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Abstract—In borehole electromagnetic tomography and resistivity
survey a linearized model approximation is often used, in the context
of regularized regression, to image the conductivity distribution
in a domain of interest. Due to the error introduced by
the simplified model, quantitative image reconstruction becomes
challenging without implementing a nonlinear algorithm. We derive a
closed form expression of the linearization error in electrical impedance
tomography based on the complete electrode model. The error term is
expressed in an integral form involving the gradient of the perturbed
electric potential in the interior of the domain and renders itself readily
available for analytical or numerical computation. For real isotropic
conductivity inhomogeneities with piecewise uniform characteristic
functions the perturbed potential field can be shown to satisfy Poisson’s
equation with Robin boundary conditions and interior point sources
positioned at the interfaces of the inclusions. Simulation experiments
using a finite element method have been performed to validate these
results.

1. INTRODUCTION

The complete electrode model in electrical impedance tomography is
derived from Maxwell’s time harmonic equations at the quasi-static
limit and describes the electric potential field in the closure of a
conductive domain with known electrical properties and impressed
boundary excitation conditions. The model has been extensively
discussed, analyzed and implemented in numerous publications,
including Somersalo et al. [12] who prove existence and uniqueness
of the complete electrode model solution, Paulson et al. [7] who
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analyze and compare the model to other more abstract models with
emphasis on the profile of the boundary current density, and Pidcock
et al. [8] who provide some analytic solutions for domains with
regular geometries. The model has been implemented numerically and
distributed under general public licence by Vauhkonen et al. [13] and
by Polydorides et al. in [9] for two and three-dimensional problems
respectively. A comprehensive discussion on the electrical imaging
models, as indeed the technology and applications of impedance
imaging can be found in the reviews by Borcea [2] and the textbooks
by Kaipio et al. [6] and Holder [5]. Also note that the similar problem
of electrical capacitance tomography [16] involves the same governing
equation with somewhat different boundary conditions and thus most
of the discussion ahead becomes relevant to this problem as well.
For the scope of this study we shall briefly outline the complete
electrode model equations based on which the linearization error will
subsequently be derived.

Let Ω ⊂ <d, d ∈ {2, 3} be a simply connected, bounded,
conductive domain with Lipschitz boundary ∂Ω, and consider
electrodes e`, ` = 1, . . . , L attached on the boundary such that Γe =
∪L

`=1e` denotes the part of the boundary underneath the electrodes and
Γo = ∂Ω\Γe the rest of the surface. If r ∈ Ω denotes the d-dimensional
position vector in the closure of the domain, at the quasi-static limit
the electric potential u satisfies the elliptic partial differential equation

∇ · [σ(r)∇u(r)
]

= 0, r ∈ Ω (1)
where σ is the real, isotropic electrical conductivity. The impressed
boundary currents are expressed by the Neumann conditions∫

e`

ds σ(r)∇u(r) · n = I`, r ∈ Γe, ` = 1, . . . , L (2)

σ(r)∇u(r) · n = 0, r ∈ Γo (3)
with n the outward unit normal on the boundary. The voltage
measurement recorded at the `’th electrode with contact impedance
z` is given by the Robin boundary condition

V` = u(r) + z` σ(r)∇u(r) · n r ∈ Γe, ` = 1, . . . , L (4)
assuming that the characteristic function of the contact impedance is
uniform on each electrode and <{z`} > 0. In their landmark paper [12]
Somersalo et al. show that the model admits a unique solution upon
enforcing the charge conservation principle on the applied current
patterns and a choice of ground is made

L∑

`=1

I` = 0, u(rg) = 0 rg ∈ Ω (5)
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In a functional analysis treatise of the model, as demonstrated in [12]
and [2], one typically considers infinite dimensional Hilbert spaces
for the conductivity and electric potential functions. In particular,
a unique solution (u∗, V ∗) ∈ H1(Ω) ⊕ <L exists for σ ∈ L∞(Ω), in
which case the Neumann to Dirichlet mapping

Λσ σ∇u · n(∂Ω) = u(∂Ω) (6)

is self-adjoint and positive definite with u ∈ H1(Ω) in the interior of the
domain and u ∈ H1/2(∂Ω) at the boundary. The inverse EIT problem
is then to reconstruct σ from some knowledge of Λσ. The study of this
problem was popularized after the seminal paper of Calderon [4] who
proved injectivity of the Dirichlet to Neumann mapping Λ−1

σ in a more
abstract setting, and showed that for a conductivity sufficiently closed
to a known constant the linearized problem could yield an inverse
solution with an error bounded in L∞ norm, an idea later generalized
by Silvester et al. in [11].

