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Abstract—We previously analyzed the effects of trapezoidal tapered
gratings on the dispersive bistable characteristics of a quarter
wavelength phase-shifted distributed feedback semiconductor laser
amplifier (QWS-DFB-SLA). In this paper, we analyze the effects of
coupling coefficient on the static bistable characteristics of a QWS-
DFB SLA with a tapered or a non-tapered grating. Simulation
results show that any change in the coupling coefficient can change
the characteristics such as the spectral range of low-threshold bistable
switching and the on-off switching contrast.

1. INTRODUCTION

A distributed feedback semiconductor laser amplifier (DFB-SLA),
which is biased below oscillation threshold, similar to a Fabry-Perot
semiconductor laser amplifier (FP-SLA) shows a dispersive optical
bistability (OB) behavior.

Researchers have utilized optical bistability in SLA’s for optical
logic and optical signal processing [1–4]. This is due to the fact
that SLA’s exhibit exceptional bistability characteristics such as
low switching powers (∼µW), fast switching speeds (∼ns), inherent
optical gain, and wavelength compatibility with optical communication
systems [5]. Meanwhile, a bistable DFB-SLA in comparison to a
bistable FP-SLA, offers the advantage of controlling the input/output
characteristics by tailoring the DFB transmission through some non-
uniformities of its grating [6].
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The first team to study of bistability in DFB-SLA’s was
H. Kawaguchi et al., followed by M. J. Adams et al. [7–9]. In all these
works, the DFB laser amplifier had a uniform ideal grating structure
and two important results were obtained. The first was that optical
bistability was observed at input power levels of a few µw, and the
second was that, as a consequence of the spectral asymmetry of the
bistable DFB-SLA, the hysteresis loops on either side of the stop
band exhibited different shapes. Static and dynamic properties of
dispersive optical bistability in uniform-grating DFB semiconductor
lasers were investigated both theoretically and experimentally in 1995.
The results showed that the OB switching speed could be increased
by increasing the bias level from below to above threshold [10]. In
1997, it was shown that by introducing some non-uniformities such
as spatial phase shift and chirp, some bistable static performance,
such as the switching-on threshold and ON-OFF switching ratio could
be improved [11]. The principle of an all-optical flip-flop based on
dispersive bistability in a uniform-grating DFB-SLA was described in
2001 [12]. Using a bistable DFB-SLA as a two-wavelength switch
was described in 2006 [13]. By introducing tapering to the grating
of a quarter wavelength phase-shifted DFB-SLA (QWS-DFB-SLA),
we showed that this non-uniformity can widen the spectral range
of low-threshold bistable switching and increase the on-off switching
contrast [14]. Finally, in a most recent report, we proposed a procedure
to analyze transient response of bistable DFB-SLA’s. The results
of the analysis demonstrated that among bistable DFB-SLA’s with
uniform, QWS, and tapered gratings, the latter has the best switching
behavior [15].

On the other hand, one of the important parameters assumed
constant in previous studies on optical bistabilty in DFB structures
is the coupling coefficient, κ. Since this parameter is associated with
the perturbed relative permittivity, then its numerical value depends
on the shape, depth and period of the corrugation. In this paper, our
aim is to study the effects of change in the coupling coefficient on the
bistable characteristics of a tapered or a non-tapered QWS-DFB SLA
under steady-state conditions.

The layout of the paper is as follows: In Sec. 2, we present the
procedure used to calculate the coupling coefficient along the cavity of a
DFB structure. Based on the coupled-mode and carrier rate equations,
in Sec. 3, we present the theoretical model used for our numerical
analysis. In Sec. 4, we show that how the unsaturated amplifier gain
and the steady-state bistable characteristics of QWS-DFB-SLA’s are
affected by changing the coupling coefficient. Finally, we close the
paper by conclusions, in Sec. 5.
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Figure 1. Schematic diagram of a DFB-SLA with: (a) Purely QWS,
and (b) trapezoidal tapered purely QWS gratings.

