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Abstract—Scattering of electromagnetic waves by periodic stripe
grating backed with a layer of metamaterial is considered. The
distinguished feature of the structure is the association of periodicity of
two scales: Micro scale that is the scale characteristic to metamaterial
of the layer, and the scale of periodic metal stripe grating that is
of the scale of wavelength of incident electromagnetic field. Such
association gives rise to new type of resonant phenomena such as
“crowding” of resonant transmission/reflection peaks in the vicinity of
characteristic frequencies of the structure. The study of the problem
is performed on the base of rigorous and accurate solution to the
diffraction and spectral problems, which guarantees the robustness of
numerical algorithm; and allows asymptotical analytical analysis of the
problem and prediction of various resonant phenomena.

1. INTRODUCTION

The manufacturing of new composit materials performing unexpected
features had achieved considerable successes during recent years [1].
Diverse aspects of possible applications of such materials are in agenda
in modern electromagnetic community [2–7].

The investigation of wave processes in open structures (open
resonators and waveguides, diffraction gratings and others) containing
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metamaterials, will, undoubtedly, be of great interest for creation of
new principles of electromagnetic wave generating, amplifying and
energy channeling. The key issue in such investigation is the study of
resonant phenomena, arising in interaction of electromagnetic waves
with periodic structures comprising metamaterials.

In this paper the results of investigation of resonant phenomena,
appearing in interaction of monochromatic electromagnetic waves
with periodic stripe grating backed with a layer of metamaterial
with frequency dependent effective permittivity are presented. The
distinguished feature of the structure is the association of periodicity of
two scales: i) Micro scale — characteristic for metamaterial structure,
and ii) the scale of the period of metallic stripe grating, which is of
the order of the wavelength of incident electromagnetic field. Such
association gives rise to the new type of resonant phenomena such as
“crowding” of resonant transmission/reflection peaks in the vicinity of
characteristic frequencies of the structure.

As a metal stripe grating is rather popular structure in applied
electromagnetics thus corresponding diffraction problem for metal
stripe grating has its own long term history. Our consideration is
based on the ideas relayed on the Riemann Hilbert problem technique,
that where published for the first time in 1962, and described in details
in [12].

In [15] we have considered the electromagnetic wave scattering by
metal stripe grating placed on half space of metamaterial (reflective
structure). There we have focused on the solution to diffraction
problem and on the analysis of resonant transformation of incident
field into eigen surface oscillations.

Here we perform a systematic analysis based on rigorous and
accurate solution to the diffraction and spectral problems for the
metal grating backed with a layer of metamaterial (semi transparent
structure). The numerical algorithm for simulation was constructed as
further development of the algorithms and codes described in [15].

The advantages of the rigorous methods for analysis of such
problems are particularly clearly seen in the possibility to perform
analytical preliminary analysis of electromagnetic features of the
problem and to estimate the location of resonance frequencies and
their behavior, find out their peculiarities and to obtain the numerical
solution with any required accuracy.
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Figure 1. Geometry of the problem.

2. MATHEMATICAL MODEL

2.1. Formulation of Diffraction Problem and Method for Its
Solving

Consider the following diffraction problem. Let the domain −h <
z < 0 (see Fig. 1) is filled with isotropic metamaterial with effective
permittivity given by the relation

ε (ω) = 1− ω2
p

ω (ω + iν)
, (1)

here ωp is a characteristic frequency, often called plasma frequency,
which depends on the structural parameters of the metamaterial, ν ≥ 0
is a frequency defining active losses, µ = 1. Such model of metamaterial
had been suggested in [8]. The grating of the period l formed by
perfectly conducting stripes with the slot of width d at z = 0 is
placed on the upper face of the metamaterial layer of the thickness
h, see Fig. 1. The structure is infinite and homogeneous along x. We
presume that the incident wave and diffraction field are independent
of coordinate x, the time factor is chosen as e−iωt. The incident H-
polarized plane wave of unit amplitude propagates normally to the xy
plane and comes from the upper half space (z > 0):

H i
x = e−ikz, Ei

y = e−ikz, Ei
x = Ei

z = H i
y = H i

z = 0,

here k = ω/c, c is the light velocity in vacuum. The oblique incidence
does not bring essential difference into mathematical derivations, but
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due to the “splitting” of resonances, see [15], it gives more complicated
pictures of diffraction characteristics and makes the physical analysis
vaguer.

