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Abstract—In this paper, a novel version of the transverse wave
approach (TWA) based on two-dimensional non-uniform fast Fourier
mode transform (2D-NUFFMT) is presented and developed for full-
wave analysis of RF integrated circuits (RFICs). An adaptive
mesh refinement is applied in this advanced TWA process and CPU
computation time is evaluated throughout 30 GHz patch antenna,
application belonging to wireless systems. The TWA in its novel
version is favorably compared with the conventional one in presence of
AMT technique in the context of EM simulations. Another version of
TWA is outlined to illustrate a computationally efficient way to handle
an arbitrary mesh for RFICs analysis with high complexity problems.
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1. INTRODUCTION

The good analysis of the numerical EM method TWA developed by our
group allows us to determine not only their strong points as already
mentioned in previous works [1, 2] but also their shortcomings. The
weakness of TWA can be observed at an EM simulation with high
precision, namely, the total number of pixels NT exceeds 218 cells
(NT = Mx × Ny = 512 × 512, 1024 × 1024, . . .); for this resolution,
the FFT algorithm imposes an enormous calculation which is slows
down the TWA process. Therefore, we should find efficient solution in
order to tackle this problem.

Taking a glance at spatial domain in presence of considered circuit,
we can notice for most applications a great loss stemming from the
unexploited important number of cells, mainly outside the circuit which
astoundingly increases the CPU time computation chiefly in TWA
process using ultrahigh resolution. Consequently, we propose as a
solution an adaptive mesh refinement only on the domain defining the
studied structure. This can be an efficient key to resolve the emphasized
problem. Yet, the discretization in the spatial domain becomes non-
uniform† and the working with conventional TWA becomes impossible
because the Fast Fourier Transform (FFT) which represents the spinal
column of our approach solely requires an equispaced (uniform) data.
Then, how could we overcome this difficulty?

In response to this question, we simply have to find a new Fourier
transform dealing with non-uniform grids for computation fulfilling the
two following conditions:

a. This novel Fourier transform has the possibility to process, unlike
the conventional FFT, both equispaced and non-equispaced data
which reduces for most applications the total number of pixels.

b. Keeping the same computational complexity as the conventional
FFT algorithm that is O (NT log NT ) so as to perform the forward
and inverse of this novel Fourier transform.
Based on great mathematical concepts and various scientific

researches, we develop, in this paper, the novel transform named
two dimensional Non-Uniform Fast Fourier Transform (2D-NUFFT)
straightforwardly ensuring the transition between spatial and
spectral (Fourier) domains taking into consideration the non-uniform
discretization in spatial domain, and its inverse 2D-INUFFT allowing
the passage from spectral domain to spatial one. The expansion of
these transforms (i.e., the forward transform and its inverse) show
that FMT (Fourier Mode Transform) and its inverse IFMT already
† Unlike the works presented in [1], the sizes of the cells constituting the air-dielectric
interface are, in this case, unequal.
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computed [1] can be associated directly to respectively 2D-NUFFT
and 2D-INUFFT to form the new transformations assuring the novel
pixel-mode transform and vice versa so-called two dimensional Non-
Uniform Fast Fourier Mode Transform 2D-NUFFMT and its inverse
2D-INUFFMT which constitutes the fundamental base of the advanced
TWA process.

A detailed description of the procedure explaining the mesh
handling adopted in the iterative process of this advanced method
TWA will be presented. This work will be, also, buttressed by an
application belonging to wireless systems already investigated in [1] in
order to show the efficiency of this advanced TWA method; moreover,
the simulation time with this advanced method can be more improved
by applying the AMT technique onto any considered analysis structure.

Far from the condition b. mentioned above, we conclude this
work by outlining on another version of TWA method based on two
dimensional Non-Uniform Discrete Fourier Transform (2D-NUDFT)
using matrix form. Such a method offers the possibility to apply a
special mesh on discontinuity surface that reduces considerably the
CPU time computation; but unfortunately, the handling of large
matrices makes TWA process slow enough which increases in turn
the simulation time and causes the method to lose their reliability,
trustworthiness and fastness. Therefore, fast multiplication matrices
using wavelets can be, for example, a good solution to resolve a problem
such as this and make TWA so-fast to prove its comparability with the
one based on 2D-NUFFMT in terms of computation time.

