
Progress In Electromagnetics Research, PIER 94, 383–402, 2009

APPLICATION OF TWO-STEP SPECTRAL PRECON-
DITIONING TECHNIQUE FOR ELECTROMAGNETIC
SCATTERING IN A HALF SPACE

D. Z. Ding, R. S. Chen, and Z. H. Fan †

Department of Communication Engineering
Nanjing University of Science and Technology
Nanjing 210094, China

Abstract—To efficiently solve large dense complex linear system
arising from electric field integral equations (EFIE) formulation of
half-space electromagnetic scattering problems, the multilevel fast
multipole algorithm (MLFMA) is used to accelerate the matrix-
vector product operations. The two-step spectral preconditioning
is developed for the generalized minimal residual iterative method
(GMRES). The two-step spectral preconditioner is constructed by
combining the spectral preconditioner and sparse approximate inverse
(SAI) preconditioner to speed up the convergence rate of iterative
methods. Numerical experiments for scattering from conducting
objects above or embeded in a lossy half-space are given to demonstrate
the efficiency of the proposed method.

1. INTRODUCTION

There is significant interest in scattering from electrically large targets
situated in the presence of a lossy half-space [1–4]. One of the principal
tools for the analysis of such scattering is the method of moments
(MoM) [5]. The electromagnetic integral equation is first discretized
into a matrix equation using the Galerkin-based MoM with subdomain
basis functions such as Rao-Wilton-Glisson (RWG) functions [6] for
triangular patches. The formulation considered in this paper is the
electric field integral equation (EFIE) as it is the most general and
does not require any assumption about the geometry of the object.
When iterative solvers are used to solve the MoM matrix equation, the
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fast multipole algorithm (FMA) or multilevel fast multipole algorithm
(MLFMA) [7] can be used to accelerate the calculation of matrix-vector
products. The half-space MLFMA differs from the free-space MLFMA.
In half-space MLFMA, the near interaction terms are evaluated
efficiently via the complex-image technique [8, 9]. The far interaction
terms are evaluated efficiently by employing the asymptotic form of
the dyadic Green’s function. Each component of the approximate
Green’s function is expressed in terms of the direct-radiation term plus
radiation from an image source in real space [10]. The former accounts
for the radiation of currents into the medium in which it resides,
while the latter accounts for interactions with the half-space interface.
The half-space MLFMA remains the same computational complexity
of O(N log N) both in RAM and computational requirement (per
iteration) as free-space MLFMA [1].

The system matrix resulted from EFIE with half-space MLFMA is
often an ill-conditioned matrix and results in the low convergence of the
Krylov iterative method [11]. Simple preconditioners like the diagonal
or diagonal blocks of the coefficient matrix can be effective only when
the matrix has some degree of diagonal dominance [12]. Incomplete LU
(ILU) preconditioners have been successfully used on nonsysmmetric
dense systems in [13], but the factors of the ILU preconditioner may
become very ill-conditioned, and consequently the performance is very
poor [14]. An effective sparse approximate inverse (SAI) preconditioner
suitable for implementation in the FMM context has also been
proposed [15], which is based on a Frobenius-norm minimization with
a priori sparsity pattern selection strategy. Malas and Gurel proposed
an efficient parallel SAI preconditioner combined with MLFMA in
[16]. Andriulli et al. proposed a multiplicative calderon preconditioner
for EFIE [17]. It has been shown that the MoM EFIE system
obtained using the multiplicative calderon preconditioning converges
rapidly, independent of the discretization density and that this
technique outperforms more classical approaches like ILU or other
general-purpose approximate inverses [18]. The performance of SAI
preconditioner is greatly influenced by the way of choosing nonzero
pattern and solving the least-squares problems in the minimization
process. Information from free-space MLFMA implementation is
employed to develop a high quality SAI preconditioner, resulting in
a faster convergence rate [19]. Although the SAI preconditioner can
improve matrix conditions by clustering most of the large eigenvalues
close to one but still leave a few close to the origin, which can
potentially slow down the convergence of Krylov methods. The
presence of the smallest eigenvalues after preconditioning lies in that
the construction of preconditioners is inherently local. Each degree
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of freedom in the preconditioning matrix is coupled to only a few
neighbors, and this compact support does not allow an exchange
of global information. Inspired by the two-step preconditioning
idea [20–22], the two-step spectral preconditioner is investigated to
further enhance the quality of this SAI preconditioner, resulting in
a faster convergence rate. In this method, the SAI preconditioner is
used to damp the high frequencies of the error, while the spectral
preconditioner in a two-level manner is applied to smooth the low
frequencies of the error.

