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Abstract—The effect of magnetic bias on dielectric spectra of
composite sheets filled with Fe or Co-based microwires is studied
experimentally and via simulation. The permittivity is measured
using a free-space technique within the frequency band from 6 to
12GHz. The bias is applied either parallel or perpendicular to the
microwave electric field; the bias strength varies from 0 to 2.5 kOe. The
composites with Fe-based wires reveal a single region of bias dependent
permittivity under bias about 800–1000 Oe. The composites with Co-
based wires reveal two such regions: the high-field region is close to
that of composites with Fe wires, and the low-field region corresponds
to the coercive field of Co wires (2–3 Oe). The high-field effect is related
to the dependence of ferromagnetic resonance (FMR) parameters on
bias; the low-field effect is related to the rearrangement of the domain
structure of Co-based wires. The interference of magnetoimpedance
and dipole resonance is analyzed, revealing the effects off wire length,
diameter, parameters of magnetic resonance and composite structure.
The results are considered in view of application to the problem of
controlled microwave attenuation. Simulation shows that the narrower
is the FMR spectrum and the higher is the admissible loss of a sheet in
a transparent state, the wider is the dynamic range of attenuation
control. The attenuation range of a lattice of continuous wires is
smaller than that of a screen with identical wire sections, where the
magnetoimpedance effect is amplified resonantly. At 15 GHz frequency
the strength of the bias switching opaque sheet with Fe-based wires to
the transparent state is about 2000 Oe. For 3 dB admissible loss, the
range of attenuation control about 10 dB is feasible in a composite with
aligned wire sections. If the aligned sections are distributed regularly,
the loss in a transparent state is about 1 dB lower.
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1. INTRODUCTION

Attempts to synthesize an adaptive material with controlled microwave
properties, particularly attenuation, have a long history. For example,
pin diodes are proposed for the design of adaptive radar absorbers [1, 2]
and tunable frequency selected surfaces [3, 4]. Other principles of the
design of tunable microwave materials, such as ferroelectrics [5] and
conducting polymers [6] controlled by electric field, or ferromagnetic
materials controlled by magnetic field [7], are also considered for free-
space applications.

We consider an absorbing screen of a diluted polymer-binded
mixture filled with sections of permeable wires. The theory of
permittivity control in composites filled with glass-coated microwires
of permeable amorphous alloys is suggested in [8–10]. The idea
is that the penetration depth (skin-depth) δ and consequently the
surface impedance of a permeable wire depend at microwaves on both
direct current (d.c.) conductivity and complex permeability µ. The
wire impedance defines the composite permittivity and consequently
the screen attenuation. The wire permeability µ is a function of
the strength Hext of external magnetic bias. Therefore the surface
impedance also depends on Hext . At megahertz frequencies the effect
is so high that it is called the giant magnetoimpedance (GMI) effect
[11, 12]. The development of a large tuned screen seems promising
for various practical applications, as the tuning bias should be small
enough to be applied by passing a current through a wire mesh [10].

It may seem that the attenuation may be controlled more directly
through the microwave permeability of a wire-filled composite. It
is not so because the composite is too diluted: even the anisotropic
sample of closely packed sections of amorphous wire (the filling factor
is as high as 0.7) exhibits microwave permeability that is close to
unity [8]. The reason is that the magnetization perpendicular to
wire axis is negligible due to high demagnetization factor. The major
contribution to permeability has the magnetization along the wire, but
the longitudinal magnetization has low resonance frequency.

Practicable wire-filled composites are usually isotropic as they are
filled with randomly oriented fiber sections. The fiber-filled mixtures
display that the lower is the percolation threshold, the more elongated
are the inclusions [13]. It means that the fibers intertwine into felt, and
it becomes impossible to increase the filling factor further. Therefore
the practicable wire-filled composites are hundredfold more diluted
than samples with closely packed wires and are expected to have
microwave permeability equal to unity.

Below, we analyze the feasibility of a composite screen with the
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microwave parameters controlled by external action that can be applied
to a sheet sample without any circuitry. Particularly we consider the
absorbing screen of a diluted polymer-bound mixture filled with glass-
coated fibers of permeable metal, study the effect of magnetic bias
on permittivity spectrum and estimate the range of transparency and
reflectivity control by magnetic bias. Contrary to studies on response
of a single wire [15–17], or lattice of thin continuous wires [15, 18] we
consider the practicable composites, namely the mats filled with wire
sections. The absorption region of the composite is limited by the
wire length within approximately 2 ÷ 30 GHz range as the long wires
intertwine, while the properties of short ones are unstable [8, 18].

The dielectric spectra of composites under study are more
complicated than that of the samples with impermeable wires [13].
The spectra are similar to that of effective permittivity obtained
for a single wire stretched across the section of a coaxial line [15]
and consist of two separate absorption peaks affected by magnetic
bias. The formation of two peaks of absorption is explained by the
interference of the resonance of a wire dipole and of the current-induced
ferromagnetic resonance (FMR) of circumferential permeability and is
validated numerically. The wire length fixes the dipole resonance, while
the FMR frequency is controlled by magnetic bias.