2. THE LINEARIZATION ERROR

A local perturbation in the conductivity of the domain relates to
the induced changes in the boundary voltage measurements via the
Jacobian of the forward mapping. This approximate linear relation
holds true subject to a linearization error when the perturbations
are small in magnitude. Evidently, for arbitrarily large conductivity
changes the linear approximation fails as the linearization error
dominates. The contribution of this paper is the derivation of a closed
form expression for this error as indeed to provide an analytic formula
relating the differential boundary voltage data to their corresponding
conductivity perturbations. In our approach we extend the results of
Breckon [3] and Polydorides et al. [9] who consider the perturbations
in the electrical power of the domain.

From the divergence theorem for a scalar field w and a vector field
A ∫

Ω
dv A · ∇w +

∫

Ω
dv w∇ ·A =

∫

∂Ω
ds wA · n

substituting for A = σ∇u and simplifying for ∇ · A = 0 by virtue
of (1) yields ∫

Ω
dv σ∇u · ∇w =

∫

∂Ω
ds wσ∇u · n

where dv and ds are volume (or area in two dimensions) and surface
metrics respectively. Setting w = u and importing the boundary
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condition (4) we get
∫

Ω
dv σ|∇u|2 =

L∑

`=1

∫

∂Ω
ds

(
V` − z`σ∇u · n)

(σ∇u · n)

=
L∑

`=1

(∫

∂Ω
ds V`σ∇u · n−

∫

∂Ω
ds z`|σ∇u · n|2

)

From the Robin conditions (2) the surface integrals vanish everywhere
on the boundary aside Γe, hence the first surface integral above
simplifies further to

L∑

`=1

∫

∂Ω
ds V`σ∇u · n =

L∑

`=1

V`

∫

Γe

ds σ∇u · n =
L∑

`=1

V`I`

from where we arrive at the power conservation law
L∑

`=1

V`I` =
∫

Ω
dv σ|∇u|2 +

L∑

`=1

z`

∫

Γe

ds |σ∇u · n|2 (7)

asserting that the power imported to the domain is either stored
as electric potential or dissipated at the contact impedances of the
electrodes [9].

Taking perturbations σ → σ + δσ, u → u + δu, yields a change in
the normal component of the current density at the boundary as

j(r) + δj(r) =
(
σ + δσ

)∇(
u(r) + δu(r)

) · n, r ∈ Γe (8)

Keeping the applied current I` fixed and substituting into (7) the
integral over the domain gives∫

Ω
dv (σ + δσ)|∇(u + δu)|2 =

∫

Ω
dv σ|∇u|2 +

∫

Ω
dv σ|∇δu|2

+2
∫

Ω
dv σ∇u · ∇δu +

∫

Ω
dv δσ|∇(u + δu)|2 (9)

while the perturbed surface current density integral now becomes
L∑

`=1

∫

Γe

ds z`|(σ + δσ)∇(u + δu) · n|2 =
L∑

`=1

∫

Γe

ds z`|j + δj|2 (10)

Applying the perturbations on the boundary condition (4) assuming
<{zl} > 0 yields

δj = z−1
` (δV` − δu), ` = 1, . . . , L (11)



Progress In Electromagnetics Research, PIER 93, 2009 327

and substituting into the right hand side of (10) yields
L∑

`=1

∫

Γe

ds z`|j + δj|2 =
L∑

`=1

∫

Γe

ds z`|j|2

+
L∑

`=1

∫

Γe

ds
1
z`

(δV` − δu)2 + 2
L∑

`=1

∫

Γe

ds j (δV` − δu) (12)

Adding (9) and (12) and subtracting from the power conservation law
yields the perturbation in total power in the closure of the domain