2. OVERVIEW ON FOURIER TRANSFORMS

Fourier techniques‡ have been a popular analytical tool in mathemat-
ics, mathematical physics and engineering for more than two centuries.
The usefulness of such techniques is related to the trigonometric func-
tions ejωx. These are eigenfunctions of the differentiation operator and
can be efficiently utilized to model solutions of differential equations
which arise in the fields mentioned above.

The discovery, popularization, and digital realization of fast
algorithms for Fourier analysis — so called FFT — have had far
reaching implications in science and technology in recent decades. The
scientific computing community has established Fourier analysis as a
‡ Fourier techniques or Fourier transforms provide a way to convert samples of a
standard time-series into the frequency domain. This provides a dual representation
of the function, in which certain operations become easier than in the time domain.
Their applications include filtering, image compression, convolution/deconvolution and
computing the correlation of functions; more details can be found in [6].
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powerful and practical numerical tool and regards the FFT as one of
the leading algorithmic achievements of the 20th century [3, 4].

In fact, Fast Fourier transform (FFT) has been enjoying
widespread applications in antennas, scattering, and computational
electromagnetics, as well as in signal and image processing and other
areas of computational science and engineering since Cooley and
Tukey [5] established, in the 1960s, a powerful algorithm for fast
calculation of Fourier transforms. Its algorithm provides an accurate
way to evaluate the discrete Fourier transform (DFT) of a sequence of
N uniformly spaced samples in O (N log N) time.

However, the urgent requirement of input data with not uniformly
(i.e., not equally) spaced, a condition that is required for the FFT, in
many practical situations implies the appearance of non-equispaced
(non-uniform) fast Fourier transform which is a generalization of the
fast Fourier transformation (FFT) for data located on non-equispaced
grids§. Indeed, the idea of non-uniform frequency sampling has helped
Scientifics’ engineers and researchers to solve problems encountered
in various applications chiefly in spectral processing [8, 9] and filter
design [10–12].

Hence, the NUFFT has recently been presented in several
applications in medical imaging. For instance, it is used in magnetic
resonance imaging (MRI) for reconstruction of data located on
spiral or radial trajectories [13, 14]; moreover, it can be found
in such applications such as astronomy [15], tomography [16–18],
ultrasound [19] and so forth.

The Fourier transform with non-uniformly sampled data can be
computed directly by its conventional definition, but their well-known
properties such as the orthogonality of exponential basis, symmetry
and so on are not generally valid and the FFT algorithm cannot
be applied in this case. To overcome this limitation, Dutt and
Rokhlin [20, 21], Beylkin [22] and Steidl [23, 24] studied the problem
of forward FFT for unequally spaced data. The results obtained
in [23, 24] provide high accuracies and fast calculation for nonuniform
FFT (NUFFT) in unidimensional problem.

In what follows, based on Dutt-Rokhlin interpolation method‖ [20]
and the theoretical background of diverse mathematical concepts, we
will develop the two-dimensional non-equispased fast Fourier transform
(2D-NUFFT) as well as its inverse in order to implement them
§ Overall, neither the speed nor the accuracy of the FFT can be duplicated in the case
of non-uniformly sampled data. Algorithms to evaluate the DFT for non-uniform data
typically employ an approximation scheme, with increased accuracy available at the cost
of increased execution time [7].
‖ Some errors are found in this method and corrected with the help of professors S. Adjerid
and D. Russell in the department of mathematics at Virginia tech.
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straightforwardly in our numerical EM method TWA¶.
It should be noted that finding the inverse of NUFFT is a very

difficult task. Therefore, up-to-now their existence is hardly absent in
literature (except the one investigated in [25, 42] in one dimensional
case or the one using the matrix form which will be presented later) in
view of their limitation or needlessness in most areas of computational
science and engineering.

We will also show that the computational complexity algorithms
of 2D-NUFFT as well as its inverse are equal to the one of the
conventional two-dimensional fast Fourier transform (2D-FFT).

3. TWO-DIMENSIONAL NON-UNIFORM FAST
FOURIER TRANSFORM (2D-NUFFT)

Given C = {Cmn}0≤m≤M−1
0≤n≤N−1

sequence of M × N complex numbers,

the two-dimensional Fourier transform as a general rule of discretely
sampled data of the transformation F : CM×N → CM×N is defined by
the following formulae:

F (C)k,l = h (xk, yl) =
∑

0≤m≤M−1
0≤n≤N−1

Cmn · ej(m·xk+n·yl) (1)

for k = 0, . . . ,M − 1 and l = 0, . . . , N − 1, where x = {x0, . . . , xM−1}
and y = {y0, . . . , yN−1} are both sequences of real numbers in [0, 2π].