The diffraction field
(

~E∂ , ~H∂
)

has to satisfy:

∼ homogeneous system of Maxwell equations,
∼ Meixner condition,
∼ radiation conditions at infinity (z → ±∞),
∼ the condition of periodicity,

boundary conditions on perfectly conducting stripes of grating and
transparency conditions in the boundary of metamaterial, that is in
the slots.

One can show that under the given assumptions the components
of diffracted field ( ~E∂ , ~H∂) are defined via the only nonzero component
of magnetic field H∂

x :

E∂
y = − 1

ikε

∂H∂
x

∂z
, E∂

z =
1

ikε

∂H∂
x

∂y
.

The rest of the field components (~E∂ , ~H∂) are equal to zero, that is
the diffraction field is also H-polarized.

Let us introduce the function u (y, z), coinciding with magnetic
component of total field H i

x + H∂
x . As follows from Maxwell equations

this function u (y, z) has to satisfy Helmholtz equation everywhere
outside of the stripes of grating and boundary of metamaterial

∆u (y, z) + k2 (z) u (y, z) = 0;

k2 (z) =
{

k2, z > 0, z < −h,
k2ε, −h < z < 0.

(2)

u (y, z)has to be periodic over y with period l and to meet radiation
condition in half space z > 0 and z < −h. Taking into consideration
these requirements we can present the function u (y, z) in the form

u (y, z) =





e−iκ 2π
l

z +
∑
n

Rnei 2πn
l

yeiΓ1n
2π
l

z, z > 0,
∑
n

ei 2πn
l

y(C1neiΓ2n
2π
l

(z+2h) + C2ne−iΓ2n
2π
l

z),

−h < z < 0,∑
n

Tnei 2πn
l

ye−iΓ1n
2π
l

(z+h), z < −h.

(3)

Here Γ1n =
√

κ2 − n2, Γ2n =
√

κ2ε− n2, κ = ωl/2πc. Branches of the
square roots are chosen according to the radiation conditions [9, 16],
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requiring the absence of waves coming from infinity: κRe (Γ1n) ≥ 0,
Im (Γ1n) ≥ 0. Note, that in general the choice of the branch of the root
Γ2n =

√
κ2ε− n2 is arbitrary, but, to avoid ambiguity, we presume

that κRe (Γ2n) ≥ 0, Im (Γ2n) ≥ 0.
Functions u (y, z) and 1

k2(z)
∂u(y,z

∂z have to be continuous in the

slots of grating (z = 0, |2πy
l + n| > π(1 − d

l ), n = 0,±1,±2, . . .) and
in the boundary between metamaterial and free space at z = −h; on
the stripes (z = 0, |2πy

l + n| < π(1 − d
l ), n = 0,±1,±2, . . .) function

u (y, z) has to meet conditions

∂u (y, z)
∂z

∣∣∣∣
z=0+0

= 0,
∂u (y, z)

∂z

∣∣∣∣
z=0−0

= 0. (4)

Using the analytical regularization method, associated with Riemann
Gilbert conjugation problem, developed in [10, 11], the problem can
be reduced to the solution of the infinite system of linear algebraic
equations for unknown amplitudes (Rn)∞n=−∞ of diffraction field in
half space z > 0 (see (3)).