The measurements reveal two different mechanisms of magnetoca-
pacitance (bias-on-permittivity) effect. The weaker effect takes place
at bias equal to coercive field and can be attributed to the rearrange-
ment of domain structure in magnetically bistable wire. The stronger
effect is observed for a fixed domain structure and is related to the
dependence of FMR parameters on the external bias Hext .

The aim of the article is to determine the optimal parameters of a
tunable microwave screen filled with permeable wires. That is to find
the optimal length and thickness of the wire sections, filling factor,
structure and the thickness of the screen designed to be transparent at
a specified operating frequency and to relate the bias strength to the
dynamic range of attenuation control at this operating frequency.

The theoretical analysis allows numerical comparison of the
control range of the plane-isotropic screen studied experimentally and
of anisotropic structures of the same constituents. Namely, we compare
the properties of the composite of randomly distributed aligned Fe-
based wire sections, of the lattice of regularly distributes aligned wire
sections, of the mesh of continuous parallel wires and of the plane-
isotropic composite.
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2. EXPERIMENTAL TECHNIQUE

The samples under study are obtained by coprecipitation of glass fiber
and wire sections in a diluted solution of polystyrene. The composite
mats are 1.2mm thick and have the density about 0.7 g/cm3. The
permittivity εh of a mat without wires is about 1.2.

The sections are cut of two different types of glass-coated
amorphous wires with precision of about ±0.1mm. The section length
varies from 7 to 10 mm for different samples. As the wire length exceeds
the sample thickness, the samples are plane-isotropic (the wire sections
have two dimensional orientation). The permeable core is of either
Co-based amorphous alloy with diameter d = 5µm and conductivity
σ about 20000 Ohm−1cm−1 or Fe-based amorphous alloy FeSiBMnC
with d = 4µm and conductivity about 70000 Ohm−1cm−1. To exclude
the contribution of contacts, the conductivity is calculated from the
measured resistance of wire sections of several lengths. The volume
fraction p of permeable alloy in composite sheets is about 0.008%. The
external diameter of glass shell for wires of both types is about 15µm.
The shell and core diameters are measured with optical microscope.

The complex permittivity ε is measured within 6–12 GHz
frequency band using the free-space sliding short method [13]. The
value of complex permittivity is found by fitting procedure that
minimizes the least-squares discrepancy between the measured and
calculated scalar reflectivity data. To yield reliable permittivity data,
the fitting procedure treats 10–12 reflection coefficients obtained for
different gaps between the sheet sample and metal short. The sample
is irradiated by the normally incident wave from a horn antenna.

The measurements are performed under two bias orientations
relative to the polarization of irradiating microwave. The bias strength
Hext varies from 0 to 2.5 kOe with either 0.5 kOe step or with gradual
sweep.

3. EXPERIMENTAL RESULTS

The composites with resistive fibers, such carbon fibers, have a simple
Debye-type dielectric spectrum consisting of a single relaxation line of
absorption. The fiber resistance and length define the relaxation time.
If the resistance of wire section is small, long wire of an ideal conductor
in a free space the absorption maximum takes place at the frequency
of dipole resonance (about 15 GHz). The linear resistance of the wires
under study is as high as 500 Ohm/cm, so the absorption spectrum of
a composite should be almost as wide as the Debye absorption.

The permittivity measurements show (Fig. 1) that high dielectric
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losses are indeed observed within the whole experimental frequency
range. However, contrary to spectra of composites with unpermeable
fibers [13, 20] the absorption spectra of composites under study are
more complicated. They reveal two separate absorption maxima
located near the ends of the experimental frequency range (see Fig. 1).
The formation of separate absorption maxima occurs due to the sharp
increase of wire resistance at the FMR frequency (see Section 4). The
narrower is the FMR spectrum, the more distinctive should be the
separation of absorption maxima. The zero bias permittivity spectra
are more diffused than expected (compared with Fig. 1(b), and Fig. 6
minds the different scales of simulated and experimental graphs).

In practice, the external bias affects both the FMR frequency and
effective damping factor. The higher is the bias strength, the smaller is
the relative difference in local fields, and hence the narrower becomes
the FMR spectrum [21]. We observe that the broad absorption spectra
are resolved into two separate lines under 1 kOe bias despite the
contribution of the less magnetized wires that are non-parallel to bias
(compare the black and gray lines in Fig. 1).

