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Abstract—This paper presents a theoretical model for the propaga-
tion of a hollow Gaussian electromagnetic beam [HGB], propagating
in a plasma with dominant relativistic-ponderomotive nonlinearity. A
paraxial like approach has been invoked to understand the nature of
propagation; in this approach all the relevant parameters correspond
to a narrow range around the irradiance maximum of the HGB. The
critical curves for the propagation of various order HGBs have been
discussed, and the dependence of the beam width parameter on dis-
tance of propagation has been evaluated for three typical cases viz. of
steady divergence, oscillatory divergence and self focusing of the HGB.

1. INTRODUCTION

Among many of the nonlinear processes [1–15] in the laser-plasma
interaction the phenomenon of self focusing [1–6] is of significant
interest on account of the fact that the non-linear effects are highly
sensitive to the irradiance distribution along the wavefront of the
beam, which is significantly affected by self focusing. Further,
the introduction of ultra high power laser [16] has led to many
theoretical and experimental studies in the inertial confinement fusion
(ICF) [17–20], charged particle acceleration [21–23] and ionospheric
modification [24–27]. In many of such studies the ponderomotive as
well as the relativistic nonlinearities have to be considered. Pukhov and
Meyer-ter-Vehn [28] in their investigation proposed a three dimensional
simulation model for short laser pulse propagation in a plasma with
dominant relativistic nonlinearity and found that the incident laser
beam creates a single propagation channel with considerably enhanced
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irradiance on the axis; however this work does not take cognizance of
the role of the ponderomotive forces in the self focusing process.

Most of these investigations [29–32] are characterized by
considering only the relativistic nonlinearity, while different kinds of
nonlinearities are in fact operative, depending on the time scale of
the pulse viz. (i) τpe ≈ τ and (ii) τ ≈ τpi where τ is the pulse
duration, τpi is the ion plasma period and τpe is the electron plasma
period. Case (i) corresponds to dominant relativistic nonlinearity
while case (ii) refers to the situation when the ponderomotive [33] and
relativistic [34] nonlinearities are simultaneously operative. In such a
case the nonlinearity in the dielectric function occurs is caused by the
electron mass variation due to large laser irradiance and the change
in electron density as a consequence of the ponderomotive force. Very
few studies on self focusing [35, 36] and cross focusing [37] of the laser
beams have been made, incorporating the combined effect of relativistic
and ponderomotive nonlinearities. Further the effect of an ultra intense
laser pulse on the propagation of an electron plasma wave has been
analyzed by Kumar et al. [38] in the relativistic-ponderomotive regime.

Most of the analyses on self focusing of the laser beams are devoted
to the Gaussian beams [3–5, 33–43]; nevertheless a few studies have
also been published on the self focusing of super Gaussian beams [44–
46], self trapping of degenerate modes of laser beams [47], and self
trapping of Bessel beams [48] by considering the nature of different
irradiance distributions of the beams. Apart from these investigations,
recently the optical beams with central shadow, usually known as dark
hollow beams (DHB) have received much attention from the physics
community because of their wide and attractive applications in the
field of modern optics, atomic optics and plasmas [49–52]; numerous
experimental techniques [53–55] have also been developed for the
production of the DHBs. Further for the explanation of the dynamics
and other propagation characteristics, several theoretical models for
DHBs [the beam with zero central intensity] like the TEM01 mode
doughnut beam, some higher order Bessel beams, superposition of
off-axis Gaussian beams and dark-hollow Gaussian beams etc. have
been introduced [56–59]. In relatively recent studies the propagation of
DHBs in paraxial optical systems [60] and turbulent atmospheres [61]
has been discussed in detail.