The system has the form

(1 + ε) R = AR + b, (5)

where R = (Rn)∞n=−∞ , b = (bn)∞n=−∞ , A = ‖amn‖∞m,n=−∞ .
A and b are defined as follows:

bm =

{
(1+d0)(1+ε)

d0−1 + iκW0(u)(1+ε)2

1−d0
, m = 0,

− (1 + ε)
iκV −1

m−1(u)

m , m 6= 0,

amn =





−iκW0(u)(1+ε)2

1−d0
, m = n = 0,

δn|n|(1+ε)
(1−d0)n V −1

n−1(u), m = 0, n 6= 0,
iκ
mV −1

m−1(u)(1 + ε)2, m 6= 0, n = 0,
|n|δn

m V n−1
m−1(u), m, n 6= 0, m 6= n,

dm + ε + |m|δm

m V m−1
m−1 (u), m 6= 0, m = n,

(6)

here δn = 1 − dn + i(1+ε)
|n| Γ1n, dn = Γ1nε[ei2Γ2nh̄(Γ2n−εΓ1n)+Γ2n+εΓ1n]

Γ2n[ei2Γ2nh̄(Γ2n−εΓ1n)−Γ2n−εΓ1n]
,

h̄ = 2πh/l. Functions W0(u), V n−1
m−1(u), where u = − cos(πd/l), are

defined in [12] and have the form:

V n−1
m−1(u) =

1
2





m
m−n [Pm−1(u)Pn(u)− Pm(u)Pn−1(u)], m 6= n,
n∑

s=0
ρn−s(u)Ps−n(u), m = n ≥ 0,

V −n−1
−n−1 (u) = −V n−1

n−1 (u), n ≥ 1, W0 = − ln
1 + u

2
.
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Here Pn(u) are the Legendre polynomials with following relation for
negative n Pn(u) = P|n|−1(u); functions ρn(u), n = 0, 1, 2, . . . are
defined via the Legendre polynomials according:

ρ0(u) = 1, ρ1(u) = −u,

ρn(u) = Pn(u)− 2uPn−1(u)− Pn−2(u), n = 2, 3, . . .

In domain (z < −h), and in the layer of metamaterial (−h < z <
0) amplitudes (Tn)∞n=−∞, (C1n)∞n=−∞, and (C2n)∞n=−∞ of diffraction
harmonics may be expressed via amplitudes (Rn)∞n=−∞ of the reflected
diffraction field

Tn =
εΓ1n(Rn − δ0n)

iΓ2n sin(Γ2nh̄)− εΓ1n cos(Γ2nh̄)
,

C1n =
εΓ1n(Rn − δ0n) (Γ2n − εΓ1n)

[ei2Γ2nh̄ (Γ2n − εΓ1n)− Γ2n − εΓ1n]Γ2n

,

C2n =
εΓ1n(Rn − δ0n) (Γ2n + εΓ1n)

[ei2Γ2nh̄ (Γ2n − εΓ1n)− Γ2n − εΓ1n]Γ2n

.

(7)

δ0n — is Kroneker delta.
Using asymptotical estimates for δn = O(κ2

/
n2) and for V n−1

m−1(u)
(see [12]) one can prove that matrix A of the system (5) gives in
l2 = {(Rn)∞n=−∞ :

∑
n
|Rn|2 < ∞} space the kernel type operator, see in

the book [13]. Hence, the numerical solution to the system (5) can be
obtained by means of truncation method with any required accuracy.
So, finding out from the system (5) unknown coefficients (Rn)∞n=−∞
and using relations (3) and (7) we obtain the solution to original
diffraction problem. In the case of lossless metamaterial (ν = 0), one
can obtain the solution to original diffraction problem from (5) for any
value of frequencies except ω = ωp

/√
2, that is equivalent toε = −1.

This value of frequency is, in certain sense, the essential singular point
for the system (5). In particular, when ω → ωp

/√
2 the operator

[(ε + 1) I −A] of the system (5) becomes a kernel type operator, and
consequently, it has no bounded inverse operator. That is why in
numerical analysis the direct truncation of (5) is impossible. As a
solution to our problem in this special case we treat the limit of values
(Rn)∞n=−∞(the solution to the system (5)), acquired by them when the
losses in metamaterial tend to zero (ν → 0).

2.2. Spectral Problem

Spectral problem describes the singularities of analytical continuation
of diffraction problem into the domain of complex valued frequencies.
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The mathematical formulation of this problem differs from that one
for diffraction problem in two issues: First, there is no incident wave;
second, the presentation (3) for function u (y, z), accounting radiation
conditions, has to be analytically continued from the domain of real
valued frequency into domain of complex valued frequency, that is into
the infinitely sheeted Riemann surface (see for example [13]).