2. THE COUPLING COEFFICIENT IN DFB
STRUCTURE

Schematics of the various DFB gratings used in our analysis are shown
in Fig. 1. Fig. 1(a) illustrates a purely QWS grating, while Fig. 1(b)
shows a trapezoidal tapered QWS grating whose depth, p, is a function
of the axial variable, z, as follows

p (z) =





p0

(
1− (L1−z)

L1

)
0 < z ≤ L1

p0 L1 ≤ z ≤ L1 + L2

p0

(
1− (z−(L1+L2)

L−(L1+L2)

)
L1 + L2 ≤ z < L

(1)

where P0 is the maximum depth of the grating, WB and WT are width
of the bottom and top corrugations, respectively, Λ is period of the
grating, L1 is the length of the left section with a tapered grating,
L2 is the length of the middle section with a uniform grating, and L
the total length. It is obvious that the minimum grating depth which
occurs at both ends of the DFB is greater than zero.

Ghafouri-Shiraz et al. [16] presented a procedure to calculate the
coupling coefficient, κ for a uniform-grating sub-section of length l and
we summarize this procedure in a flowchart illustrated in Fig. 2.

Based on this procedure, the numerical value of κ depends on the
shape, depth and period of the corrugation, Λ and therefore, it is a
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Figure 2. A flow chart to obtain the coupling coefficient for a uniform
grating subsection of a DFB structure.

function of the axial variable for the tapered QWS-DFB structure. In
comparison to the coupling coefficient obtained from a purely QWS-
DFB laser, one need to calculate the κeff · L product for the tapered
structure and compare it with κ ·L product obtained for a non-tapered
structure. Definition of the κeff for a non-uniform QWS-DFB structure
is,

κeff =

∫ L
0 κ (z) dz

L
(2)

It is obvious that by changing a parameter such as the maximum depth
of the grating, one can change the value of κeff ·L in the tapered QWS-
DFB SLA, or similarly the value of κ ·L in the purely QWS-DFB SLA.
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3. THEORETICAL MODEL

If A(z) and B(z) are the slowly varying amplitudes of the forward and
backward propagating fields through the DFB structure, respectively,
then the coupled-mode equations can be defined as [17]

dA

dz
= i∆βA + iκB (3a)

dB

dz
= −i∆βB − iκA (3b)

where ∆β = β − β0 is the detuning of the wave number β from the
Bragg wave number, β0 = π/Λ and defined by

∆β = δ − ig(1− iα)/2 + iαint/2 (4)

where δ is due to the detuning of the free-space wavelength from the
Bragg wavelength, α is the line width enhancement factor and governs
the change in the refractive index through variations in the carrier
density, αint is the internal loss due to scattering and free carrier
absorption, and g is the modal power gain given as

g = Γa (N −N0) (5)

where Γ is the optical confinement factor, a is the differential gain
parameter, N is the carrier density, and N0 is the carrier density at
transparency.

The rate equation for the carrier density, N in a semiconductor
laser amplifier is given by

dN

dt
=

J

ed
− N

τc
− g

~ω0
I (6)

where J is the current density in the active region of thickness d, e
is the electron charge, τc is the carrier life time. ~ω0 is the photon
energy, and I = |A(z)|2 + |B(z)|2 is the optical intensity. The carrier
density for CW signals and pulses much wider than the carrier life time
τc (∼ 100) ps reaches a steady state with the value

N =
J̄ + Ī

1 + Ī
N0 (7)

where J̄ = J/J0 is the current density normalized to its value required
to achieve transparency J0 = edN0/τc and Ī = I/Isat is the optical
intensity normalized to the saturation intensity Isat = ~ω0/Γaτc.
Substituting (7) into (5) results in a new expression for the modal
power gain:

g =
g0

1 + Ī
(8)
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where g0 = ΓaN0(J/J0 − 1) is the unsaturated value of the modal
power gain.