A look at the available literature reveals the fact that the
interaction of DHBs with nonlinear media and plasmas has not
been investigated significantly; as an exception the propagation
of doughnut (TEM01) beam in a plasma for regions around the
axis and the maximum of irradiance, in the geometrical optics
approximation [62, 63], has been investigated to some extent. Further
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a modified theory [64] for propagation of TEM01 mode of the beam,
considering diffraction and the saturating nature of the non-linearity,
has been developed. In a recent investigation Sodha et al. [65, 66]
have presented a modified paraxial-like approach, similar to the one
given by Akhmanov et al. [3] and developed by Sodha et al. [4, 5],
to analyze the propagation characteristics of a hollow Gaussian beam
in the vicinity of its irradiance maximum in the plasma by taking
note of the saturating character of the nonlinearities. However, all the
three basic nonlinearities of the plasma (i.e., ponderomotive, collisional
and relativistic) have been analyzed separately to a significant extent
but their combined effect has not been discussed in the context of the
HGB. The present paper explores the propagation of a dark cylindrical
hollow Gaussian electromagnetic beam (with a zero axial irradiance)
in a plasma characterized by taking into account the relativistic-
ponderomotive nonlinearity. It should however be realized that some
interesting effects [67, 68] predicted by detailed numerical simulation
like breaking up into a number of beams can not be recovered in
the cylindrical geometry; hence the theory has some limitations,
particularly for beams with powers above the critical value. However
since cylindrical beams are commonly used, a theory for cylindrical
beams (even approximate) is in order.

The present work is based on the modified approach followed by
Sodha et al. [65, 66] and represents the extension of the theory to
plasmas in which the relativistic and ponderomotive nonlinearities are
operating simultaneously. Thus this investigation is inclusive of the
following considerations:

(i) The diffraction term derived in the present analysis is appropriate
for the vicinity of the maximum of the irradiance of the hollow
Gaussian beam, occurring away from the central axis (r = 0).

(ii) All the relevant parameters have been expanded in terms of the
radial distance from the maximum of the irradiance of the hollow
Gaussian beam, which lies away from the axis r = 0.

(iii) The plasma is electrically neutral everywhere.
(iv) The pulse duration of the laser τ has been chosen so that

both the nonlinearities viz. relativistic and ponderomotive are
simultaneously operative.

This paper investigates some interesting aspects associated with
the propagation of the various order HGBs in a paraxial like
approximation and the results are appreciated through the critical
curves and the dependence of the beam width parameter on various
factors. The results have been discussed in Section 4 and a short
summary of the investigation in Section 5 concludes the paper.
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2. FOCUSING OF HOLLOW GAUSSIAN BEAM (HGB)

2.1. Propagation

Consider the propagation of a linearly polarized hollow Gaussian
beamwith its electric vector polarized along the y-axis, propagating
in a homogeneous plasma along the z-axis. In the steady state the
electric field vector E for such a beam may be expressed in a cylindrical
coordinate system with azimuthal symmetry as

E = ĵE0(r, z) exp(iωt), (1)

where

(E0)z=0 = E00

(
r2

2r2
0

)n

exp
(
− r2

2r2
0

)
, (2)

E0 refers to the complex amplitude of the hollow Gaussian beam
of initial beam width r0, E00 is a real constant characterizing the
amplitude of the HGB, n is the order of the HGB and a positive integer,
characterizing the shape of the HGB and position of its irradiance
maximum, ω is the wave frequency, ĵ is the unit vector along the y
axis and E00 denotes the electric field maximum at r = rmax = r0

√
2n,

corresponding to z = 0. For n = 0, Eq. (2) represents a fundamental
Gaussian beam of width r0; however, the interest of the present
investigation lies in higher order HGBs [i.e., n > 0].

The electric field vector E satisfies the wave equation (stationary
frame),

∇2E−∇(∇ ·E) +
ε(r, z)

c2

∂2E
∂t2

= 0, (3)

where ε is the effective dielectric function of the plasma and c is the
speed of light in free space.