We consider the spectral problem for eigen frequencies and
eigen oscillations of periodic stripe grating backed with a layer of
metamaterial with effective permittivity given by (1). We choose
frequency (or normalized frequency κ = ωl/2πc) as a spectral
parameter to be found out; and we seek for ω (or κ) in infinitely sheeted
Riemann surface. Further on, we consider the lossless metamaterial
(ν = 0), thus the expression for effective permittivity takes the form

ε (ω) = 1− ω2
p

ω2
. (8)

We seek for spectral parameter ω (or κ) in the first “physical” † sheet
of Riemann surface defined for various situations in [9, 15, 16].

The spectral problem under consideration is equivalent to the
Equation (5) under condition b = 0 (no incident wave); it is necessary
to consider the matrix entries in (6) as functions of spectral parameter
κ that is varying in “physical” sheet of Riemann surface. Such
problem is the problem for characteristic numbers and eigen vectors
of operator function I − B(κ), here B(κ) = (1 + ε)−1A(κ). Relying
on the results [13], it has been proved that matrix operator B (κ) is a
finite meromorphic kernel operator function of frequency parameter κ
allover “physical” sheet of Riemann surface except points κ = 0 and
κ = ±κp/

√
2, and branching points κ̃n, n = 0,±1,±2, . . .. The poles

of operator function I − B (κ) coincide with point κ = 0 and roots of
the equations

eiΓ20h̄(Γ20 − εΓ10)± (Γ2 + εΓ1) = 0

ei2Γ2nh̄(Γ2n − εΓ1n)− Γ2n − εΓ1n = 0, n = 1, 2, . . .
(9)

Thus, characteristic numbers and, consequently eigen frequencies are
the roots of the equation

det(I −B (κ)) = 0. (10)

It is clear that function det(I−B (κ)) is meromorphic in any bounded
domain, not containing points κ = 0, κ = ±κp/

√
2 and branching

† We mean conventional definition of “physical” sheet of Riemann surface, providing
physically meaningful limits of propagation constants with κ′′ → 0.
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points κ = κ̃n, n = 0,±1,±2, . . .. Thus, set of the roots of the
Equation (10) is the countable set in “physical” sheet of Riemann
surface with possible accumulation points at κ = 0, κ = ±κp/

√
2,

or with poles determined from (9).
Consider now several qualitative properties of the set of roots

of the Equation (10). Suppose that the stripes are small enough,
that is, 1 − d

l ¿ 1 (when d
l = 1 the grating vanishes). Present

now the operator function B(κ) as a sum of two operator functions
B(κ) = B1(κ) + B2(κ), where B1(κ) = ‖δn

mγm‖∞m,n=−∞, γ0 = 0,
γm = dm+ε

1+ε , m 6= 0, then for operator-function B2(κ), relying on
the asymptotic estimates of W0(u), V n−1

m−1(u) for d
l → 1 (see, for

example, [12]), one can prove

‖B2(κ)‖ < const sinπ

(
1− d

l

)
, (11)

‖. . .‖ is a norm of operator function B2(κ) in l2 space. Hence for d
l → 1

the norm of B2(κ) tends to zero in any bounded domain of values of
spectral parameter κ, not containing points κ = 0, κ = ±κp/

√
2,

branching points and poles. It is easy to show, that characteristic
numbers of operator function I − B1 (κ) coincide with the roots of
equation

eiΓ2nh̄(Γ2n − εΓ1n)± (Γ2n + εΓ1n) = 0, n = 1, 2, . . . . (12)

One can show that in the domain of values κ, where Re(ε) < 0 there
are real valued roots of Equation (12).

In Fig. 2, the numerical solution to (12), computed for various
values of index n = 1, 2, . . . (asterisks correspond to the sign minus
in (12), the square dots — to the sign plus) are presented. With
n → ∞ these roots tend asymptotically to the value κ = κp/

√
2 (dot

line in Fig. 2). So, the point κ = κp/
√

2 is the accumulation point.
It follows from the Equation (12), that there is certain

“characteristic” value of metamaterial parameter κ∗p = x0
l

2πh , with
x0 ≈ 1.325, found out from the equation

xe−0.5
√

x2+4 + 2−
√

x2 + 4 = 0.

