one became smaller than 3. When this
condition was not met within 50 iterations, a new V was selected,
and the same process was repeated. In optimization, the parameters

Figure 5. Evolution curve.

(a) Optimized curve (b) Difference

Figure 6. Optimized curve and the difference between the optimized
curve and the COM curve.
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(a) Alignment result (b) ISAR image using (a)

Figure 7. Range alignment result and ISAR image derived using the
proposed method

Table 1. Comparison of alignment results for each method (point
scatterers).

Method
Energy of

sum envelope

Entropy of

ISAR images

Computation

time (sec)

Polynomial 55867.634 7.651 265.205

Proposed method 122095.324 5.756 25.705

used in PSO were population size = 20, number of generations = 30,
φ = 0.5, and c1 = c2 = 1.49. Each particle was initialized in the range
of V ± ηV , where η = 0.0005. Because the parameters estimating the
COM curve represented the trajectory approximately, the evolution
curve converged within 30 generations (Fig. 5), yielding the optimized
trajectory, whose values were different by less than 3.5 (Figs. 6(a)
and (b)). As a result, the alignment result and the focused ISAR image
are much better than the alignment using (6) (Figs. 7(a) and (b)).

Table 1 quantifies the performance in terms of the energy in the
sum envelope of the range profiles aligned, entropy of the image after
phase adjustment, and the computation time for the alignment. The
program was written in Matlab R2007a and run in Windows XP on an
Intel Quadcore processor. The entropy of the image was calculated by

Ent =
M∑

i=1

N∑

j=1

|I(i, j)|2 ln |I(i, j)|2 (14)

where I(i, j) is the (i, j)th pixel value of the ISAR image.
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As we can see, the alignment using the polynomial in (13) gives
a poor result because of the mismatch (Fig. 3). Even though the
entropy of the ISAR image is very low, the image does not show
a recognizable target due to the poor alignment. In addition, the
computation time was more than 4 minutes because the cost function
used seldom converged. Clearly, the proposed method needs a much
less time (25.705 s) than the existing method and produces a well-
focused image at the same time. The computation time can be
further reduced if COM curve is constructed in (5), and the proposed
procedure is carried out using a downsampled image, such as M/4 by
N .

(a) Alignment (polynomial) (b) ISAR image of (a)

(c) Alignment (proposed) (d) ISAR image of (c)

Figure 8. Comparison of alignment results between the polynomial
method and the proposed method.
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Table 2. Comparison of alignment results for each method (Boeing
737).

Method
Energy of

sum envelope

Entropy of

ISAR images

Computation

time (sec)

Polynomial 3.567e + 013 6.998 192.898

Proposed method 3.801e + 013 6.012 20.87

3.2. Simulation Results Using the Measured Data from a
Boeing 737 Aircraft

The proposed method was applied to the real ISAR data derived from
a Boeing 737 aircraft taking off at 3 km distance. Because the distance
to the target is very short, range profiles are located in a close range.
To simulate range alignment for long-range ISAR imaging, each range
profile after the proposed alignment was shifted following a polynomial
modeled by

Poly = −5x2/M + 20x + 1, x = −M/2 ∼ M/2− 1 (15)

where M is the number of the range profiles.
Figure 8 shows the alignment results for each method and the

corresponding ISAR images, and Table 2 quantifies their performance.
The same parameters as in the point scatterer case were used. Range
profiles using the polynomial in Fig. 8(a) are curved, yielding the
poorest ISAR image in (b). However, the results in (c) and (d)
and Table 2 prove that the proposed method consumes less time and
preserves the accuracy.

4. CONCLUSION

The proposed three-step range alignment method effectively aligns
range profiles for long-range ISAR imaging, for which the flight
trajectory is not represented by a single polynomial. It reduces the
computation time and preserves the accuracy in alignment. The first
step is to model the trajectory using a combination of a polynomial
and Gaussian basis functions and to find their parameters using the
least square curve-fitting algorithm. This significantly reduces the
convergence speed of the cost function by narrowing down the search
space. The second step is to find the optimum parameters that
maximize the energy of the sum envelope of range profiles. Simulation
results using a target composed of point scatterers and measured data
of a Boeing 737 prove that the proposed method is more efficient than
the polynomial-only method.
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