L∑

`=1

I`δV` =
∫

Ω
dv σ|∇δu|2 + 2

∫

Ω
dv σ∇u · ∇δu

+
∫

Ω
dv δσ|∇u +∇δu|2 +

L∑

`=1

∫

Γe

ds
1
z`

(δV` − δu)2

+2
L∑

`=1

∫

Γe

ds (δV` − δu)σ∇u · n (13)

From the weak formulation for w = δu the second integral on the right
hand side and the surface integrals simplify to yield the perturbed power
conservation law

L∑

`=1

I`δV` = −
∫

Ω
dv σ|∇δu|2 −

∫

Ω
dv δσ|∇u +∇δu|2

−
L∑

`=1

z`

∫

Γe

ds|δj|2 (14)

where the last term expands to
L∑

`=1

∫

Γe

ds z`|δj|2 =
L∑

`=1

1
z`

δV 2
` +

L∑

`=1

1
z`

∫

Γe

ds δu2

− 2
L∑

`=1

1
z`

δV`

∫

Γe

ds δu

For a conductivity σ̂ = σ + δσ the electric potential û = u + δu
satisfies

∇ · [σ̂(r) ∇û(r)
]

= 0, r ∈ Ω (15)

and and thus subtracting from (1) we obtain

∇ · [σ∇δu + δσ∇û
]

= 0 (16)
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Applying the divergence theorem on (16) for w = δu yields∫

Ω
dv σ|∇δu|2 +

∫

Ω
dvδσ∇û · ∇δu =

∫

∂Ω
ds δu σ∇δu · n +

∫

∂Ω
ds δu δσ∇û · n (17)

From the normal component of the boundary current density and the
relation in (8) at any r ∈ Γe

δj(r) = σ(r)∇δu(r) · n + δσ(r)∇û(r) · n
thus the weak form (17) becomes∫

Ω
dv σ|∇δu|2 +

∫

Ω
dv δσ∇û · ∇δu =

∫

∂Ω
ds δu δj (18)

Combining (18) with the power conservation law (7) yields
L∑

`=1

I`δV` = −
∫

Ω
dv δσ|∇u|2 −

∫

Ω
dv δσ∇u · ∇δu

−
∫

∂Ω
ds δu δj −

L∑

`=1

z`

∫

Γe

ds |δj|2 (19)

and by substituting from (11), the third term in the right hand side
above develops to∫

∂Ω
ds δu δj =

∫

Γe

ds
(
δV` − z`δj

)
δj

=
L∑

`=1

δV`

∫

Γe

ds δj −
L∑

`=1

z`

∫

Γe

ds |δj|2 (20)

We now show that the perturbations in conductivity and electric
potential give rise to a perturbation in boundary current density with
vanishing integral, ∫

Γe

ds δj = 0 (21)

From the Neumann boundary condition (2) the current applied at the
`’th electrode satisfies

I` =
∫

Γe

ds σ∇u · n =
∫

Γe

ds j

and therefore keeping I` fixed for ` = 1, . . . , L under σ̂ = σ + δσ,
û = u + δu we have

I` =
∫

Γe

ds σ̂∇û · n =
∫

Γe

ds (j + δj)
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Splitting the last integral and equating the last two equations we
obtain (21).

We are now ready to tabulate our main result. Using (21) the
integral of the power perturbation at the boundary (20) simplifies to

∫

∂Ω
ds δu δj = −

L∑

`=1

z`

∫

Γe

ds |δj|2

and combining with (19) we arrive at
L∑

`=1

I`δV` = −
∫

Ω
dv δσ|∇u|2 −

∫

Ω
dv δσ∇u · ∇δu (22)

Clearly the second integral is a nonlinear function of δσ due to the
product of the conductivity perturbation with the electric potential
field perturbation δu which itself relates nonlinearly to δσ via
Maxwell’s laws. To formulate an expression for the perturbation on
the voltage measurements we develop first the left hand side of (22).
Assume a pair drive system, for which we denote the direct current
pattern Id ∈ <L, the measurement pattern Im ∈ <L and the combined
pattern Ic ∈ <L satisfying the constraint (5) as

Id = [|I|,−|I|, 0, . . . , 0], Im = [0, . . . , 0, 1,−1]

Ic = Id + Im

so that a current of magnitude |I| > 0 is injected into the domain by
the electrode pair (ep, en) and a measurement is obtained as a potential
difference between the electrode pair (e′p, e′n). We then compute the
differential potential