This paper is outlined as follows. Section 2 gives an introduction of
half-space MLFMA theory. Section 3 describes the details to construct
two-step spectral preconditioner. Numerical examples are given to
demonstrate the accuracy and efficiency of the proposed method in
radar cross section (RCS) calculations in Section 4. Section 5 gives
some conclusions.

2. HALF-SPACE MLFMA THEORY

For solving the problem of scattering from an arbitrarily shaped
perfectly electrically conducting (PEC) target situated above (i.e.,
tangent in layer i = 1) or buried (i = 2) in a lossy half space shown in
Figure 1, we utilize the electric field integral equation (EFIE) [1]:
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Einc and J(r′) denotes an incident field and the unknown surface
current density, respectively. The unit vector _

n is perpendicular to
the scatterer surface. r and r′ are the observation and source point,
respectively. εi = ε′i − jσi/ω, µi and ki represent (in general complex)
the permittivity, permeability, and wavenumber of the medium in
which the target resides, and ω is the angular frequency (an e−iωt time
convention has been assumed and suppressed). Details on the dyadic
Green’s function

↔
GAii and

↔
KAii and on the scalar Green’s function Kii

φe

can be found in [23]. As in the MoM solution, the unknown surface
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Figure 1. Geometry for source and observation group in 3-D MLFMA
and generalization to a half-space environment using real images to
account for far interface interactions.

current J is expanded into a set of N basis functions bn′(r′)

J(r′) =
N∑

n′=1

In′bn′(r′) (2)

where the RWG basis is used [6]. In′ is the unknown expansion
coefficients. Applying Galerkin’s method results in a matrix equation

Z · I = V (3)

The elements of the impedance matrix Z and the right side vector V
are given by

Znn′ = jωµi
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Vn =
∫∫

S

bn(r) ·Einc(r)dS (5)

In the FMM or MLFMA implementation [7], the computation of
interactions is divided into near Znear and far terms Zfar:

Z = Znear + Zfar (6)

For near interactions Znear, the evaluation of the impedance matrix
elements remains the same as in MoM procedure. The dyadic
half-space Green’s function is evaluated using the discrete complex
images method (DCIM) to avoid the direct numerical computation
of sommerfeld integrals (SI). For far interactions Zfar, the half-space
dyadic Green’s function can be split into a “direct” contribution
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accounting for the interface (∆ is not an operator).
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Therefore, the matrix elements accounting for “far” interactions are
also split:

Zfar
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nn′ (8)
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The impedance matrix elements in free-space FMM or MLFMA
accounting for “far” interactions are written as
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where (12) and (13) represent the plane-wave decomposition of basis
and weighing functions, respectively. However, for a half-space
MLFMA, it is essential to include the “far” interface interactions
represented by ∆Zfar

nn′ in (10). In the complex-image technique, each

component of the dyadic ∆
↔
GAii is expressed in terms of a sum of

free-space Green’s functions with image sources located in complex
space [8, 9]. Therefore, the expansion (11) can be also applied to far
interface interactions ∆Zfar

nn′ . However, the number of terms L in (14)
required for convergence can be prohibitively large for general complex
source points, undermining the efficiency of using (11) for ∆Zfar

nn′ in
the context of DCIM. Therefore, we use an approximate but highly
accurate method for evaluating the far interface interactions. The
FMA has been successfully extended to the scattering from a PEC
object above or buried in a half space by employing the asymptotic
form of the Green’s function for far interactions [24]. The asymptotic
form of the Green’s function is represented utilizing a single real image
at

[
Î− 2ẑẑ

]
· r′ (assuming the interface at z = 0). Because the image

sources are located in real space, generalizing the free-space MLFMA
to a half-space MLFMA is now straightforward. The translation
operators between image cube and observation cube centers for all
nonnearby cubes at all levels are written as
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where r̂v
m′m is a vector from the image source group center to the

observation group center in Figure 1. The Fourier transforms
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expansion functions. Finally, the linear system of equations in (3)
can be solved by the restarted GMRES iterative method [25] using
MLFMA to accelerate the matrix-vector products.