The more significant difference in the microwave behavior of Fe-
and Co-based wires is observed under fixed-frequency measurements
of permittivity as a function of bias (Figs. 2 and 3). The Co-based
samples exhibit two regions of bias-dependent permittivity for both
bias orientations due to the contribution of the wires tilted to the

7 8 9 10 11 f [GHz]

4

6

8

10

12 ε ''- - Co-based wires

0

4

8

12
  Fe-based wiresε'    ,_ ε ''- -ε'    ,_

7 8 9 10 11 f [GHz]

(a) (b)

Figure 1. Permittivity spectra of samples filled with 10mm-long: (a)
Co-based wires; (b) Fe-based wires. The black lines correspond to zero
bias, the gray ones correspond to 1 kOe bias applied parallel to the
microwave electric field.
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microwave electric field (Fig. 2).
The first region appears at bias strength about 2 ÷ 3Oe. The

permittivity change ∆ε is small here; therefore it is difficult to
determine the shape of the absorption line. The data in Fig. 2
are obtained under gradually varying bias (about 1 Oe/sec), and we
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Figure 2. Permittivity as bias function for the sample with Co wires
(f = 6 GHz, L = 10mm).
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Figure 3. Permittivity as function of bias for the sample with Fe-
based wires (f = 10.4GHz, L = 10 mm). The experimental data are
presented by dots, the simulation data (see Section 5) are presented by
continuous lines. The black dots and lines correspond to bias applied
parallel to the microwave electric field Hext‖E; the gray dots and
lines correspond to perpendicular bias Hext ⊥ E. The light-gray and
black lines correspond to randomly oriented wires; the dark-gray lines
correspond to wires aligned parallel to E.
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attribute the permittivity change under low bias to the process of
rearrangement of domain microwave field. Similar permeability effect
has been observed in composites with CrO2 [22], where the microwave
permeability changes under sweeping bias. The effect of final magnetic
textures (of eventual domain structures) on the permeability spectra
of CrO2 composites is negligible.

Another change in permittivity appearing under high bias is
related to the shift of FMR frequency similar to the effect observed
in Fe-based wires (Fig. 3). The similarity of black and gray graphs
in Figs. 2 and 3 indicates the high contribution of the wire sections
inclined to the microwave electric field, though the peak of dielectric
absorption is approximately twice higher and sharper if the bias is
parallel to electric field.

The sample with Fe-based wires exhibits (dots in Fig. 3) higher
dielectric losses and sharper manetocapacitance effect than expected
(simulated curves in Fig. 3) for a plane-isotropic screen. It is easy to
see the compared data in Fig. 2 and Fig. 3 that the FMR frequency of
Fe-based wires is higher than that of Co-based ones. As the microwave
screen with Fe-based wires can operate at higher frequency and under
lower bias; the range of transparency control ∆T is investigated for
composites with the Fe-based wires.

The transmission coefficient T is measured for a 1 mm thick sample
at the frequency close to that of FMR, where the skin-depth is minimal
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Figure 4. Power transmission as function of parallel bias for the
sample with Fe-based wires (L = 10 mm, f = 10GHz and f = 15GHz,
black and gray lines correspondingly). The dots connected by solid
lines present the experimental data, while the dashed curves present
the results of simulation (see Section 5).



412 Starostenko and Rozanov

8 12 16 f [GHz]

-10

0

10

20

30

0

4

8

12

16
−δ [  µm]

δ

µ''

−µ', - -µ"

µ'

Figure 5. Reconstructed frequency dependence of permeability (solid
and dashed black lines) and skin-depth (solid gray line) for FeSiBMnC
microwire with µst = 2.5, Γ = 0.04, σ = 70000 Ohm−1cm−1 and
Ha = 3.25 kOe.

and at the frequency close to that one where the skin depth is expected
to be maximal (about 10 and 15GHz correspondingly, see Fig. 5).

At 10 GHz the experimental data in Fig. 4 are in good agreement
with theoretical estimations (see Section 5), while at 15GHz the
transparency change is higher than expected. Moreover, the
transparency maximum at 15 GHz is reached under 1 kOe bias contrary
to expected 3 kOe (compare the continuous and dashed lines in Fig. 4).

The range of attenuation control presented in Fig. 4 significantly
exceeds the range expected due to GMI [10, 25], and it can be increased
further for the same wires, as the sample under study is not optimal
from the viewpoint of its structure and composition.

4. COMPUTATION OF PERMITTIVITY AS THE
FUNCTION OF FREQUENCY AND BIAS FOR
ANISOTROPIC COMPOSITES

To estimate the limits of attenuation control at a given operating
frequency, we have to calculate the bias-affected reflection and
transmission coefficients of a plane screen of optimal for this frequency
thickness and composition. The operating frequency cannot be
arbitrary, as it is located in the vicinity of FMR frequency of the
available permeable wire. Below we estimate the properties of a screen
filled with Fe-based wires, as their magnetocapacitance effect (Fig. 3)
exceeds that of Co-based ones (Fig. 2).
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The reflection R and transmission T coefficients of a plane sample
depend on its complex permittivity ε (in case under study µ ≈ 1) and
thickness [23]. Considering the permittivity of a diluted composite
filled with insulated metal inclusions we generalize the approach [13]
to microwave absorption of a matrix mixture upon the mixture
with elongated magnetoresistive ellipsoids. Applying Maxwell-Garnett
mixing formula (1) we can calculate the complex permittivity of an
anisotropic composite filled with aligned wire sections:

εmix = εh

[
1 +

(εsec − εh) p

(1− p) N (εsec − εh) + εh

]
(1)

Here εh ≈ 1.2 is the binder permittivity; N is the depolarization factor
of the wire of length L and diameter d; p is the volume fraction of wire
sections of permittivity εsec. The latter is to be determined as follows.