For transverse beams, the second term of left hand side of Eq. (3)
is zero. One can thus write the wave equation for the electromagnetic
beam, as

∇2E0 + (ω2
/
c2)ε(r, z)E0 = 0. (4)

Following Akhmanov et al. [3] and Sodha et al. [4, 5] the solution
of Eq. (4) can be chosen as

E0(r, z) = jA(r, z) exp
(
−i

∫
k(z)dz

)
, (5)

where A(r, z) is a complex parameter, k(z) = ω
c

√
ε0(z) and ε0(z) is

the dielectric function, corresponding to the maximum electric field on
the wavefront of the HGB [see Eq. (11)].
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Substituting for E0(r, z) from Eq. (5) in Eq. (4) and neglecting
the term (∂2A/∂z2) (assuming A(r, z) to be a slowly varying function
of z), one obtains

2ik
∂A

∂z
+ iA

∂k

∂z
=

(
∂2A

∂r2
+

1
r

∂A

∂r

)
+

ω2

c2
(ε− ε0). (6)

The complex amplitude A(r, z) may be expressed as,

A(r, z) = A0(r, z) exp[−ik(z)S(r, z)], (7)

where S(r, z) is termed the eikonal associated with the hollow Gaussian
beam; both A0 and S are real parameters.

Substitution for A(r, z) from Eq. (7) in Eq. (6) and the separation
of the real and imaginary parts, yields

2S

k

∂k

∂z
+ 2

∂S

∂z
+

(
∂S

∂r

)2

=
1

k2A0

(
∂2A0

∂r2
+

1
r

∂A0

∂r

)
+

ω2

c2
(ε− ε0) (8a)

and
∂A2

0

∂z
+ A2

0

(
∂2S

∂r2
+

1
r

∂S

∂r

)
+

∂A2
0

∂r

∂S

∂r
+

A2
0

k

∂k

∂z
= 0. (8b)

To proceed further one can adopt an approach, analogous to the
paraxial approximation. Thus one may start by expressing Eqs. (8a)
and (8b) in terms of variables η and z, where

η =
[
(r/r0f)−

√
2n

]
, (9)

r0f(z) is the width of the beam and r = r0f
√

2n is the position
of the maximum irradiance for the propagating beam; it is shown
later that in the paraxial like approximation, i.e., when η ¿ √

2n,
Eqs. (8a) and (8b) lead to the maintenance of the HGB character
during propagation. Since the irradiance of the beam is a function
of r and z only, expansions of expressions for relevant parameters
made along r, near the irradiance maximum viz. r = r0f(z)

√
2n,

are certainly justified in the paraxial like approximation; for n = 0
(Gaussian beam), the expansion is made (like wise) around r = 0
(as usual). Like the paraxial theory, the present analysis is strictly
applicable when η ¿ √

2n.
The transformation [Eq. (9)] leads to,

∂

∂z
=

∂

∂z
−

(√
2n + η

)

f

df

dz

∂

∂η
(9a)

and
∂

∂r
=

1
r0f

∂

∂η
(9b)
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Thus with the help of Eqs. (9a) and (9b), the set of focusing equations
[i.e., Eqs. (8a) and (8b)] may in terms of variables (η, z) be expressed
as,

2S

k

∂k

∂z
+ 2

(
∂S

∂z
−

(√
2n + η

)

f

df

dz

∂S

∂η

)
+

1
r2
0f

2

(
∂S

∂η

)2

=
1

k2A0r2
0f

2

(
∂2A0

∂η2
+

1(√
2n + η

) ∂A0

∂η

)
+

ω2

c2
(ε− ε0) (10a)

and (
∂A2

0

∂z
−

(√
2n + η

)

f

df

dz

∂A2
0

∂η

)
+

A2
0

r2
0f

2

(
∂2S

∂η2
+

1(√
2n + η

) ∂S

∂η

)

+
1

r2
0f

2

∂A2
0

∂η

∂S

∂η
+

A2
0

k

∂k

∂z
= 0. (10b)

In the paraxial like approximation the relevant parameters (i.e.,
the dielectric function ε(r, z), eikonal and irradiance) may be expanded
around the maximum of the HGB, i.e., around η = 0. Thus one can
express the dielectric function ε(η, z) around the maximum (η = 0) of
the HGB as

ε(η, z) = ε0(z)− η2ε2(z), (11)

where ε0(z) and ε2(z) are the coefficients associated with η0 and η2

in the expansion of ε(η, z) around η = 0. The expressions for these
coefficients have been derived later.