We will consider throughout this section the two distinct sets of
points as follows:

In the first set: let
{

u
x0, . . . ,

u
xM−1

}
and

{u
y0, . . . ,

u
yN−1

}
be

sequences of equispaced real numbers in the interval [0, 2π] as:
{

u
xk = 2πk

M ; 0 ≤ k ≤ M − 1
u
yl = 2πl

N ; 0 ≤ l ≤ N − 1
(2)

where u designates the uniformity of input data (i.e., the data are
equally spaced).

In the second set: let
{

nu
x0, . . . ,

nu
xM−1

}
and

{nu
y0, . . . ,

nu
yN−1

}
be

sequences of non-uniformly spaced real numbers in the interval [0, 2π]
¶ We do not know hitherto any numerical EM method developed in literature which has
used NUFFT except the work presented by K. Y. Su and J. T. Kuo (see [26, 27]) who
incorporated the forward 2D-NUFFT into both method of moment (MoM) and spectral
domain approach (SDA) for analysis of microwave circuits and the work of Q. H. Liu
et al. [28] who applied the forward NUFFT and related fast transform algorithms to
numerical solutions of Maxwell’s equations in time and frequency domains.
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where nu indicates the non-uniformity of input data (i.e., unequally
spaced data).

Using (2) in (1), we obtain the two-dimensional inverse discrete
Fourier transform (2D-IDFT):

fk,l︸︷︷︸
Spatial domain

= h
(

u
xk,

u
yl

)
=

∑

0≤m≤M−1
0≤n≤N−1

Cmn︸︷︷︸
Frquencydomain

·ej
(
m· u

xk +n· uyl

)

(3)
for k = 0, . . . , M − 1 and l = 0, . . . , N − 1.

From (3), the forward 2D-DFT can be written as:

Cmn =
1

M ×N

∑

0≤k≤M−1
0≤l≤N−1

fk,l · e−j
(
m· u

xk +n· uyl

)
(4)

Let NT = M ×N be a total number of input data.
It is understandable that the 2D-FFT algorithm should be

employed in order to reduce the number of operations for 2D-DFT
from O

(
N2

T

)
to O (NT log NT ).

Furthermore, using the notation mentioned above for the non-
uniform case, (1) yields

gp,q︸︷︷︸
Spatial domain

= h
(

nu
xp,

nu
yq

)
=

∑

0≤m≤M−1
0≤n≤N−1

Cmn︸︷︷︸
Frquency domain

·ej
(
m·nu

xp +n·nu
yq

)

(5)
for p = 0, . . . , M − 1 and q = 0, . . . , N − 1.

The exponential base
{

e
j
(
m·nu

xk +n·nu
yl

)}

m,n

constitutes a non-

orthogonal basis+. Therefore, the inverse of (5) cannot be obtained
by simple ‘-’ sign introduced in exponential like conventional DFT.

We will seek a fast method ensuring the transition between spatial
and frequency domains in the case of non-uniformly sampled data; in
other words, a mathematical transformation which allows the quick
finding of the coefficients {Cmn}0≤m≤M−1

0≤n≤N−1
from {gpq}0≤m≤M−1

0≤n≤N−1
and

vice versa.

+

〈
e
j
(

m·nu
xk +n·nu

yl

) ∣∣∣∣ e
j
(

r·nu
xk +s·nu

yl

)〉
6= 0 for (m, n) 6= (r, s)
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Then, inserting (4) in (5) we obtain

gp,q =
∑

0≤m≤M−1
0≤n≤N−1

1
M ×N

∑

0≤m≤M−1
0≤n≤N−1

fk,l · e−j
(
m· u

xk +n· uyl

)
e
j
(
m·nu

xp +n·nu
yq

)

(6)
for p = 0, . . . , M − 1 and q = 0, . . . , N − 1.