For our analysis, as mentioned in [14], we use a transfer-
matrix representation (TMM) of the propagation in the cavity of the
QWS-DFB structures with the boundary conditions neglecting facets
reflectivity’s given by

A (z = 0) = Ai

B (z = 0) = Ar

B (z = L) = 0
A (z = L) = At

(9)

where Ai, Ar, and At are the slowly varying amplitudes of the incident,
reflected, and transmitted optical waves, respectively.

4. NUMERICAL RESULTS

It has been demonstrated that in a DFB-SLA, the optical bistability
exists for values of the normalized detuning, δL less than those
corresponding to the transmission peaks, (i.e., at the cavity
resonances) [11]. In order to determine the cavity resonance
frequencies, for a QWS-DFB-SLA, we first study its transmission
characteristics for an input optical signal of I ¿ Isat. In this situation,
by neglecting in the denominator of (8), one can approximate g ≈ g0.

On the other hand, optical bistability occurs as the gain of a
DFB-SLA is saturated by increasing its optical intensity within the
device. The intensity profile in an active semiconductor will create a
gain profile via saturation. The modal gain, however, is used in the
calculation of the transfer-matrix elements, which are in turn used
to compute the optical intensity distribution. To account for this
nonlinear behavior, we solve for the gain and intensity distributions
using an iterative approach [11].

By choosing κeff · L (or κ · L) = 3, we previously calculated
the wavelength dependence of the transmission gain G = Iout/Iin =
|At|2/|Ai|2 and the bistability hysteresis for the mentioned QWS-DFB
laser amplifiers which the results have been contributed in [14]. Now
we explore how these results are affected if we change the coupling
coefficient.

4.1. A Decrease in the Coupling Coefficient

By decreasing the coupling coefficient, the wavelength dependence
of the transmission gain of the purely QWS-DFB-SLA is shown in
Fig. 3(a). The parameter g0L = 1.3527 is chosen to realize G = 30 dB
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centered at the detuning δL = 3.32, where as shown in Fig. 3(b) the
transmission peak can be achieved with g0L = 2.032 centered at the
detuning δL = 4.95 for the tapered QWS-DFB laser amplifier.
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Figure 3. Wavelength dependence of the amplifier gain, G, with α = 5
and αint = 0 for: (a) The purely QWS-DFB SLA with κL = 2 and
g0L = 1.3527 corresponding to G = 30 dB; (b) The trapezoidal tapered
QWS-DFB SLA with κeff L = 2 and g0L = 2.032 corresponding to
G = 30 dB.
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Figure 4. The bistability characteristics with α = 5, αint = 0, and
∆ = δL′ − δL as a parameter for: The purely QWS-DFB SLA with
κL = 2 and g0L = 1.3257 corresponding to G = 30 dB; (b) The
trapezoidal tapered QWS-DFB SLA with κeff L = 2, g0L = 2.032
corresponding to G = 30 dB.
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We can plot the bistability hysteresis for the QWS-DFB laser
amplifiers with the values for δL less than that corresponding to the
transmission peak. As shown in Fig. 4(a), starting from a value of
δL near the onset of bistability (i.e., δL′ = 3.25), by decreasing δL
the bistable region of input intensities will increase for the purely
QWS-DFB SLA. Meanwhile, the value of g0L is selected to yield an
unsaturated peak G = 30 dB for the DFB laser amplifier. On the
other hand, the bistability hysteresis for the tapered QWS-DFB is
demonstrated in Fig. 4(b), the highest value of the δL (δL′ = 4.75) is
selected to be near the onset of bistability and then it is decreased until
the switch-on input intensity reached 1% of the saturation intensity. As
illustrated in Fig. 4, the detuning range for the low-threshold bistable
switching for the QWS-DFB amplifiers is wider than that calculated
in [14]. The hysteresis is also increased in contrast by decreasing the
coupling coefficient for both of the tapered and non-tapered cases.
However, the top level of bistability characteristics is not flat as that
calculated in [14] for the two QWS-DFB SLA’s.