For the case when κp ≤ κ∗p there is only finite number of roots κn that
are greater than κp/

√
2 (see Fig. 2(a)); when κp > κ∗p all the roots

of (12) are less than κp/
√

2 (see Fig. 2(b)).
Let now the value 1 − d

l be small and κ0 be a characteristic
number of operator function I − B1(κ), that is the root of equation
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det(I − B1(κ0)) = 0. Obviously, at the boundary of the circle of
sufficiently small radius with the center at the point κ0 operator
(I−B1(κ))−1 is bounded. Then from (12) follows, that for sufficiently
small 1− d

l the inequality
∥∥(I −B1(κ))−1B2(κ)

∥∥ < 1

holds along the boundary of the circle.
Using the operator generalization of Rouché’s theorem [14] we

arrive to the conclusion that in the above mentioned circle there is
a characteristic number of operator function I − B1(κ) − B2(κ). It
allows to state at least in qualitative level that the set of characteristic
numbers of operator function I − B(κ), and consequently, the set of
eigen frequencies of electromagnetic problem considered (see Fig. 1)
has the accumulation point at κ = κp/

√
2.

In order to calculate eigen frequencies for arbitrary values of
parameter 0 < d

l ≤ 1 the algebraic scheme suggested in [15] was
successfully modified and applied here.

3. NUMERICAL RESULTS

We have performed numerical simulation relying on preliminary
analytical analysis and asymptotical estimates, predicting certain
unusual resonant phenomena. Several of the results of electromagnetic
simulation are discussed in this section.

n

0.4

0.3

0.2

0.1

0.0
0 1 2 3 4 5 6 7

n
0 1 2 3 4 5 6 7

1.0

0.8

0.6

0.4

0.2

0.0

n

 k  = ω  l / 2πc = 0.5 < kp pp
*  k  = ω  l / 2πc = 1.45 > kp pp

*

κ

nκ

(a) (b)

Figure 2. Roots κn of Equation (12) for various indexes n; h/l = 1/2π
dotted lines correspond to the value κp

/√
2. The following notations

have been used:
• Vertical even modes (− sign in (12))
• Vertical odd modes (+ sign in (12)).
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3.1. Spectral Problem

It is reasonable to perform the study within the domain of spectral
parameter Re (κ) > 0. From (6) follows

det (I −B (κ)) = det(I −B(−κ̄)),

here the dash means complex conjugation. Hence, if κ is eigen
frequency with Re (κ) > 0, then −κ̄ is an eigen frequency with
Re (κ) < 0 (see for details [9, 16]).

The configuration of grating with layer makes possible to introduce
following classification of modes. The symmetry of the structure under
consideration with respect to y = 0 (see Fig. 1) allows extraction
of two classes of eigen oscillations: Odd and even with respect to y.
Besides, in the absence of metal stripes, the layer of metamaterial is
also symmetric with respect to the plane z = −h/2 and, consequently,
in such case there are also two types of solutions even and odd with
respect to the plane z = −h/2. The solutions of the Equation (12)
with signs minus and plus correspond to these types of oscillations.

In Fig. 3 and Fig. 4, the behavior of Re (κ) and Im (κ) when grating
factor d/l is varying are presented. The numerical data is obtained
from the solution to (10).