This can be rewritten in reduced form as:

gp,q =
∑

0≤m≤M−1
0≤n≤N−1

Kp,q
k,l · fk,l (7)

for p = 0, . . . ,M−1 and q = 0, . . . , N−1, where the expression of Kp,q
k,l

for k, p = 0, . . . , M − 1 and q, l = 0, . . . , N − 1 is given by:

Kp,q
k,l =

1
M ×N

∑

0≤m≤M−1
0≤n≤N−1

e
jm

(
nu
xp− u

xk

)
·ejn

(
nu
yq − u

yl

)
(8)

Using the properties of sum, (8) can be expressed as:

Kp,q
k,l =

1
M ×N

[
M−1∑

m=0

(
e
j
(

nu
xp− u

xk

))m
]
·
[

N−1∑

n=0

(
e
j
(

nu
yq − u

yl

))n
]

(9)

Computing (9) while taking into consideration all possible cases
stemmed from the working out of two geometric series well-observed in
the expression of this equation and the properties of the exponential,
we obtain the following result:

Kpq
k,l =





Fp,q ·G(
nu
xp − u

xk)G(
nu
yq −

u
yl);

nu
xp 6= u

xk and
nu
yq 6=

u
yl

F̃p ·G(
nu
xp − u

xk);
nu
xp 6= u

xk and
nu
yq =

u
yl

Fq ·G(
nu
yq −

u
yl);

nu
xp =

u
xk and

nu
yq 6=

u
yl

1;
nu
xp =

u
xk and

nu
yq =

u
yl

(10)

for k, p = 0, . . . , M − 1 and q, l = 0, . . . , N − 1.
Where

F̃p =

(
eiM

nu
xp − 1
M

)
(11)



382 Ayari, Aguili, and Baudrand

Fq =

(
eiN

nu
yq − 1
N

)
(12)

Fp,q = F̃p · Fq (13)

G(t) =
1

eit − 1
; t 6= 0 (14)

Returning to (7), we notice that this equation offers the possibility
to effectively transform the coefficients defined with equispaced data
{fk,l} into the one with unequally data {gp,q}; {fk,l} coefficients can
be computed obviously from {Cm,n} coefficients according to (3).

The scheme depicted in Figure 1 summarizes the steps mentioned
above.

Figure 1. Transformation from spectral domain to spatial domain for
non-uniformly sampled data.

It should be noted that the speed of computation algorithm of
this transformation will be mentioned later. To ensure the transition
between spatial and spectral domain, we should fulfill the scheme
shown below:

Figure 2. Transition from spatial domain to spectral domain for non-
uniformly sampled data.

Rewriting (7) on the following form:

{gp,q} =
{

Kp,q
k,l

}
{fk,l} (15)

and {fk,l} coefficients can be expressed from (15) as follows:

{fk,l} =
{

Kp,q
k,l

}−1
{gp,q} =

{
Lk,l

p,q

}
{gp,q} (16)
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Find, hence,
{

Lk,l
p,q

}
?

Indeed, let {αij}0≤m≤M−1
0≤n≤N−1

be a sequence of complex number.

Further, let
{

x
ω0, . . . ,

x
ωM−1

}
,

{
y
ω0, . . . ,

y
ωN−1

}
,

{
x

Z0, . . . ,
x
ZM−1

}

and
{

y

Z0, . . . ,
y

ZN−1

}
be sequences of complex numbers defined by the

formulae:

x
ωk = ej

u
xk ;

y
ωl = ej

u
yl (17)

x
Zp = ej

nu
xp ;

y

Zq = ej
nu
yq (18)

for k, p = 0, . . . , M − 1 and q, l = 0, . . . , N − 1.
We suppose, according to (1) with translation, that





fk,l =
∑

−M
2
≤m≤M

2
−1

−N
2
≤n≤N

2
−1

αmn · ej
(
m· u

xk +n· uyl

)

gp,q =
∑

−M
2
≤m≤M

2
−1

−N
2
≤n≤N

2
−1

αmn · ej
(
m·nu

xp +n·nu
yq

) (19)

for k, p = 0, . . . , M − 1 and q, l = 0, . . . , N − 1.
Let the polynomial Pα be defined by the following formula:

Pα (u, v) =
∑

0≤m≤M−1
0≤n≤N−1

αm−M
2

,n−N
2
· um · vn (20)

The values of the polynomial Pα at the points
{

x
ωk,

y
ωl

}
to the

values at the points
{

x
Zp,

y

Zq

}
can be obtained by the interpolation

method. In literature, we have numerous methods that handle this kind
of interpolation belonging to the set of two dimensional interpolation
methods (see [29]). For the current problem, we selected the 2D-
Lagrange Interpolation Formula (2D-LIF) which is an extension of 1D-
LIF by applying on it a tensor product technique [30].