3. TWO-STEP SPECTRAL PRECONDITIONER

The system matrix resulted from EFIE with half-space MLFMA is
often an ill-conditioned matrix and results in the low convergence of the
Krylov iterative method. MLFMA stores only the near-field matrix,
which is composed of the strong electromagnetic coupling, resulting
in matrix elements with relatively larger magnitudes. Furthermore,
the near-field matrix in half-space MLFMA becomes sparser as the
problem size increases [16]. Since the preconditioners are usually
built based on near-field matrix, effective preconditioning becomes a
challenge.

It is well known that the convergence rate of an iterative solution
is dependent upon the spectral radius of the matrix equation system.
In order to speed up the convergence rate of Krylov methods,
preconditioning techniques are employed to transform the EFIE matrix
equations into an equivalent form

M1ZI = M1V (17)

where Z is the EFIE impedance matrix associated with the higher
order hierarchical basis functions, and M1 is the corresponding
preconditioner. The purpose of preconditioning is to make the
preconditioned matrix M1Z better conditioned than the original
matrix Z. In the MLFMM context, the near-field matrix Znear is widely
used as the basis for constructing preconditioners. The preconditioner
M1 is an improved sparse approximate inverse (MSAI) preconditioner
based on Z̃

near
, where Z̃

near
is the sparse form of Znear [19].

Although the SAI preconditioner can improve matrix conditions
by clustering most of the large eigenvalues close to one it leaves a few
close to the origin, which can potentially slow down the convergence
of Krylov methods. The presence of the smallest eigenvalues after
preconditioning lies in that the construction of preconditioners is
inherently local. Each degree of freedom in the preconditioning matrix
M1 is coupled to only a few neighbors, and this compact support does
not allow an exchange of global information. When the exact inverse of
the original matrix is globally coupled, this lack of global information
may have a severe impact on the quality of preconditioners. Although
the discrete Green’s function exhibits a rapid decay, the exact inverse
of the impedance matrix is dense, thus has global support. The locality
of preconditioners can be reduced by simply enlarging near-field matrix
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Znear. However, the construction and implementation cost grows
accordingly. Moreover, in the MLFMM context, the computation
of additional entries from Z requires the approximation of surface
integrals, where only entries of the near-field matrix Znear are available.

In this case, some suitable mechanism has to be considered to
recover global information. The spectral preconditioning technique
in [20] can be used in a two-step way for the above SAI preconditioned
system. The purpose here is to recover global information by
removing the effect of some smallest eigenvalues in magnitude in
the SAI preconditioned matrix, which can potentially slow down the
convergence of Krylov solvers [26].

Let Uk be a set of eigenvectors of dimension k associated with the
smallest eigenvalues of the MSAI preconditioned matrix M1Z. The
second level spectral preconditioner can then be defined as

M2 = I + Uk(T−1
k − Ik)UH

k (18)

where Tk = Uk(M1Z)(Uk)H , and I and Ik are unit matrix of
dimension N and k, respectively. The superscript H denotes the
transpose and conjugate of a given complex matrix. Combining this
second spectral preconditioner with the prescribed preconditoner in the
two-level manner, a new two-step spectral preconditioner is derived,
and the linear system to be solved can be transformed into

M2M1Zx = M2M1b (19)

We consider two methods for computing an approximation to the
eigenvectors that correspond to a few smallest eigenvalues. One way is
to use the ARPACK software [27]. This is equal to solve another large
eigenvalue problem with the same coefficient matrix of the problem at
hand. This computation is very expensive. In this paper, the linear
system is solved particularly with the SAI preconditioned GMRES-DR
algorithm [28], which also generates approximations to eigenvectors as
a byproduct. The approximate eigenvectors in GMRES-DR span a
small Krylov subspace and so are generated in a compact form

(M1Z)Vk = Vk+1H̄k (20)

where Vk is a N × k matrix, whose columns span the subspace of
approximate eigenvectors; Vk+1 is the same except an extra column;
H̄k is a full k + 1 by k matrix. Note that Equation (20) allows
access to both the approximate eigenvectors and their products with
SAI preconditioned matrix M1Z while requiring storage of only k + 1
vectors of length N . Therefore, in order to construct the spectral
preconditioner in a two-level manner, one can simply replace Uk with
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Vk by appending zeros, Tk with Hk, where Hk is a full k by k matrix
by discarding last row of H̄k.