3
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Re (κ  )n

 Re (κ )n 

Im (κ  )n

Im (κ )n

(a) (b) 

Figure 3. Normalized eigen frequencies κn = ωnl/2πc of vertical even
modes (symmetric with respect to the plane z = −h/2) as a function of
the relative slot width d/l, κp = 0.5; h/l = 1/2π. Solid lines correspond
to horizontal even modes (symmetric with respect to the plane y = 0)
and dashed lines, to horizontal odd modes (anti-symmetric with respect
to the plane y = 0), for which Im (κn) = 0.
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3
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1
1

3

2

Vertical odd modes 

0.36

0.34

0.32

0.30

0.28

0.0 0.1 0.20.30.4 0.50.60.7 0.8 0.9 1.0 0.0 0.10.2 0.30.4 0.50.60.7 0.80.91.0
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κ  =0.5, h/l =1/2πp κ  =0.5, h/l =1/2πp

d/l

(a) (b)

Im (κ)

Figure 4. Normalized eigen frequencies κn = ωnl/2πc of vertical
odd modes (anti-symmetric with respect to the plane z = −h/2) as a
function of the relative slot width d/l, κp = 0.5; h/l = 1/2π. Solid
lines correspond to horizontal even modes (symmetric with respect to
the plane y = 0) and dashed lines, to horizontal odd modes (anti-
symmetric with respect to the plane y = 0), for which Im (κn) = 0.

The eigen frequencies of oscillations, that are in the limit case
d/l = 1 symmetric with respect to the plane z = −h/2 (sign “−”
in (12)) are presented in Fig. 3. Eigen frequencies of antisymmetric
(sign “+” in (12)) relatively the plane z = −h/2 oscillations are
depicted in Fig. 4. Solid lines correspond to the eigen frequencies
of oscillations symmetric respectively plane y = 0, and dashed lines
— to the antisymmetric ones. As magnitudes of imaginary parts of
these oscillations are close to zero, in Fig. 3(b) and Fig. 4(b) they are
not presented. The dotted lines in Fig. 3(a) and Fig. 4(a) correspond
to the value Re(κ) = κp/

√
2. As one can see from Fig. 3 and Fig. 4,

when grating disappears, that is d/l = 1, the imaginary parts of eigen
frequencies vanish (there are no losses in metamaterial ν = 0).

The real parts of eigen frequencies of even and odd vertical modes
(with respect to the plane z = −h/2 for given values of κp < κ∗p =
1.325l/2πh are, as we have already mentioned, located at one or other
side of the line κ = κp/

√
2. When d/l = 1 they coincide with the roots

κn of the (12) depicted in Fig. 2(a).
In Fig. 5, we have presented the patterns for |Hx| = const and

for arg(Hx) = const of several eigen oscillations, relevant to eigen
frequencies depicted in Fig. 3 and Fig. 4.

In Figs. 5(a) and (b), one can see that horizontal odd mode with
eigen frequency κ = 0.36565− i ·0 (circled points in Figs. 5(a) and (b))
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Figure 5. Patterns of eigen fields for several eigen frequencies.

is antisymmetric with respect to the plane y = 0 and cophasal (or
symmetric) with respect to the plane z = −h/2 when d/l = 1 (the
field of this vertical even mode has the same phase at both boundaries
of metamaterial, see Fig. 5(b)). The oscillation with eigen frequency
κ = 0.33517 − i · 7.079 · 10−5, (circular point in Figs. 4(a) and (b)),
the patterns are symmetric relative to the plane y = 0 and antiphased
when d/l = 1 relative to z = −h/2 (see Fig. 5).

It is worth to be noted that when d/l → 0 (the grating turns
into the perfectly conduction plane) the real parts of certain eigen
frequencies tend to the poles of operator functions I − B(κ), that are
the roots of Equation (10); their imaginary parts tend to zero. It is
rather difficult to prove these numerical results analytically as entries
of operator function A(κ) and, consequently, B(κ) = (1 + ε)−1A(κ),
(see (6)), depend in singular way on parameter d/l when d/l = 0.

Let us now investigate the behavior of eigen frequencies when the
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Figure 6. The behavior of families of eigen frequencies κn, solid lines
for n = 1, dashed — n = 2, when κp is varying: Re (κ) are presented
in (a) and (c); Im (κ) — in (b) and (d).

normalized width of the layer of metamaterial h/l is varying. Suppose
that the width of grating slots and characteristic frequency are fixed:
d/l = 0.5, κp = 0.5. In Fig. 6 the curves Re (κ) and Im (κ) when
h/l is varying are presented for several eigen oscillations (solid and
dashed lines correspond to the symmetric with respect to the plane
y = 0 oscillations, and dotted-dashed line presents the antisymmetric
oscillations).