We treat the wire as a complex dielectric with effective
permittivity εeff . In case under study, the section length L is not
negligible compared to the operating wavelength λ. Therefore, the
wire inclusion cannot be implicitly characterized as a small ellipsoid
by the shape-dependent factor N in Equation (1). The relatively long
(L/λ > 0.1) wire is a dipole. Calculating the complex permittivity
εsec of a dipole, we consider the serial connection of all constituents
(capacitive, inductive and resistive) of dipole admittance. The first
item in denominator of relation (2) corresponds to capacitive resistance
of a dipole; the second one corresponds to its inductance (see [13, 18]),
while the third item corresponds to pure resistance of the wire. If the
aligned dipoles are distributed randomly, we should add to the third
item the radiation loss Rrad = 75Ohm [13]. As a result, the effective
permittivity of the wire section εsec depends on the properties of the
wire as well as on the section length and distribution of sections in
matrix:

εsec =
λ2

λ2

ε′eff
− πd2 ln

(
L
d

)
+ i

(
λ2

ε′′eff
+ π2cεvacλd2

2L Rrad

) (2)

where λ is the wavelength; c = 3 × 108 m/sec is the light velocity;
εvac = 8.85× 10−12 F/m is the dielectric constant; εeff is the effective
permittivity of the infinitely long wire.

Note that εeff of an inclusion of complex dielectric depends, in
general case, on both frequency and inclusion size even if the latter is
much smaller than the wavelength. The effect of inclusion size upon
the microwave permittivity of a composite becomes significant if the
inclusions are electrically thick [13] (the smallest dimension of inclusion
is comparable or higher than the penetration depth δ).
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If the metal wire of d.c. conductivity σ is very thin (d ¿ δ), the
imaginary part of its permittivity ε′′ is proportional to the wavelength
λ while the real part ε′ is about unity:

ε = 1− iσλ/2πεvacc (3)

If the wire is thick enough (d ≥ δ), we have to take into account that
the effective conductivity σ is frequency-dependent as it is the function
of penetration depth. It is well known that the penetration depth of a
magnetic material depends on both complex permittivity ε = ε′ − iε′′
and permeability µ = µ′ − iµ′′. Therefore, the effective permittivity
εeff of a long permeable wire parallel to the microwave electric field
is calculated taking into account the penetration depth in the infinite
cylinder with both magnetic and dielectric losses [24, 25]:

εeff =
εJ1

(
2πd

√
εµ

/
λ
)

J0

(
2πd

√
εµ

/
λ
)
2πd

√
εµ

/
λ− J1

(
2πd

√
εµ

/
λ
) (4)

Here J0 and J1 are Bessel functions; µ is the circumferential
permeability of metal wire; permittivity ε is defined by (3). Note
that in the vicinity of FMR the frequency dependence of complex
permittivity εeff for a wire of permeable metal differs significantly from
that of impermeable one.

To obtain the FMR parameters and µ(f) we consider the simplest
model of a single-domain inclusion with uniaxial anisotropy where the
bias and anisotropy fields are parallel. In this case, the FMR spectrum
has the Lorenzian shape described by Equation (5) similar to derived
in [26]:

µ = 1 +
(µst − 1)/(1 + Hext/HA)

1−
[

2πf
γ(HA+Hext )

]2
+ i 2πfΓ

γ(HA+Hext )

(5)

where γ = 2.8GHz/kOe is the gyromagnetic factor for Fe; µst is
the quasistatic (low-frequency) permeability under zero bias (Hext =
0); Ha and Hext are the anisotropy and the external bias fields
correspondingly; Γ is the damping factor; f is the frequency.

Equation (5) describes the quasi-bulk permeability of metal that
defines the penetration depth together with its bulk conductivity,
inclusion shape and orientation (4). Equation (5) is easy to
comprehend taking into account that the longitudinal demagnetizing
factor is close to zero as L À d and that the induced current magnetizes
the wire circumferentially with demagnetizing factor also equal to zero.
The approach is justified at least for the Fe-based wires with positive
magnetostriction where the domains are magnetized mostly axially.
The fraction of domains magnetized perpendicularly to the axis is
small [19].
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According to the data in Fig. 1(b) the FMR frequency of the wire
is about Frez ≈ 9.2GHz, but for quantitative estimations we need all
parameters of FMR spectrum. We reconstruct the FMR spectrum
treating the data [17] on the conductivity of a similar Fe-based wire as
a function of frequency.