Therefore, the 2D-LIF relating the values of Pα at the points{
x
ωk,

y
ωl

}
to the values at the points

{
x

Zp,
y

Zq

}
can be expressed as
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follows:

Pα

(
x
ωk,

y
ωl

)
=

∑

p=1,...,M
q=1,...,N

Pα

(
x

Zp,
y

Zq

)
Lp,q

(
x
ωk,

y
ωl

)

=
∑

p=1,...,M
q=1,...,N

Pα

(
x

Zp,
y

Zq

)
Lp

(
x
ωk

)
L̃q

(
y
ωl

)
(21)

for k = 0, . . . , M − 1 and l = 0, . . . , N − 1.
Where

Lp (x) =
M∏

k=1
k 6=p


 x−

x
Zk

x
Zp−

x
Zk


; p ∈ [[1, . . . , M ]] (22)

L̃q (x) =
N∏

k=1
k 6=q


 x−

y

Zk
y

Zq −
y

Zk


; q ∈ [[1, . . . , N ]] (23)

Lp,q (x, y) = Lp (x) · L̃q (y) (24)

for p = 1, . . . , M and q = 1, . . . , N .
The numerator of (22) at points

{
x
ωk

}
; k ∈ [[1, . . . , M ]] is given

by:
M∏

i=1
i6=p

(
x
ωk−

x
Zi

)
=

M∏

i=1
i6=p

(
ej

u
xk − ej

nu
xi

)
(25)

With the fact that
{

X =
(

X+Y
2

)
+

(
X−Y

2

)
Y =

(
X+Y

2

)− (
X−Y

2

)
}

, (25) becomes

M∏

i=1
i6=p

(
x
ωk−

x
Zi

)
=

M∏

i=1
i6=p

e
j
(

u
xk +

nu
xi

)/
2
(

e
j
(

u
xk − nu

xi

)/
2 − e

−j
(

u
xk − nu

xi

)/
2
)

(26)
Using the trigonometric properties, (26) yields:

M∏

i=1
i6=p

(
x
ωk−

x
Zi

)
= 2j × ej

(M−1)
u

xk
2

M∏

i=1
i6=p

(
ej

nu
xi
2 · sin

((
u
xk− nu

xi

)/
2
))

(27)
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From (17) and (18), we get

M∏

i=1
i6=p

(
x
ωk−

x
Zi

)
= 2j× x

ωk
(M−1

2 )
M∏

i=1
i6=p

(
x
Zi

1/2

· sin
((

u
xk − nu

x i

)/
2
))

(28)

Replacing
x
Zp and

nu
x p respectively by

x
ωk and

u
xk in (27), we, hence,

obtain
M∏

i=1
i6=p

(
x

Zp−
x
Zi

)
= 2j × ej

(M−1)
nu
x p

2

M∏

i=1
i 6=p

(
ej

nu
x i
2 · sin

((
nu
x p − nu

x i

)/
2
))

(29)
And also from (18), we get

M∏

i=1
i6=p

(
x

Zp−
x
Zi

)
= 2j ×

x
Zp

(M−1
2 )

M∏

i=1
i6=p

(
x
Zi

1/2

· sin
((

nu
xp− nu

xi

)/
2
))

(30)

In the same way, we have

M∏

i=1
i 6=p

(
y
ωl−

y

Zi

)
= 2j × y

ωl
(M−1

2 )
M∏

i=1
i6=p

(
y

Zi

1/2

· sin
((

u
yl− nu

yi

)/
2
))

(31)

M∏

i=1
i6=q

(
y

Zq −
y

Zi

)
= 2j ×

y

Zq
(M−1

2 )
M∏

i=1
i6=q

(
y

Zi

1/2

· sin
((

nu
yq − nu

yi

)/
2
))

(32)

From (28) and (30), (22) at points
{

x
ωk

}
; k ∈ [[1, . . . , M ]] becomes:

Lp

(
x
ωk

)
=

M∏
i=1
i6=p

(
x
ωk−

x
Zi

)