Consider first the case when d/l ≈ 1, in this situation the real
parts of eigen frequencies can be approximated by the roots of (12).
For sufficiently small width of layer (h̄ = 2πh

l ¿ 1) and for κp < 1, we
can obtain the following approximate formulas for eigen frequencies

κ+
n ≈ κp

√
nh̄

2
, κ−n ≈ κp


1− n2h̄

2
√

n2 − κ2
p


 (13)

Here κ+
n and κ−n are the roots of (12) with sign “+” and “−”

correspondently. As it follows from (13) these roots have following
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Figure 7. The behavior of eigen frequencies when h/l is varying:
Family of curves Re (κ) are presented in (a) and (c); Im (κ) — in
(b) and (d). Solid and dashed lines correspond to the horizontal
even modes (symmetric oscillations with respect to the plane y = 0);
dotted-dashed lines present the horizontal odd modes (anti-symmetric
oscillations), they have Im (κ) = 0.

asymptotic behavior κ+
n → 0, κ−n → κp when h̄ → 0. Numerical

modeling proved, that the same behavior of eigen frequencies are
characteristic for d

l 6= 1 (see Figs. 7(a),(c)). The real parts of eigen
frequencies meeting condition Reκ > κp/

√
2 tend asymptotically to

κp with layer width decreasing; when layer width is increasing eigen
frequencies tend to κ = κp/

√
2, see Fig. 7(a). As we have mentioned

above, the value κ = κp/
√

2 is the accumulation point. If for the
fixed values of κp and h/l eigen frequencies meet the condition Reκ <

κp/
√

2, then with h/l → 0 they tend to zero (see Figs. 6(b), (d)); in
opposite situation, when h/l → ∞, Reκn tend to corresponding eigen
frequencies of grating placed on the half space of metamaterial [15] (see
Fig. 7(c)). For imaginary parts the following regularities take place.
For h/l → 0 imaginary parts of all types of oscillations (Reκ > κp/

√
2

and Reκ < κp/
√

2) tend to zero (see Figs. 7(b), (d)). With layer width
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increasing imaginary parts of eigen frequencies with Reκ < κp/
√

2 tend
to imaginary parts of corresponding eigen frequencies of grating placed
on the half space of metamaterial [15] (see Figs. 6(d), 7(d)).

Numerical experiments showed that such behavior of eigen
frequencies is also typical for another values of characteristic frequency
κp and other magnitude of slot width.

Consider now the behavior of eigen frequencies with a change of
characteristic frequency of metamaterial. When κp → 0 the eigen
frequencies of all types of oscillations tend to zero (see Fig. 7). This
is the consequence of the fact that stripe grating in free space has no
eigen frequencies (when κp = 0 effective permittivity of metamaterial
ε = 1) [9, 13]. The increase of κp → ∞ influence the behavior of
eigen frequencies of the oscillations of different types of symmetry in
different way. Thus, the real parts of eigen frequencies, corresponding
to the vertical add modes (respective to plane z = −h/2 oscillations
tend asymptotically to branching point κ = 1 (see Fig. 7(c)). The real
parts of eigen frequencies of vertical even modes (relative to the plane
z = −h/2 oscillations tend asymptotically to the value Reκ = κp/

√
2

(see Fig. 7(a). The imaginary parts of oscillations of both type of
symmetry vanish when κp → ∞ (see Figs. 7(b), (d)). Such behavior
of eigen frequencies also shows up for other geometrical parameters of
stripe grating backed with the layer of metamaterial.