Substitution for ε(η, z) from Eq. (11) in Eqs. (10a) and (10b) leads
to

2S

k

∂k

∂z
+ 2

(
∂S

∂z
−

(√
2n + η

)

f

df

dz

∂S

∂η

)
+

1
r2
0f

2

(
∂S

∂η

)2

=
1

k2A0r2
0f

2

(
∂2A0

∂η2
+

1(√
2n + η

) ∂A0

∂η

)
− η2 ω2

k2c2
ε2 (12a)

and (
∂A2

0

∂z
−

(√
2n + η

)

f

df

dz

∂A2
0

∂η

)
+

A2
0

r2
0f

2

(
∂2S

∂η2
+

1(√
2n + η

) ∂S

∂η

)

+
1

r2
0f

2

∂A2
0

∂η

∂S

∂η
+

A2
0

k

∂k

∂z
= 0. (12b)
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In the paraxial like approximation, one can express the solution of
Eq. (12b) as

A2
0 =

E2
0

22nf2

(√
2n + η

)4n
exp[−

(√
2n + η

)2
], (13a)

where

S(η, z) =

(√
2n + η

)2

2
β(z) + ϕ(z); (13b)

one has
∂A2

0

∂z
= − 2

f

df

dz
A2

0, (13c)

∂A2
0

∂η
=

[
4n(√

2n + η
) − 2

(√
2n + η

)]
A2

0, (13d)

∂S

∂z
=

(√
2n + η

)2

2
dβ

dz
+

dϕ

dz
, (13e)

∂S

∂η
=

(√
2n + η

)
β, (13f)

β(z) = r2
0f

df

dz
, (13g)

E2
0 = E2

00

(
k(0)
k(z)

)
= E2

00

(
ε0(0)
ε0(z)

)1/2

, (13h)

ϕ(z) is a function of z, and f(z) is the beam width parameter for the
HGB.

Most of the power of the beam is concentrated in the region
around η = 0. There is certainly some power of the beam beyond
this limitation, which is accounted for in an approximate manner
by Eq. (13a), which in common with the variational and moment
approaches, assures that the nature of r dependence of irradiance does
not change with propagation. Eq. (13a) also ensures conservation of
power as the beam propagates.

On substituting for A2
0 and S and their derivatives from the set

of Eqs. (13a) to (13h) in Eq. (12a) and equating the coefficients of η0

and η2 on both sides of the resulting equation, one obtains

ε0f
d2f

dξ2
=

(
4
f2
− ρ2

0ε2

)
− 1

2
f

df

dξ

dε0

dξ
(14a)

and
1
ε0

((
nf

df

dξ
+ Φ

)
dε0

dξ
+

2
f2

)
+ 2nf

d2f

dξ2
+ 2

dΦ
dξ

= 0, (14b)
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where ξ = (c/r2
0ω)z is the dimensionless distance of propagation,

ρ0 = (r0ω/c) is the dimensionless initial beam width, and Φ = (ω/c)ϕ
is the dimensionless function associated with the eikonal of the HGB.

It may be noted that Eq. (12a) has a term proportional to η
on the left hand side but none on the right hand side, giving an
absurd result that the double derivative of the beam width parameter
f(z) equals zero. This implies that ideally the eikonal should also
have an odd power term in η, which introduces complications in
mathematics. However, such an asymmetry will not significantly
influence the focusing of the maximum irradiance of the HGB; hence
its neglect is reasonable.

The dependence of the beam width parameter f on the
dimensionless distance of propagation ξ can be obtained by the
numerical integration of Eq. (14a) after putting suitable expressions for
ε0 and ε2, and using the initial boundary conditions f = 1, (df/dξ) = 0
at ξ = 0; Φ is obtained by simultaneous solution of Eqs. (14a) and
(14b), taking the additional boundary condition Φ = 0, at ξ = 0 into
account.