Therefore, a two-step spectral preconditioned GMRES algorithm
is presented for solving systems of linear equations, as follows:

• Construct SAI preconditioning matrix M1.
• Solve the linear system with the SAI preconditioned GMRES-DR

algorithm, and use generated eigenvector information to construct
the spectral preconditioning matrix M2.

• Construct the two-level spectral preconditioning matrix M =
M2M1, and use it for GMRES algorithm to solve linear systems.

4. NUMERICAL EXPERIMENTS

In this section, we show some numerical results for open conducting
structures in the presence of a half space that illustrate the effectiveness
of the proposed two step spectral preconditioner for the solution of the
EFIE linear systems. The EFIE linear systems based on the RWG
basis functions are solved with MLFMM accelerated Krylov iterative
methods. All numerical experiments are performed on a Pentium 4
with 2.9 GHz CPU and 2 GB RAM in single precision. The restarted
version of GMRES (m) algorithm is used as iterative method, where
m is the dimension size of Krylov subspace for GMRES. Additional
details and comments on the implementation are given as follows:

• Zero vector is taken as initial approximate solution for all examples
and all systems in each example.

• The iteration process is terminated when the normalized backward
error is reduced by 10−3 for all the examples. The maximum
number of iterations is limited to be 1000.

• m = 30 is used as the dimension of the Krylov subspace for the
restarted GMRES method.

As shown in Figure 2(a), the first example is a 3.375 m×3.375m
PEC plate buried in a lossy ground with εr1 = 4, µr1 = 4, and
σ1 = 0.01 S/m, 0.5 m below the free-space-ground interface. The
plate is discretized with 10462 triangular patches leading to 15557
unknowns. The second example is a perfectly electrically conducting
(PEC) cylinder situated over a half space as shown in Figure 3(a). The
cylinder is 3 m long, has a diameter of 1 m, and is situated 20 cm above
Yuma soil of 10% water content characterized by εhalf = 6− j0.5 and
µhalf = 1.0. The cylinder is discretized with 10092 triangular patches
leading to 15138 unknowns. The last example is PEC rectangular box
with size Lx×Ly×Lz = 12×2×2.5m3 situated 50 cm above Yuma soil
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with 10% water content characterized by εhalf = 6−j0.5 and µhalf = 1.0
in Figure 4(a). The cylinder is discretized with 6564 triangular patches
leading to 9846 unknowns. Figure 2(b) shows the bistatic RCS for
θscat = 45◦ for the first example. The incident angles of plane wave are
θinc = 0◦ and φinc = 0◦ at a frequency of f = 300 MHz. MLFMA with 3
levels is used to accelerate the matrix-vector products. It can be found
that the results using the MLFMA are in good agreement with that of
the MoM analysis [29]. Figure 3(b) shows the co-polarized (VV and
HH) and cross-polarized (VH and HV) bistatic RCS for θscat = 60◦ for
the second cylinder example at 600MHz. The incident angles of plane
wave are θinc = 60◦ and φinc = 0◦. The bistatic RCS for θscat = 80◦
for the third rectangular box example is given in Figure 4(b). The
incident angles of plane wave are θinc = 60◦ and φinc = 60◦ at 150 MHz.
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Figure 3. (a) Geometry of a conducting cylinder situated 20 cm above
Yuma soil of 10% water. (b) The bistatic RCS of a conducting cylinder
situated 20 cm above Yuma soil of 10% water content for θscat = 60◦
at 600 MHz.

MLFMA with 2 levels is used in RCS calculation for the last two
examples. From Figures 2, 3, the MLFMA results agree well with the
results in [1, 30].