P = u
(
Ic

)− u
(
Id

)− u
(
Im

)

=
L∑

`=1

Ic
` δV

c
` −

L∑

`=1

Id
` δV d

` −
L∑

`=1

Im
` δV m

` (23)

By the linearity of the Neumann to Dirichlet map, for ` = 1, . . . , L we
have

δV c
` = δV d

` + δV m
`

and the above develops further to

P = |I|
(
δV c

ep
− δV c

en
− δV d

ep
+ δV d

en

)
+ δV c

e′p − δV c
e′n − δV m

e′p + δV m
e′n

= |I|
(
δV m

ep
− δV m

en

)
+ δV c

e′p − δV c
e′n − δV m

e′p + δV m
e′n

= |I|
(
δV m

ep
− δV m

en

)
+ δV d

e′p − δV d
e′n
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Recalling that the mapping in (6) is self-adjoint, the reciprocity
principle asserts that the measurement obtained at the electrode
pair (ep, en) under a current pattern applied at (e′p, e′n) equals the
measurement captured at

(
e′p, e′n

)
for a current pattern of the same

magnitude applied to electrode pair (ep, en). Noting the magnitude
relation between current and measurement patterns we have

|I|
(
δV m

ep
− δV m

en

)
=

(
δV d

e′p − δV d
e′n

)

and thus we arrive at

P = 2
(
δV d

e′p − δV d
e′n

)
(24)

Consider now the evaluation of the bilinear form in the right hand
side of (22)

Qδσ(u, δu) = −
∫

Ω
dv δσ|∇u|2 −

∫

Ω
dv δσ∇u · ∇δu (25)

under the same conditions, i.e., for the potential and perturbed
potential induced by the current pattern Ic − Id − Im,

P = Qδσ

(
u
(
Ic

)
, δu

(
Ic

))−Qδσ

(
u
(
Id

)
, δu

(
Id

))−Qδσ

(
u
(
Im

)
, δu

(
Im

))

which gives

P =− 2
∫

Ω
dv δσ∇u

(
Id

) · ∇u
(
Im

)

−
∫

Ω
dv δσ

(
∇u

(
Id

) · ∇δu
(
Im

)
+∇u

(
Im

) · ∇δu
(
Id

))

By the reciprocity principle the second integral simplifies further to
yield

P = −2
∫

Ω
dv δσ

(
∇u

(
Id

) · ∇u
(
Im

)
+∇u

(
Id

) · ∇δu
(
Im

))
(26)

and thus equating (24) and (26) we obtain a formula for the change in
boundary voltage measurements due to δσ as

δV` = −
∫

Ω
dv

(
δσ∇u

(
Id

) · ∇u
(
Im

)
+ δσ∇u

(
Id

) · ∇δu
(
Im

))
(27)

Neglecting the second term above and assuming that ‖σ + δσ‖L∞ ∼
‖σ‖L∞ yields the linearized model

δV` ' −
∫

Ω
dv δσ ∇u

(
Id

) · ∇u(Im) (28)
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from which the familiar formula for the Jacobian of the forward
mapping [9], derived also by Brandstätter in [15], is extracted as

Jm,d =
∂V d

m

∂σk
= −

∫

Ωk

dv ∇u
(
Id

) · ∇u(Im) (29)

Based on (27) and (28) for arbitrarily large, finite perturbations δσ the
linear approximation introduces a linearization error

E(δσ) = − ∫
Ω dv δσ∇u

(
Id

) · ∇δu(Im)

= − ∫
Ω dv δσ∇δu

(
Id

) · ∇u(Im) (30)

where the expression equivalence is due to field reciprocity.