2.2. Dielectric Function

Following Sodha et al. [5], the effective dielectric function of the plasma
can be expressed as

ε(r, z) = 1− Ω2(N0e/N0), (15)

where Ω = (ωpe/ω), ωpe = (4πN0e
2/m)1/2 is the electron plasma

frequency, N0 is the undisturbed electron density of the plasma,
N0e is the electron density of the plasma in the presence of the
electromagnetic field, m is the mass of the electron and e is the
electronic charge.

Following the paraxial like approximation one can expand the
dielectric function ε(η, z) in axial and radial parts around the
maximum of the ring ripple (η = 0). Thus one obtains from Eq. (11)
and Eq. (15),

ε0(z) = ε(η, z)η=0, (16)

and ε2(z) = −
(

∂ε(η, z)
∂η2

)

η=0

. (17)

2.3. Evaluation of the Effective Dielectric Function

The present study considers a plasma, characterized by simultaneously
operative relativistic and ponderomotive nonlinearities, caused by the
relativistic change in the mass of electron and the modification of the
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background electron density due to ponderomotive nonlinearity. The
relativistic ponderomotive force on an electron in the presence of an
intense electromagnetic beam may be represented as [35, 69] as,

Fp = −m0c
2∇(γ − 1) (18)

where γ is the relativistic factor given by

γ = [1 + (e2/m2
0c

2ω2)EE∗]1/2 = [1 + αEE∗]1/2 (19)
and α = (e2/m2

0c
2ω2).

Using the electron continuity equation and current density
equation the second order correction in the electron density equation
i.e., N2, can with the help of Eq. (18) be written as [35],(

∂2

∂t2
+

ω2
p0

γ

)
N2 = −∇(N0Fp/m0γ) + K,

where K is a corrective term, given by

K = ∇
(

N2

γ

∂γ

∂t
+

∂

∂t

)
v.

In the steady state the expression reduces to

N2 =
γ

ω2
p0

∇(N0Fp/m0γ)

or N2 =
c2N0

ω2
p0

(
∇2γ − (∇γ)2

γ

)
.

Thus the total electron density may be represented by [35]

N0e = N0 + N2 = N0 + (c2N0/ω2
p0)

(
∇2γ − (∇γ)2

γ

)

or, (N0e/N0) = 1 + (c2/ω2
p0)

(
∇2γ − (∇γ)2

γ

) (20)

The effective dielectric function in the case of relativistic
ponderomotive nonlinearity may be given by

ε(r, z) = 1− Ω2
0(N0e/γN0) (21)

where Ω0 = (ωp0/ω), ωp0 = (4πN0e
2/m0)1/2 and m0 is the rest mass

of the electron.
Using Eq. (20), Eq. (21) reduces to the form

ε(r, z) = 1− (Ω2
0/γ)

[
1 + (c2/ω2

p0)
(
∇2γ − (∇γ)2

γ

)]

= 1− (Ω2
0/γ)− (c2/ω2)∇

(∇γ

γ

)
. (22)
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For further algebraic analysis, it is convenient to expand the
solution for A2

0 as a polynomial in η2; thus

A2
0 = g0 + g2η

2, (23)
where

g0 =
E2

0

f2
n2n exp[−2n], (24a)

g2 = −2g0 = −2E2
0

f2
n2n exp[−2n], (24b)

Following the paraxial like approximation one can expand the
dielectric function ε(η, z) in axial and radial parts around the maximum
of the HGB (η = 0). Thus from the set of Eqs. (11), (22) and (24),
one obtains

ε0(z) = 1−
(

Ω2
0

(1 + g0)1/2

)
+

1
ρ2f2

[
2g0

(1 + g0)

]
(25)

and

ε2(z)=−
(

Ω2
0

2(1 + g0)3/2

)
g2+

1
ρ2f2

[
(8g0−2g2)
(1 + g0)

+
(2g0g2−2g2

2)
(1 + g0)2

]
. (26)