3.2. Diffraction Problem

Consider now the numerical results of the solution to diffraction
problem in the case of H-polarization, beginning with the situation
when κ < κp. As we have mentioned above in this frequency range
inequality for effective permittivity Reε < 0 holds and real parts
of eigen frequencies are also located in this domain of κ. Presume
now that κp/

√
2 ≤ 1. It can be always arranged by the choice

of the dimension of the period of grating (κp = ωpl/2πc. In this
case, as follows from (3), the reflected (z > 0) and transmitted
(z < −h) diffraction fields are the superposition of propagation 0-th
order harmonic and infinite number of evanescent surface harmonics
decaying exponentially when z → ±∞. Thus at large distances from
grating in zone of reflection (z > 0) the field if formed by the only
propagating 0-th harmonic with amplitude R0 (reflection coefficient),
and T0 (transmitting coefficient). In Fig. 8(a), we present the behavior
of |T0| (κ) for normal incidence for various parameters of the problem:
Solid line corresponds to the grating backed with layer of metamaterial
with parameters κp = 0.5, ν = 10−5, d/l = 0.5, h/l = 1/2π. Dashed
line corresponds to the layer of metamaterial with parameters κp = 0.5,
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ν = 10−5, d/l = 1.0, h/l = 1/2π; dotted line — to the grating in
vacuum with parameters κp = 0, d/l = 0.5.

In frequency range 0.3 ≤ κ ≤ 0.41 non of the structures: Grating
or layer of metamaterial does not manifest any resonant properties
and are practically transparent for electromagnetic wave |T0| > 0.9.
In contrary the grating backed with a layer of metamaterial has
pronounced resonant character in the same frequency range. There
is a discrete set of parameter κ providing the total reflection of the
incident field |T0| ≈ 0, and the total transparency |T0| ≈ 1. The
comparison of diffraction and spectral characteristics (see Fig. 3(a)
and Fig. 4(a)) results into conclusion that resonances of diffraction
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Figure 8. (a) Transmission coefficient |T0| for normal incidence as
a function of κ. Solid line: Grating backed with metamaterial with
parameters κp = 0.5, ν = 10−3, d/l = 1.0, h/l = 1/2π; dashed-doted
line: The layer of metamaterial κp = 0.5, ν = 10−5, d/l = 1.0,
h/l = 1/2π without grating; dotted line: Grating in vacuum κp = 0,
d/l = 0.5; (b), (c) field patters, calculated at resonant frequencies. (b)
κ = 0.34576; (c) κ = 0.36106.
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amplitudes occur at frequencies close to eigen ones, when oscillations
close to natural ones are excited. The patterns of diffraction fields for
couple of resonant values of κ are presented in Fig. 8(b) and Fig. 8(c).
We can clearly see that at resonant frequencies for |R0| the oscillation
close to the natural ones of the grating with the layer of metamaterial
are excited, compare with Figs. 5(a), (c). As the incident field (normal
excitation) is symmetric with respect to the planey = 0, then only the
symmetric oscillations are excited.

4. CONCLUSION AND PERSPECTIVES

The systematical extensive analysis of the problem of electromagnetic
wave scattering by periodic stripe grating backed with a layer of
metamaterial based on rigorous solution to the diffraction and spectral
problems is carried out. The characteristic association of micro
(metamaterial constructive elements, resulted in negative constitutive
parameters) and macro periodicity (metal stripe grating with period of
the scale of wavelength of incident wave) implemented in the structure
provided it with new type of electromagnetic properties that have been
thoroughly studied.

Analytical analysis of the problem and detailed numerical
investigation allowed finding out following features and regularities:

• The structure Fig. 1 is an open oscillating system characterized
by infinite number of eigen frequencies with finite accumulation
points at ω = ±ωp/

√
2, here ωp is characteristic frequency of

metamaterial, defined by elements it is composed of. Real parts of
these eigen frequencies are located within the interval (−ωp, ωp),
imaginary parts are negative (damped resonances, decaying with
time).

• In frequency interval (0, ωp), where Reε (ω) < 0, there is a discrete
set of values of normalized frequency κ, providing both of the
resonant regimes: The total reflection of incident field |T0| ≈ 0
and total transparency |T0| ≈ 1 of the structure.

These phenomena are rather promising for the construction of
electrically controlled compact super directive antennas and for
synthesis of frequency selective coatings.

We plan to continue to study this type of structures, and as a
following step we are going to consider anisotropic metamaterials and
after to optimize the geometrical configuration of the stripe grating
backed with anisotropic layer of metamaterial.
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