3. THE EQUIVALENT SOURCE TERM

The expression for the linearization error involves the gradient of the
perturbed electric potential δu and thus some elementary analysis on
this field becomes imperative. The intent is to associate δu caused
by an arbitrarily large perturbation in conductivity to an equivalent
‘inducing’ source function in the closure of the domain. Recall
from (16) that under the imposed boundary conditions

∇ · [σ∇δu + δσ∇û
]

= 0

thus rearranging and applying a vector calculus identity yields

∇ · σ(r)∇δu(r) = −∇δσ(r) · ∇δu(r)− δσ(r)∇ · ∇û(r) (31)

which can be interpreted as a Poisson’s equation on a domain with a
known conductivity σ, an impressed source function

q(r) = −∇δσ(r) · ∇δu(r)− δσ(r)∇ · ∇û(r) (32)

and boundary conditions

V` = δu(r) + z` σ(r)∇δu(r) · n r ∈ Γe (33)
δu(rg) = 0 (34)

for ` = 1, . . . , L. The special case of a small local perturbation
δσ = δ(r−r′), r′ ∈ Ω was investigated in the thesis of Breckon [3] in the
context of the first-order approximate model ∇ · [σ∇δu + δσ∇u

] ≈ 0
who showed that the equivalent source term is

q(r) ≈ −∇δσ(r) · ∇u(r)− δσ(r)∇ · ∇u(r)

Moreover, for σ = 1 the last term vanishes leaving an equivalent source
function in the form of an electric dipole q(r) ≈ −∇δ(r′) · ∇u(r) of
moment |∇u(r)| positioned at r′, a result consistent with Yorkey’s
compensation method in electrical resistor networks [14].



332 Polydorides

Returning in (32) and relaxing the linearity restrictions on δσ
consider a homogeneous inclusion δσ ∈ D ⊂ Ω with a constant
characteristic function and smooth interface ∂D. Taking the gradient
of δσ over the domain indicates that the first term in (32) is
simply a sum of electric dipoles positioned at the interface ∂D, this
being essentially equivalent to taking the gradients of a multivariate
rectangular function. In order to evaluate the second term we have
to account for the field û over D. Let ∂D+, ∂D− denote the inner
and outer sides of the interface ∂D respectively, then the continuity
conditions for the potential and the current density

û(∂D+) = û(∂D−) (35)
σ̂∇û · n(∂D+) = σ∇û · n(∂D−) (36)

hold. Now since D is closed and source free in its interior ∇· σ̂∇û = 0.
As σ is uniform in the support of the inclusion this can be factored
out of the divergence. Noticing that the characteristic function of δσ is
zero outside D̄, if σ̂ 6= σ the scaled divergence term δσ∇ ·∇û vanishes
everywhere apart from the interface ∂D by virtue of (36). In essence
the two terms in the right hand side of (32) assert that a bounded,
piecewise constant perturbation in conductivity, yields a perturbed
potential field that can be expressed as a solution of a Poisson equation
for an equivalent source term that vanishes everywhere apart from the
interface of the perturbation. The numerical experiments presented in
the next section support this claim.

The concept of finding an equivalent source that yields the impact
of the conductivity perturbation on the boundary data has also been
investigated by Assenheimer et al. [1] and later generalized in a rigorous
mathematical framework by Seo et al. [10] for T-scan impedance
tomography models. In their study the authors showed that the
distortion in the electric field induced by an inhomogeneity immersed
in an otherwise homogenous medium can be expressed as a distribution
of dipole sources. In this context some characteristics of the inclusion
can be extracted from those of the equivalent sources.

4. NUMERICAL RESULTS

In this section we present some numerical results to verify the
linearization error formula (30) as well as the equivalent sources (32).
The linearization error was tested using the three-dimensional
implementation of the complete electrode model in EIDORS 3D [9],
while for the equivalent Poisson’s sources we have opted for the two-
dimensional EIDORS 2D [13] implementation of the model in order to
enhance the visualization clarity.
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4.1. Linearization Error

In a homogeneous cylindrical domain with conductivity background
of σ = 1 S/m and L = 32 boundary electrodes we introduce
a conductivity change of fixed topology encompassing 12% of the
domain’s volume and magnitude that takes the values

δσ = {−0.9,−0.99,−0.999, 0.01, 0.1, 0.9, 1.1, 11, 111, 1111}
The results tabulated in Table 1 show the magnitude of the
conductivity change, the change in the boundary voltage measurement
corresponding to an arbitrarily chosen pair of current and measurement
patterns, the contribution of the linear integral term (29) in the
measurement change and the value of the linearization error (30). The
changes in the boundary data, assuming unit magnitude currents, have
been computed by subtracting the forward problem solutions

δV = Λσσ∇u · n− Λσ+δσ(σ + δσ)∇(u + δu) · n (37)

obtained by approximating numerically the model equations using
linear finite elements. The validity of our linearization error result
is manifested by the equality of δV to the sum of the Jδσ and E(δx)
for each value of δσ. In fact, comparing the results of the second
column of the table to the sum of those in the last two columns we
have observed deviations in the order of forward numerical precision,
e.g., O(|10−6|).