M∏
i=1
i6=p

(
x

Zp−
x
Zi

) =
x
ωk

(M−1
2 )

x
Zp

(M−1
2 )

︸ ︷︷ ︸
1st term

×
M∏

i=1
i6=p

sin
((

u
xk− nu

xi

)/
2
)

sin
((

nu
xp− nu

xi

)/
2
) (33)

The calculation of the 1st term of (33) is given as follows:

x
ωk

(M−1
2 )

x
Zp

(M−1
2 )

=




x
ωk
x

Zp




M/2

· x
ωk

−1/2 ·
x

Zp

1/2

(34)
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Using (17) and (18), we get:

x
ωk

(M−1
2 )

x
Zp

(M−1
2 )

=




x
ωk
x

Zp




M/2

· e−j
(

u
xk − nu

xp

)/
2 (35)

Inserting (35) in (33), we obtain

Lp

(
x
ωk

)
=




x
ωk
x

Zp




M/2

· e−j
(

u
xk − nu

xp

)/
2 ×

M∏

i=1
i 6=p

sin
((

u
xk− nu

xi

)/
2
)

sin
((

nu
xp− nu

xi

)/
2
) ;

k, p ∈ [[1, . . . , M ]] (36)

For
u
xk 6= nu

xp ∀k, p ∈ [[1, . . . , M ]], (36) can be rewritten as:

Lp

(
x
ωk

)
=




x
ωk
x

Zp




M/2

· e
−j

(
u
xk − nu

xp

)/
2

sin
((

u
xk− nu

xp

)/
2
) ·

M∏
i=1

sin
((

u
xk− nu

xi

)/
2
)

M∏
i=1
i 6=p

sin
((

nu
xp− nu

xi

)/
2
) ;

k, p ∈ [[1, . . . ,M ]] (37)

Or,

e
−j

(
u
xk − nu

xp

)/
2

sin
((

u
xk− nu

xp

)/
2
) =

cos
((

u
xk− nu

xp

)/
2
)
− j sin

((
u
xk− nu

xp

)/
2
)

sin
((

u
xk− nu

xp

)/
2
)

= cot

(
u
xk− nu

xp

2

)
− j (38)

Therefore for
u
xk 6= nu

xp; k, p ∈ [[1, . . . , M ]] and
u
yl 6= nu

yq; l, q ∈
[[1, . . . , N ]], the general expressions of Lp (x) and L̃q (x) at, respectively,

the points
{

x
ωk

}
; k ∈ [[1, . . . , M ]] and the points

{
y
ωl

}
; l ∈ [[1, . . . , N ]]

are given as follows:

Lp

(
x
ωk

)
=




x
ωk
x

Zp




M/2

·
[
cot

(
u
xk− nu

xp

2

)
− j

]
·

M∏
i=1

sin
((

u
xk− nu

xi

)/
2
)

M∏
i=1
i6=p

sin
((

nu
xp− nu

xi

)/
2
) ;

k, p ∈ [[1, . . . , M ]] (39)
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and

L̃q

(
y
ωl

)
=




y
ωl
y

Zq




N/2

·
[
cot

(
u
yl− nu

yq

2

)
− j

]
·

N∏
i=1

sin
((

u
yl− nu

yi

)/
2
)

N∏
i=1
i6=q

sin
((

nu
yq − nu

yi

)/
2
) ;

l, q ∈ [[1, . . . , N ]] (40)

And the expression of Lp,q (x, y), at the points
{

x
ωk,

y
ωl

}
in the case of

u
xk 6= nu

xp and
u
yl 6= nu

yq for k, p = 1, . . . ,M and l, q = 1, . . . , N , becomes:

Lp,q

(
x
ωk,

y
ωl

)
=

x
ωk

M/2 · y
ωl

N/2 ·
x

Zp

−M/2

·
y

Zq

−N/2

· ck,l · dp,q

·
[
cot

(
u
xk− nu

xp

2

)
− j

]
·
[
cot

(
u
yl− nu

yq

2

)
− j

]
(41)

where

ck,l = ck × cl =

[
M∏

i=1

sin
((

u
xk− nu

xi

)/
2
)]

︸ ︷︷ ︸
ck

×
[

N∏

i=1

sin
((

u
yl− nu

yi

)/
2
)]