Next, we investigate the performance of the two-step spectral
preconditioner on electromagnetic scattering of the above three
examples. Figures 5–7 show the convergence history of GMRES
algorithms with different preconditioners for all examples, where Diag
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denotes the diagonal preconditioner; ILU0 denotes the incomplete LU
decomposition preconditioner with no fill-ins during the construction
process [25]; SSOR denotes the symmetric successive over-relaxation
preconditioner; MSAI denotes the improved SAI preconditioner based
on MLFMA implementation [19]; Two-step stands for the the two-step
spectral preconditioner suggested in this paper. In these computations,
10 approximate smallest eigenvectors (k = 10), extracted by GMRES-
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DR algorithm during solving EFIE system, are employed to build
the two-level spectral preconditioner M2 for the three examples.
1.0 is taken as the relaxation parameter for building the SSOR
preconditioner. It can be found that GMRES algorithm with
none, Diag, ILU0, SSOR preconditioner can not converge in 1000
iterations for the half-space cylinder and rectangular box examples
in Figures 6, 7. We found that both the MSAI and proposed two-
step spectral preconditioned GMRES methods converge faster than
the other preconditioning techniques for the above three half-space
examples. When compared with MSAI preconditioned GMRES, the
two-step spectral preconditioned GMRES decreases the number of
iterations by a factor of 5.2 on the Plate example buried in lossy
ground, 4.1 on the half-space cylinder example. Furthermore, it can
be observed that the MSAI preconditioned GMRES cannot converge
in 1000 iterations while the proposed two-step spectral preconditioned
GMRES converges in less than 150 iterations for the rectangular box
examples in Figure 7. This demonstrates the efficiency of the newly
proposed two-step spectral preconditioner for the half-space scattering
problems.

Since a good preconditioner depends not only on its effect on
convergence but also on its construction and implementation time.
Tables 1–3 list the construction time and total solution time of GMRES
algorithms with different preconditioners on the above three examples,
where * refers to no convergence after maximum 1000 iterations,
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Figure 5. Convergence history of GMRES algorithms on the plate
example buried in lossy ground.
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Figure 7. Convergence history of GMRES algorithms on a rectangular
box situated 50 cm above Yuma soil of 10% water content.

and the density of a preconditioner is defined by the ratio of the
number of non-zero entries in the preconditioning matrix to the number
of entries in the full EFIE impedance matrix. In our numerical
experiments, the convergence of ILU0 preconditioned GMRES is very
unstable for the conducting cylinder example in Table 2. Though
the ILU0 preconditioned GMRES converges in less than 5 iteration
steps for this example, the bistatic RCS is incorrect in the numerical
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Table 1. Comparison of the cost and performance of different
preconditioners on the Plate example buried in lossy ground.

Density
Construction

time
Iterations

Solution
time

Total
time

None - - 590 307 s 307 s
Diag - - 546 608 s 608 s
SSOR 1.21% - 239 307 s 307 s
ILU0 1.21% 20 s 338 460 s 480 s
MSAI 2.77% 967 s 72 102 s 1069 s
Two-
step

2.77% 1056 s 14 21 s 1077 s

Table 2. Comparison of the cost and performance of different
preconditioners on a conducting cylinder situated 20 cm above Yuma
soil of 10% water content.

Density
Construction

time
Iterations

Solution
time

Total
time

None - - 3941 4593 s 4593 s
Diag - - 1780 3537 s 3537 s
SSOR 1.47% - 1986 4627 s 4627 s
MSAI 0.81% 71 s 563 800 s 871 s
Two-
step

0.81% 130 s 137 245 s 375 s

experiment. Therefore, the numerical results for ILU0 are meaningless
for the half-space conducting cylinder example, and they are omitted
in Table 2. From Tables 1–3, it can be found that the proposed spectral
preconditioned GMRES method can reduce the number of iterations
significantly while the constructing time of the preconditioner is more
than the other preconditioning methods. Compared with the MSAI
preconditioner, the additional construct time of the two-step spectral
preconditioner is only the construct time of the spectral preconditioner
M2obtained from GMRES-DR algorithm after solving EFIE system.
From Table 1 for the first example, we found that the total solution
time (including both the construction time and the iterative solution
time) of the two-step spectral preconditioned GMRES is more than the
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Table 3. Comparison of the cost and performance of different
preconditioners on a rectangular box situated 50 cm above Yuma soil
of 10% water content.