Table 1. Numerical results indicating the linearization error computed
with the closed form expression (30). As anticipated the error grows
nonlinearly as |δσ| deviates from the homogeneous background value
of 1 S/m. The inclusion occupies 12% of the domain’s volume.

δσ δV Linear term Jδσ Linear error E(δσ)
−0.9 −0.0606 −0.0213 −0.0393
−0.99 −0.0915 −0.0234 −0.0681
−0.999 −0.0971 −0.0237 −0.0734
0.01 0.2351× 10−3 0.2367× 10−3 −0.0016× 10−3

0.1 0.0022 0.0024 −0.0002
0.9 0.0133 0.0213 −0.0080
1.1 0.0150 0.0260 −0.0111
11 0.0312 0.2604 −0.2293
111 0.0345 2.6279 −2.5933
1111 0.0348 26.3025 −26.2676
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Figure 1. The change in three arbitrarily chosen boundary voltage
measurements as a function of the perturbations in the interior
conductivity assuming a three-dimensional cylindrical domain [9].
Notice the linearity at the left side of the curves and the ‘saturation’ on
the right, indicating that the linearized models tend to over-estimate
the boundary measurements at large conductivity changes.

Moreover, the results are indicative of the region where the
linearized approximation can yield quantitatively accurate solutions
to the inverse conductivity problem. Notice that the change
in the boundary voltage data is always over-estimated by the
linearized model, leaving a negative error term, which implies that
the reconstruction of δσ from a regularized cost function involving
the norm ‖Jδσ − δV ‖ will yield an under-estimated image of the
conductivity. This remark is aligned to the effect of saturation observed
in the profile of the boundary measurements with respect to changes
in the interior conductivity, as suggested by the relevant graph in
Figure 1. The same figure indicates also that for large conductivity
changes the error E(δσ) tends to vary almost linearly with δσ.

4.2. Perturbed Potential Field and Equivalent Sources

We consider a homogeneous two-dimensional domain with circular
geometry and background conductivity σ = 1 S/m, in which we
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Figure 2. In each column from the top, plots of the approximated δu,
q and δσ on a finite element mesh indicating the position of the nonzero
elements of the equivalent source q for two opposite pair drive current
patterns. The markers (×) indicate the position of the equivalent delta
sources for each perturbed electric potential and the black arcs the
boundary electrodes.

introduce three piecewise constant conductivity perturbations at
magnitudes −0.9, 4 and 9 S/m as shown at the bottom of Figure 2.
The domain is then excited by opposite pair drive current patterns
injecting a current of unit magnitude and measuring the potential
at the boundary through sixteen uniformly spaced electrodes, each
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having a contact impedance z` = 10 OhmΩm2. The perturbed electric
potential field δu = û − u for two arbitrarily selected drive patterns
appears at the top row of Figure 2. Solving the Poisson problem (32)
for q with boundary conditions (33) we obtain the equivalent source
fields as a superposition of delta functions, illustrated with some linear
interpolation in the middle row of the same figure. To emphasize
the exact location of these sources in relation to the interfaces of the
immersed inhomogeneities we mark the finite element grid points where
the q function attains a magnitude greater than the working numerical
precision. To aid clarity these points are marked on the perturbed
conductivity model for each δu.

5. CONCLUSION

We have derived a closed form expression for the linearization error
in the complete electrode model for electrical impedance tomography.
This contribution quantifies the suitability of the linear model
to predict, and henceforth reconstruct, the boundary observations
induced by conductivity perturbations on an otherwise known model.
The error term is an integral involving the gradient of the perturbed
potential field. Assuming piecewise constant conductivity profiles the
perturbed potential field can be shown to satisfy Poisson’s equation
for a current density field comprised of point sources aligned at the
interfaces of the conductivity perturbations.
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