︸ ︷︷ ︸
cl

(42)
and

dp,q =dp × dq =




M∏

i=1
i 6=p

1

sin
((

nu
xp− nu

xi

)/
2
)




︸ ︷︷ ︸
dp

×




N∏

i=1
i 6=q

1

sin
((

nu
yq − nu

yi

)/
2
)




︸ ︷︷ ︸
dq

(43)
Returning to (21), it yields

Pα

(
x
ωk,

y
ωl

)
=

x
ωk

M/2 · y
ωl

N/2 · ck,l ×
∑

p=1,...,M
q=1,...,N

[
Pα

(
x

Zp,
y

Zq

)
x

Zp

−M/2

·
y

Zq

−N/2

· dp,q · U
(

u
xk− nu

xp

)
· U

(
u
yl− nu

yq

)]
(44)

for k = 1, . . . , M and l = 1, . . . , N where

U (t) = cot
(

t

2

)
− j (45)
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Also, U (t) can be written as function of G (t); indeed,

U (t) = cot
(

t

2

)
− j = j

(
ej t

2 + e−j t
2

)
(
ej t

2 − e−j t
2

) − j

=
j
(
ejt + 1

)

(ejt − 1)
− j =

2j

ejt − 1
(46)

Referring to (14), we have

U (t) = 2jG (t) (47)

Further, from (20), the values of the polynomial Pα at the points{
x

Zp,
y

Zq

}
for p = 1, . . . , M and q = 1, . . . , N are given as follows:

Pα

(
x

Zp,
y

Zq

)
=

∑

0≤m≤M−1
0≤n≤N−1

αm−M
2

,n−N
2
·

x
Zp

m

·
y

Zq

n

=
x

Zp

M/2

·
y

Zq

N/2

·
∑

−M
2
≤m≺M

2

−N
2
≤n≺N

2

αm,n ·
x

Zp

m

·
y

Zq

n

(48)

Employing (19) in (48), we obtain

Pα

(
x

Zp,
y

Zq

)
=

x
Zp

M/2

·
y

Zq

N/2

· gp,q (49)

In the same way and referring to (19) and (20), the values of Pα

at the points
{

x
ωk,

y
ωl

}
for k = 1, . . . , M and l = 1, . . . , N are given by:

Pα

(
x
ωk,

y
ωl

)
=

x
ωk

M/2 · y
ωl

N/2 · fk,l (50)

Using the equations (47), (49) and (50) in (44), we obtain

fk,l = −4ck,l ×
∑

p=1,...,M
q=1,...,N

[
dp,q ·G

(
u
xk− nu

xp

)
·G

(
u
yl− nu

yq

)]
gp,q (51)

for k = 1, . . . , M and l = 1, . . . , N .
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And without translation, this becomes

fk,l = c̃k,l ×
∑

p=1,...,M
q=1,...,N

[
d̃p,q ·G

(
u
xk− nu

xp

)
·G

(
u
yl− nu

yq

)]
gp,q (52)

where

c̃k,l = −4 · ck,l · ej
M× u

xk
2 · ej

N×u
yl

2 (53)

d̃p,q = dp,q · e−j
M×nu

xp
2 · e−j

N×nu
yq

2 (54)

Until now, the calculations of {fk,l}0≤k≤M−1
0≤l≤N−1

as function of

{gp,q}0≤p≤M−1
0≤q≤N−1

have been done only for the case of
u
xk 6= nu

xp and

u
yl 6= nu

yq; therefore, we will give below its general expression taking
into consideration all different cases.

Besides, adopting the form presented in (7) as well as the notations
utilized in (1) up to (3) and using the Equations (19) up to (21), we
obtain with the required translations:

fk,l =
∑

p=0,...,M−1
q=0,...,N−1

Lk,l
p,q · gp,q (55)

for k = 0, . . . , M − 1 and l = 0, . . . , N − 1 where

Lk,l
p,q =





ζk,l · ςp,q ·G
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x p

)
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)
;

nu
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xk and
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(

u
xk − nu

x p

)
;
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xk and
nu
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u
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(

u
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x p

)
;

nu
x p =

u
xk and

nu
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u
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/̃ζk · ζ̃l · \̃ςp · ς̃q;
nu
x p =

u
xk and

nu
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u
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(56)
With

G(t) =
1

eit − 1
; t 6= 0 (57)