Using Eqs. (24) one obtains

ε2(z) =
(

Ω2
0

(1 + g0)3/2

)
g0 +

1
ρ2f2

12g0

(1 + g0)2
(27)

2.4. Critical Condition for Focusing: Critical Curves

With initially (ξ = 0) plane wave front [(df/dξ) = 0] of the
beam and f = 1 at ξ = 0, the condition (d2f/dξ2)ξ=0 = 0
leads to f(ξ) = 1 or propagation of the HGB without convergence
or divergence; this condition is known as the critical condition.
Thus putting (d2f/dξ2)ξ=0 = 0 in Eq. (14a) one obtains a relation
between dimensionless initial width of the HGB ρ0[= r0ω/c] and αE2

00,
corresponding to the propagation of the HGB in the self trapped mode.
Further For (d2f/dξ2) < 0 the HGB displays oscillatory self focusing,
while for (d2f/dξ2) > 0HGB undergoes either oscillatory or steady
divergence.

The critical curve can thus be represented as,
ρ2
0ε2(0) = 4. (28)

Using the appropriate expression for ε2(z) at z = 0 from Eq. (27) for
relativistic-ponderomotive nonlinearity, Eq. (28) reduces to

g0ρ
2
0 =

(1 + g0)3/2

Ω2
0

[
4− 12g0

(1 + g0)2

]
(29)
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On substitution for the coefficient g0 from Eqs. (24), Eq. (29)
represents the critical curve ρ−2

0 vs. αE2
00 and separates the self

focusing region from the rest. The critical curves, which exhibit a
relationship between the initial dimensionless amplitude αE2

00 and
the width ρ0, correspond to the propagation of the HGB without
convergence or divergence. Points above the curve correspond to
divergence (or dissipation) while points below the curve refers to self
focusing of the HGB.

3. COMPUTATIONAL SCHEME

To have a better understanding of the underlying physics and the
numerical appreciation of the results, the critical curves and the
dependence of the beam width parameter f (in the vicinity of the
maximum of the irradiance of the HGB), on ξ for a chosen set
of parameters and ponderomotive-relativistic nonlinearity, has been
computed.

The critical curves for the propagation of the HGB in a plasma,
between the irradiance αE2

00 and the initial dimensionless width of
the HGB ρ0, have been plotted with the help of Eq. (29), by using
Eqs. (24), corresponding to the applicable plasma nonlinearity and
chosen sets of parameters n and Ω0. Further the computations have
also been made to investigate the variation of the dimensionless beam
width parameter f , associated with the propagation of the HGB
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Figure 1. The dependence of the initial beam width ρ−2
0 with the

initial irradiance αE2
00, for the propagation of various orders HGBs

with dominant ponderomotive-relativistic plasma nonlinearity, for the
parameter Ω2

0 = 0.8; the orders of the HGB are indicated over the
curves and the Regions I, II and III correspond to n = 1.
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Figure 2. (a) The dependence of the dimensionless beam width
parameter f on the dimensionless distance of propagation ξ, with
dominant ponderomotive-relativistic nonlinearity for various order
HGBs for the parameters n = 2 and Ω2

0 = 0.8; the curves refer
to an arbitrarily chosen set of initial irradiance and initial beam
width (αE2

00, ρ−2
0 ) as indicated over the curve. (b) The dependence

of the dimensionless beam width parameter f on the dimensionless
distance of propagation ξ, with dominant ponderomotive-relativistic
nonlinearity for various order HGBs for the parameters ρ−2

0 = 2 and
Ω2

0 = 0.8; the curves refer to an arbitrarily chosen set of initial
irradiance and initial beam width (αE2

00, n) as indicated over the
curves.
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on the dimensionless distance of propagation ξ in a homogeneous
plasmas. Starting with a combination of parameters αE2

00, ρ0 and
Ω0, one can obtain the solution for the beam width parameter f by
numerical integration of Eq. (14a) using appropriate expressions for the
parameters ε0 and ε2 from Eqs. (25) and (27); appropriate boundary
conditions viz. f = 1, df/dξ = 0 at ξ = 0 have been used.