The spectrum of circumferential permeability µ(f) displayed in
Fig. 5 is reconstructed by fitting parameters of Equation (5) to min-
imize the discrepancy of the effective conductivity σeff = 2πfεvacε

′′
eff

calculated using Equation (4) from that of the measurements [17].
The fitted parameters of permeability spectrum (Fig. 5) are as follows:
Γ = 0.04; µst = 2.5; Ha = 3.25 kOe.

The zero-bias FMR frequency Frez for these parameters is equal
to 9 GHz, which is close to 9.2 GHz estimated from data in Fig. 3. The
product of static permeability and resonance frequency (µst − 1) ×
Frez ≈ 13.5GHz calculated using Equation (5) is lower than Snoek’s
limit, which is about 40 GHz for pure iron. The difference may be
attributed to dilution of iron, as the FeSiBMnC amorphous alloy is a
solid solution. The value of damping factor is typical for glass-coated
wires [16, 27]. The penetration depth δ in Fig. 5 is calculated based
on the reconstructed permeability (5) and permittivity of the infinite
wire (3).

If the wire permeability is frequency independent (the well known
particular case of an impermeable alloy), the penetration depth
decreases with frequency as δ (f) ∼ 1

/√
f . In case of a permeable

metal, the function δ(f) is more complicated and depends on the shape
of FMR spectrum.

In case of the Lorenzian shape of the line of magnetic
absorption (5), it is easy to derive that there are two extremums
of δ(f) function. Namely, the skin-depth δ is minimal δmin =
1
/√

2πFrezσµvac (µst − 1) at the FMR frequency Frez, and δ is

maximal δmax = 1
/√

σµvacπf (|µ|+ µ′′) at the frequency where

(|µ|+ µ′′) is minimal. Here µvac = 1.25 × 10−6 Hn/m is the magnetic
constant. The minimal skin-depth δ corresponds to the highest relative
resistance of the wire and vice versa.

It is important that these very extremums of penetration depth
specify the maximal change of wire impedance and consequently define
the optimal parameters of a tunable screen, namely the composition,
operating frequency, necessary bias strength and obtained range of
attenuation control. The frequency of δmin is within the limits of
experimental frequency range and is determined relatively accurately;
consequently we have a good agreement between the experimental and
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simulated data at 10 GHz (Figs. 3 and 4). The frequency of δmax

is estimated assuming the Lorenzian shape of FMR spectrum. The
comparison of the experimental and simulated transmission data at
15GHz (Fig. 4) shows that the estimated value exceeds the actual
frequency of δmax.

Note that under Hext = 0 the wire resistance ρeff = 1/σeff =

1
/

2πfεvacε
′′
eff is minimal at 14.4 GHz, while under Hext=1.8 kOe the

resistance is maximal. The magnetoimpedance curve at 14.4GHz is
shown further in Fig. 8; the impedance change here requires high bias,
but the change is about four times higher than that due to GMI [25].

To obtain the permittivity close to the measured values (ε′ ≈ 12),
the volume fraction p in Equation (1) is expected to be twice smaller
than the filling factor for the manufactured plane-isotropic samples,
where the wires are not aligned. The calculation produces the value
p ≈ 0.0026% that is about 3 times lower than the filling factor of the
samples under study. The discrepancy can be attributed to the wire
sections nonparallel to the plane of the sheet and to distortion of wire
properties at the section ends [22].

At last, based on the spectrum of circumferential permeability
for Fe-based wire (Fig. 3), wire conductivity (70000 Ohm−1cm−1),
length (L ≈ 1 cm) and core diameter (d = 4 µm), we can calculate
the permittivity spectra of a composite under bias of given strength
(Fig. 6). These spectra are the result of the interference between
the wire-dipole resonance and the current-induced resonance of
circumferential permeability (magnetoimpedance resonance). The
spectra in Fig. 6 illustrate the transformation of the effective
permittivity spectra from a resonance type to a relaxation one due to
GMI in the vicinity of the antenna resonance [10]. But in the case under
study, the interference of antenna resonance and impedance resonance
is optimized. As a result, the Debye absorption corresponding to high-
impedance state of the wire is transformed into two lines, and the total
permittivity change is significantly higher than that due to GMI effect
[10].