Density
Construction

time
Iterations

Solution
time

Total
time

None - - * * *
Diag - - * * *
SSOR 1.85% - * * *
ILU0 1.85 % 12 s * * *
MSAI 1.40% 49 s * * *
Two-
step

1.40% 381 s 136 164 s 545 s

other preconditioned methods though the solution time of the proposed
method is less than the other methods. For the other two examples in
Tables 2–3, it can be found that the two-step spectral preconditioned
GMRES can save much time than other methods.

All the numerical experiments reported so far have been obtained
for the fixed size of the spectral preconditioner with k = 10 for
the three examples. A critical question in the use of the two-
step spectral preconditioned GMRES algorithm is how to choose the
number k of approximately smallest eigenvectors. In the following,
the effect of the size of the spectral preconditioner is investigated on
the efficiency of the two-step spectral preconditioner. For each value
k of the spectral preconditioner, the number of GMRES iterations
of the two-step spectral preconditioned GMRES algorithm is shown
in Table 4, where * refers to that the number of GMRES iterations
is more than the maximum 1000 iterations. Example 1 denotes the
above Plate example buried in lossy ground; Example 2 denotes the
above half-space conducting cylinder example; Example 3 denotes the
above half-space rectangular box example. The number of iteration
corresponding to k = 0 is just the number of iteration for the
MSAI preconditioned GMRES algorithm. Generally speaking, if
the larger size of the spectral preconditioner is chosen, the better
of the two-level preconditioner is to be expected. In practice,
however, it is not the case. Firstly, there is no easy way to
compute eigenvector information inexpensively and accurately. In
this paper, the smallest eigenvectors are approximately computed as a
byproduct of GMRES-DR algorithm during solving the EFIE system.
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Table 4. Sensitivity of the two-step spectral preconditioner with
respect to the size k of the spectral preconditioner.

Size of the spectral preconditioner k
Geometry Density 0 8 10 15 18 20 25 30
Example

1 2.77% 73 14 13 15 14 13 13 13

Example
2

0.81% 563 128 128 128 131 131 137 128

Example
3

1.40% * 136 136 134 137 132 134 132

The roughly approximated smallest eigenvectors usually have little
influence on the performance of the spectral preconditioner. Secondly,
it is difficult to compute those smallest eigenvectors, which are very
close to each other. Therefore, approximations to some of smallest
eigenvectors maybe not significantly help convergence.

5. CONCLUSION

In this paper, the two-step spectral preconditioning technique is
presented for solving EFIE for scattering from conducting objects
above or buried in a lossy half-space. Half-space MLFMA is used
to reduce computational complexity. The combined effect of the
SAI preconditioner that damps the high frequencies of the iteration
error, coupled with the spectral preconditioner that eliminates the low
frequencies is very beneficial for the convergence of GMRES. Numerical
experiments are performed and the comparison is made with the other
preconditioners. It can be found that the proposed two-step spectral
preconditioning technique is more efficient and can significantly reduce
the overall computational cost.

For solving large-scale electromagnetic problem, effective paral-
lelization of both matrix-vector products and iterative solvers should
be considered. Recent attempts have yielded efficient parallelization
of the MLFMA. Constructing parallel and efficient preconditioners is
currently an important bottleneck for the solution of large electromag-
netic problems. For constructing the parallel two-step spectral pre-
conditioner, parallel SAI preconditioning matrix M1 should be firstly
constructed based on the sparse near-field matrix in MLFMA. Then,
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the parallel SAI preconditioned GMRES-DR algorithm should be con-
structed to obtained the spectral preconditioning matrix M2. For con-
structing the parallel GMRES-DR algorithm, the greatest challenge is
the parallelization of deflating with eigenvectors removed from Krylov
subspace. Further investigations deserve to be undertaken to study
parallelization of the proposed spectral preconditioner for large-scale
electromagnetic calculation.
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