4.2. An Increase in the Coupling Coefficient

Now we increase the coupling coefficient rather the value selected
in [14]. The wavelength dependence of the transmission gain of
the purely QWS-DFB-SLA is shown in Fig. 5(a). The parameter
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Figure 5. Wavelength dependence of the amplifier gain, G, with
α = 5 and αint = 0 for: The purely QWS-DFB SLA with κL = 4 and
g0L = 0.319 corresponding to G = 30 dB; (b) The trapezoidal tapered
QWS-DFB SLA with κeff L = 4 and g0L = 0.5163 corresponding to
G = 30 dB.
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g0L = 0.319 is chosen to realize G = 30 dB centered at the detuning
δL = 0.78, where as shown in Fig. 5(b) the transmission peak can be
achieved with g0L = 0.5163 centered at the detuning δL = 1.65 for the
tapered QWS-DFB laser amplifier.

The bistability hysteresis for the QWS-DFB laser amplifiers are
shown in Fig. 6. As shown in Fig. 6(a), the highest value of the δL (i.e.,
δL′ = 0.713) is selected to be near the onset of bistability for the purely
QWS-DFB SLA and then it is decreased until the switch-on input
intensity reached 1% of the saturation intensity. On the other hand,
the bistability hysteresis for the tapered QWS-DFB is demonstrated
in Fig. 6(b), the highest value of the δL (δL′ = 1.1671) is chosen to be
near the onset of bistability. Meanwhile, the value of g0L is selected to
yield an unsaturated peak G = 30 dB for the DFB laser amplifier. As
illustrated in Fig. 6, the detuning range of approximately for the low-
threshold bistable switching for the QWS-DFB amplifiers is narrower
than that calculated in [14]. The hysteresis is also decreased in contrast
by increasing the coupling coefficient for both of the tapered and non-
tapered cases. However, the top level of bistability characteristics is
flatter than as that calculated in [14] for the two QWS-DFB SLA’s.

4.3. Analysis of the Results

In fact, when we decrease or increase the coupling coefficient of
a QWS-DFB amplifier, it seems that feedback for the wavelength
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Figure 6. The bistability characteristics with α = 5, αint = 0,
and ∆ = δL − δL as a parameter for: The purely QWS-DFB SLA
with κL = 4 and g0L = 0.319 corresponding to G = 30 dB; (b) The
trapezoidal tapered QWS-DFB SLA with κeff L = 4, g0L = 0.5163
corresponding to G = 30 dB.
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corresponding to the Bragg wave number is decreased or increased,
respectively. This decrease or increase requires the SLA’s to be pumped
at a higher or a lower modal gain (g0), respectively rather than those
given in [14] to achieve the same unsaturated peak amplifier gain
(G). Moreover, due to the nonzero line width enhancement factor,
an increase or a decrease in the modal gain results in a decrease or
an increase in the refractive index, respectively and so a decrease or
an increase in the cavity resonance wavelength. Consequently, the
transmission spectrum shifts to higher or lower values of δ, respectively.

On the other hand, an increase or a decrease in modal gains
increases or decreases the switching contrast, respectively. Moreover, a
wider or a lower range of wavelengths exhibit low-threshold switching
because the increased or decreased gain strengthens or weakens the
intensities, respectively at these wavelengths.

5. CONCLUSION

In this paper, by calculating the steady-state bistable response of the
QWS-DFB laser amplifiers, we have shown that the spectral range
and also the contrast of the low-threshold bistable switching can be
affected if we change the coupling coefficient. Although a decrease
in the coupling coefficient shows improvements in these bistability
characteristics which are useful for several applications in optical
communication systems [1–3], the slope of the top level of the bistable
hysteresis increases. Therefore, it may have fewer applications in
bistability-based optical signal regenerators [4], which produce pulses
with flatter peaks.
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