The highest change of the wire resistance is observed at the
frequency about 14.5 GHz, where the skin depth reaches its maximum
under zero bias (see Fig. 5 and Fig. 8). At this frequency, the wire has
minimal effective resistance, and the absorption line has the minimal
width (black lines in Fig. 6). The second absorption peak at about
8.5GHz has the relaxation nature (the real part of wire resistance is
much higher than the inductive one), as at this frequency the wire
resistance is maximal due to zero-bias FMR. At the same time, the
deviation from FMR frequency abruptly decreases the wire resistance
and makes the absorption line much sharper than the relaxation



Progress In Electromagnetics Research, PIER 99, 2009 417

(Debye) line.
The wire resistance reaches maximum under 2 kOe bias that shifts

the FMR spectrum to 14.4 GHz (see Figs. 5 and 8). Under this bias
the absorption exhibits the relaxation nature similar to absorption in
an RC circuit. The losses are minimal because the wire resistance is
too high (dark-gray lines in Fig. 6). The frequency deviation from the
peak of FMR spectrum results in the decrease of effective resistance and
leads to formation of two separate lines of dielectric absorption. The
further increase of bias strength again decreases the wire resistance
at 14.4 GHz and increases the ε′′ value. Under 4 kOe bias, the wire
permeability within the investigated frequency band is close to unity,
but the effective resistance is higher than in the case of maximal skin-
depth. Therefore, the absorption peak has lower frequency (about
12.5GHz), and the absorption line is much wider than in the case of
minimal resistance (compare the black and light-gray curves in Fig. 6).

The two-line shape of permittivity spectra in Fig. 6 resembles the
spectra for a FeCoSiB microwire stretched across a coaxial line [15],
although the magnetocapacitance effect is much stronger in the case
under study. The reason is that in [15] the frequency of dielectric
resonance (∼ 1GHz) is lower than the FMR frequency (there are
no data on the wire permeability in [15], but we suppose from the
permittivity spectra that the peak of magnetic loss takes place at
∼ 2 GHz). Therefore, the step of wire impedance takes place at
a shoulder of absorption curve, where its effect on the permittivity

16

0

20

40

60 ε''

-20

0

20

ε'

[GHz]f128 16 [GHz]f128

Figure 6. Permittivity ε′ and ε′′ (continuous and dashed lines)
dispersion curves under bias H = 0, 2, 4 kOe (black, dark-gray and
light-gray curves correspondingly) of a composite containing 2.7 ×
10−3 vol% Fe-based wire sections 8 mm-long.
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is small. In case of the samples under study, the frequency of
dielectric absorption is tuned to be equal to the frequency of minimal
wire impedance. Therefore, the magnetoimpedance effect on the
permittivity is resonantly increased.

The composition and structure of the optimized screen differs from
that of the samples studied experimentally. To obtain the widest
range of attenuation control we have to tune the length of the wire
section to the operating frequency (14.5 GHz in Fig. 6) and to align the
sections parallel to electric and bias fields. The discrepancy between
the calculated and experimental dispersion curves (Figs. 1 and 6) is
mainly the result of the simplified model that assumes the Lorenzian
FMR spectrum and considers the idealized structure with parallel
wires.

5. COMPARISON OF THE ATTENUATION RANGE
FOR PARTICULAR SCREEN STRUCTURES

To take into account the random orientation of wire sections in the
measured sample we need to consider the effective magnetizing field as
the function of the angle α between the wire axis and bias field: Heff =
HA + Hext cosα. To simplify calculations we neglect the contribution
of domains that are magnetized perpendicular to the wire axis. We
assume that the wire remains magnetized axially independently on
bias orientation because the demagnetizing factor perpendicular to the
wire axis is equal to zero. Therefore, to describe the circumferential
permeability as the function of the angle α between the wire axis and
the bias field we have to substitute Hext in Equation (5) by Hext cosα
in case of a perpendicular bias Hext is replaced by Hext sinα).

Note that under zero bias the conductivity of wires is independent
of their orientation, while under non-zero bias the circumferential
permeability and consequently the wire conductivity is the function
of the angle α between the wire axis and bias. Therefore, we consider
the electric polarization of the wires as the function of the same angle
α between the wire axis and the microwave electric field. As a result,
we modify Equation (1):

εmix = εh


1 +

π/2∫

0

[εwire (α)− εh] p cos2 α

(1− p cos2 α)N [εwire (α)− εh] + εh
dα


 (6)

Using (1), (6) and the modified Equation (5) we obtain the curves that
resemble the experimental dependence of permittivity on bias (see the
black curves and dots in Fig. 3)
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The discrepancy between the calculated permittivity for plane-
isotropic sample and experimental data (the experimental permittivity
changes steeper with bias increase, ε′ reaches minimum at bias 300 Oe
higher) may arise because of following reasons. The actual shape of
FMR spectrum may differ from the Lorenzian one, the width of FMR
spectrum (the effective damping factor Γ) is usually bias-dependent
[21]. The domain structure at the ends of the wire sections is known
to be distorted [8, 19]; therefore the FMR parameters in the middle
and at the ends of wire sections are different. The conductivity and
domain structure across the section of the wires may be non-uniform,
etc.