4. NUMERICAL RESULTS AND DISCUSSION

In the present analysis, we have investigated the propagation of
HGB (of various orders) in a homogeneous plasma; the plasma
is characterized by the dielectric function corresponding to the
relativistic-ponderomotive nonlinearity. The theory is based on a
paraxial like approach in which all the relevant parameters have been
expanded around the axis of maximum irradiance of the HGB. The
irradiance distribution profile of the HGB [Eq. (2)] shows that its
maximum lies at r = rmax = r0

√
2n. This indicates that the radius of

the bright ring (corresponding to irradiance maximum) increases with
the increasing order; further the area of the dark region across the
HGB also increases with increasing n. It is interesting to notice that
the third term of the right hand side in the expression of dielectric
function ε(r, z) [from Eq. (22)] is independent of the background
electron density and if one ignores this term the expression for the
dielectric function gets reduced to the simpler form of relativistic
nonlinearity. Thus the third term represents the combined effect of
relativistic and ponderomotive forces and strongly depends on the
width and irradiance of the electromagnetic beam.

In the context of the present study, the critical curves and the
plot of the beam width parameter f as a function of the dimensionless
distance of propagation ξ has been obtained for a chosen set of
parameters αE2

0 , n and Ω0 corresponding to relativistic-ponderomotive
nonlinearity. The critical curve for the HGB characterizes the self
focusing region in the ρ−2

0 − αE2
00 space. The points (ρ, αE2

00) above
the critical curve display self focusing, while points lying below the
critical curve lead to oscillatory divergence or steady divergence.

Figure 1 illustrates the dependence of the initial irradiance on the
dimensionless width ρ0, for the self trapping mode of the propagation
of various order HGBs corresponding to the relativistic-ponderomotive
nonlinearity. The figure indicates that the ρ−2

0 − αE2
00 space can be

divided in three regions viz. oscillatory focusing (Region I), oscillatory
divergence (Region II) and steady divergence (Region III). The regions
for self focusing and oscillatory divergence are separated by the critical
curve while an approximate line curve divides the area above the
critical curve into two regions namely oscillatory divergence and steady
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divergence. For the parameters corresponding to an initial point
(ρ−2

0 , αE2
00) lying on the critical curve (d2f/dξ2) vanishes at ξ = 0;

since for initially plane wavefront df/dξ = 0, it continues to be zero
and f remains constant throughout the propagation of the HGB; this is
known as stationary spatial soliton propagation. For the initial points
lying below the critical curves (Region I), d2f/dξ2 < 0 and hence as
the beam propagates the beam width parameter oscillates between
the initial value unity and a minimum. Similarly for the initial point
(ρ−2

0 , αE2
00) lying in (Region II), f oscillates between a maximum and

the initial value unity. For the points lying in (Region III) the beam
displays steady divergence. Further it is seen that the region for self
focusing decreases with increasing order of the HGB.

The set of Fig. 2 describes the dependence of the beam
width parameter f on the dimensionless distance of propagation ξ
for a plasma with dominant relativistic-ponderomotive nonlinearity.
Fig. 2(a) describes the propagation of the second order (n = 2)HGB
in the characteristic three regions namely of self focusing, oscillatory
divergence and steady divergence; this behavior is characterized by
saturating nature of the nonlinearity. Fig. 2(b) shows the curve for
dependence of the beam width parameter f on ξ with varying order n
and the initial irradiance αE2

00; the relevant parameters are ρ−2
0 = 0.13

and Ω2
0 = 0.8. The curves are in conformance with the above discussed

critical curves.

5. CONCLUSION

A paraxial like approach has been adopted to analyze the propagation
of various order HGBs, in a homogeneous plasma, where both
relativistic and ponderomotive nonlinearities are simultaneously
operative. It is seen that the critical curves and self focusing show
strong dependence on the order of the HGB; the propagation of the
HGB follows the characteristic three regimes in the vicinity of the
maximum irradiance.
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