Using the calculated dispersion curves (Fig. 6) and applying the
Fresnel’s relations we can calculate the reflection and transmission
spectra [23] of a sheet filled with parallel sections of fibers under
study, which has complex permittivity εmix (Fig. 7). At the frequency
corresponding to the resonance of wire length (14.4 GHz for 9 mm-
long sections) tan δε = ε′′/ε′ ≈ 1, so the transmission coefficient
gradually decreases with increase of sample thickness (the interference
contribution is negligible). The product of screen thickness and filling
factor defines the transmission loss for a transparent screen. If the
admissible loss is equal to 3 dB, then the range of attenuation control
for a sample with the wires under study is about 10 dB (Fig. 7).

The regular distribution of aligned wire sections (Rrad = 0) for
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Figure 7. Power reflection (black lines) and transmission (gray lines)
coefficients at 14.5 GHz as bias function of 0.4 mm thick screen filled
with wire sections 8 mm-long. Solid lines correspond to the screen
with aligned wires; dashed ones correspond to random oriented wires.
The gray dots represent transmission in case of regular distribution of
aligned wire sections in 0.25 mm thick screen.
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the same attenuation of the opaque screen decreases the transmission
loss in the transparent state for about 1 dB compared to a disordered
anisotropic composite (see dotted and gray lines in Fig. 7).

Note that at the resonance frequency of wire sections (∼ 14.4GHz
for 9 mm wires) the real part of mixture permittivity ε′mix under 0–
2 kOe bias is close to unity while the imaginary part is high ε′′mix > 60
and depends on the bias strength (see Fig. 5). Therefore, at the
resonance frequency the composite with wire sections behaves like a
resistive substance, where its equivalent resistance increases with bias,
or like a composite similar to one described in [15], where the wire
sections are interconnected into a continuous lattice.

The dependence of transmission on bias (Fig. 7) is similar to the
dependence of equivalent resistance of a sample ρmix on bias and the
dependence of wire resistance ρwire on bias (Fig. 8): ρeff = 1/2πfε0ε

′′,
where ε′′ of the wire is defined by Equation (4), and ε′′ of a sample is
defined by (1).

Comparing the effective resistance of a single wire ρwire and the
equivalent resistance ρmix of the sample at 14.4 GHz we see that the
ratio of wire resistance to equivalent resistance of the sample steeply
increases with the bias increase up to ∼ 800Oe. Under higher bias
the ratio ρwire/ρmix is almost constant. It is easy to comprehend
the Γ-shape of curve by comparing it with resistance data (Fig. 8)
and permittivity dispersion curves in Fig. 6. Under low bias the wire
sections behave like resonant half-wave dipoles; the damping factor is
small; the magnetoimpedance effect is increased proportionally to the
current passing through a wire section. The current through a wire
section is amplified compared to the current through a continuous wire
due to dipole resonance. Under bias exceeding 1 kOe the resonance
is damped, and the sections behave like resistive fibers that can be
interconnected into a continuous lattice penetrating the sample (the
structure measured in [15]). In this case, the ratio ρwire/ρmix is bias
independent. Therefore, the effect of bias on attenuation of a sample
with identical wire sections is amplified resonantly compared to the
effect in the sample with continuous wires.

The above estimations of the limits of attenuation control are valid
for a sample with aligned wire sections. The anisotropic composite
is difficult to manufacture in practice, but the screen with random-
oriented wires exhibits much lower range of attenuation control (dashed
lines in Fig. 7). In this case, the maximal transparency is reached under
higher bias, but the more serious drawback is that the transmission
loss in a transparent state is approximately twice higher than that for
a screen with aligned wires. The increased loss arises from the higher
conductivity of the less magnetized wires that are inclined to bias field.
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Using a similar procedure (rel. 1, 5, 6) we calculate the transmis-
sion curves at 10 and 15 GHz for the actual plane-isotropic sample
with 10 mm-long wires (Fig. 4). We have a good agreement between
the experimental and simulated data at 10 GHz as the FMR frequency
(the frequency of δmin), and the anisotropy field HA (5) are deter-
mined relatively accurately. The frequency of δmax and the value of
minimal resistance of the wire are estimated assuming the Lorenzian
shape of FMR spectrum. The discrepancy between the experimental
and simulated transmission data at 15GHz indicates that the actual
FMR spectrum may be of asymmetric shape. The above mechanism
of permittivity control results in the largest possible control range as
it is based on the switch from the maximal to the minimal effective
conductivity of the wire. The bias strength and permittivity change
depend on the width and shape of FMR spectrum: the lower is the
damping factor (Γ in rel. 5), the lower is the bias and the higher is the
transparency control range. For a given width of FMR spectrum, the
lower is the FMR frequency, the nearer are the frequencies of minimal
and maximal surface impedance of the wire (Fig. 3). Therefore, the
lower is the operating frequency of a composite screen, the lower is the
necessary bias as the less is the required shift of FMR spectrum. For
the FMR frequency of 9 GHz, the switching bias is about 2 kOe, while
for ∼ 2GHz the switching bias is about 500÷ 700Oe [15].

The maximal control range can be reached only if three conditions
are fulfilled simultaneously. Namely, the operating frequency must be
equal to the frequency of maximal zero-bias conductivity; the wire
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length must be equal to λ/2 at this very frequency; the maximal
penetration depth δ must be close to wire diameter. The higher is
the permittivity εh of the binder in which the wires are immersed, the
shorter is the physical length of a half-wave dipole, the lower is the
dipole inductance and the wider is the line of dielectric absorption.
Therefore, the lower is the attenuation of the opaque screen and the
lower is the range of attenuation control. It is important that if the
FMR spectrum is wide or its shape is asymmetrically distorted, the
maximum of effective conductivity may be reached at the frequency
higher than the estimated one or may be totally absent. The case
resembles the isotropic sample: the range of transparency control is
smaller and the control needs stronger bias.

6. CONCLUSION

The permittivity spectra of similar composites filled with wires of
permeable and impermeable metal may differ significantly. The
composite filled with sections of impermeable wire has a simple
Lorenzian dielectric spectrum, where the resonance frequency is defined
by the section length. In case of a permeable wire, if the FMR
frequency is close to the resonance length of the wire section, the
permittivity spectrum has two absorption maxima because of the
abrupt change of the wire impedance. This very effect explains the
shape of absorption spectra obtained in [15] for a sample with a single
permeable wire.

The measurements reveal that the complex permittivity of an
isotropic wire-filled composite is bias-dependent at microwaves for both
bias orientations relative to the polarization plane of incident wave.

At least two mechanisms of permittivity control that differ in bias
strength are observed. At relatively high bias the absorption takes
place due to the abrupt change of penetration depth in the vicinity of
resonance of circumferential permeability. Here the bias value depends
on the measurement frequency. The absorption has high intensity and
is independent of the domain structure of a microwire.

The second mechanism is observed in magnetically bistable wires
at bias approximately equal to the coercive field. In case of Co-
based wires, the reconfiguration of domain structure takes place at
bias of severalOe. The corresponding change of wire impedance (the
giant magnetoimpedance) is used in magnetic sensors, though their
operating frequency does not exceed several megahertz [11]. The recent
reports show that the impedance change decreases with frequency, but
it is observed up to 1–1.6GHz [28, 29]. We observe the similar effect
at 6 GHz (Fig. 2), but the permittivity change seems negligible for
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practice. Here the magnetoimpedance coefficient dσ/dHext is higher
than in the first mechanism, but the total impedance change is much
smaller. The computations [10] confirm that the maximal permittivity
change due to giant magnetoimpedance effect is about 4 times lower
than in case of FMR.

The widest dynamic range of attenuation control is attained with
the sample filled with aligned wire sections of identical length at the
frequency higher than that of FMR, namely, at the frequency where
the zero-bias skin-depth is maximal. The optimal wire length is such
that the zero-bias peak of absorption takes place at this very frequency.
The optimal diameter of the wires is close to the maximal skin-depth.
The sample thickness and filling factor define the minimal transmission
loss. If the admissible loss in the transparent state is about 3 dB, then
the range of attenuation control of a screen with Fe-based wires can
reach 10 dB.

If the aligned wires are distributed regularly and form the ordered
lattice, the screen can be thinner, and the transparency loss can be
lower than in case of unordered anisotropic composite for the same
range of attenuation control.

If the wire sections are oriented randomly in a screen plane, the
range of attenuation control is approximately twice smaller, and the
loss of in a transparent plane-isotropic screen is approximately 3 dB
higher than that of a transparent screen with aligned wires. The
increase of the permittivity of the media binding the wires decreases
the maximal attenuation and consequently the range of attenuation
control.

If the aligned wires are interconnected into a mesh, the dynamic
range of attenuation control is also smaller than that for the anisotropic
sample filled with wire sections of identical length, because the
resonance of wire dipoles amplifies the effect of magnetoimpedance
on microwave permittivity of a composite. Moreover, the range of
attenuation control of a composite with continuous wires is smaller
without the gain in the operating frequency band of a screen, as the
band is all the same limited by the width of the FMR spectrum.

The described mechanism of attenuation control is based on the
dependence of the FMR frequency on the bias strength. Therefore the
controlling bias is high, and the field strength reaches 1÷ 2 kOe. The
narrower is the FMR spectrum, the lower is the required bias strength
and the higher is the transparency control range.

For equal damping factors the strength of the bias switching
the screen to a transparent state decreases proportionally to the
decrease of the operating frequency. The situation is similar to giant
magnetoimpedance: the higher is the frequency, the lower is the
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magnetoimpedance coefficient. But even if the operating frequency
is as low as 2 GHz, the switching bias reaches 300÷500Oe. It is about
two orders higher than the bias required for the alternative mechanism
related to the giant magnetoimpedance effect.
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