ζk,l = /ζk × ζl


2i (−1)k

M∏
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x j

2

)


︸ ︷︷ ︸
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×

2i (−1)l

N∏

j=1

sin

( u
yl − nu

yj

2

)


︸ ︷︷ ︸
ζl

(58)

ςp,q = \ςp × ςq =

(
e
−iM

nu
x
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2 .\̃ςp

)

︸ ︷︷ ︸
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/̃ζk =
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j=1
j 6=p

sin

( u
xk − nu

x j

2

)
, \̃ςp =

M∏

j=1
j 6=p

1

sin
(

nu
x p−nu

x j

2

) , (60)

ζ̃l =
N∏

j=1
j 6=q

sin

( u
yl − nu

yj

2

)
, ς̃q =

N∏

j=1
j 6=q

1

sin
(

nu
y q−nu

yj

2

) (61)

In this stage, the scheme shown in Figure 2 has been well-fulfilled.
The standard algorithms∗ ensuring the computation of Equa-

tions (7) and (55) require each one to be over than O
(
N2

T

)
(NT =

M × N) in terms of computational complexity. For that reason, we
should find a fast method which permits the reduction of the com-
putational complexity of these algorithms in order to accelerate the
transition between spatial and spectral domains.

The best solution of this dilemma can be obtained by the
well-known Fast Multipole Method (FMM)] [4, 31–34] which helps
to compute the equations mentioned earlier in O (NT log NT ) time.
Combining the FMM with 2D-LIF, the transition between the
coefficients defined with equispaced data {fk,l} and the one with
unequally data {gp,q} will be called, henceforth, two-dimensional fast
interpolation transform (2D-FIT).

With the efficiency of the FFT algorithm in terms of the
computational complexity, the transformation between spatial and
Fourier domains can be, therefore, obtained in O (NT log NT ) time
while taking into consideration the non-uniformly input data. This
transformation constitutes the 2D-NUFFT.

Figure 3 and Figure 4 summarize how the 2D-NUFFT and 2D-
INUFFT were built.
∗ We will assume that these algorithms are chosen without any fast procedures.
] This method has been applied already to Finite Element Method for investigation of
large scattering problems [35].
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Figure 3. Scheme of 2D-non-uniform fast fourier transform.

Figure 4. Scheme of 2D-inverse non-uniform fast fourier transform.

4. 2D-NUFFMT AND TWA IN NOVEL VERSION

Based on the results obtained in the previous section, we can deduce
that the presence of FFT and IFFT in, respectively, 2D-NUFFT and
its inverse allows us to straightforwardly apply the FMT and IFMT
(already developed in [1]) respectively.

The combination between these components (2D-NUFFT+FMT
and 2D-INUFFT+IFMT) forms a novel transformations so-called two-
dimensional non-uniform fast Fourier mode transform (2D-NUFFMT)
and its inverse 2D-INUFFMT which constitute together the central
component of the novel version of TWA method. The figure depicted
in Figure 5 illustrates the different transformations from spatial domain
to modal domain of vector V defined on non-uniform discretization and
gives a panorama upon TWA process in its novel version††.

5. THE ADOPTED FORMALISM ON THE MESH IN
TWA+ PROCESS

It is clear that the definition of meshing resolution represents one of
the strongest parameters which allow us to conclude on the speediness
of TWA process.
††To differentiate from its conventional version, the novel TWA based on 2D-NUFFMT
will be called the advanced TWA and abbreviated by TWA+.



392 Ayari, Aguili, and Baudrand

Figure 5. General prospect on 2D-NUFFMT and its inverse.

Therefore, it is important to carefully define, in TWA+ process,
the total number of cells characterizing the air-dielectric interface. This
can be achieved, whatsoever the type of mesh is used (i.e., equally
or unequally input data), by adopting a meshing effective technique
(MET) in TWA+ code. In what follows, we will illustrate, throughout
example of simple planar structure, the different steps constituting the
appropriate procedure based on MET during its implementation in
TWA+ code.

5.1. Setp1

Initially, we should start with a suitable total number of pixels M ×N
defining the discontinuity surface such as these cells are uniform as
used in conventional TWA process. It should be noted that the meshing
resolution must be in good quality in order to obtain a rigorous analysis
of any considered circuit. Figure 6 exhibits an example of patch
antenna studied with two different uniform mesh: 16×16 (Figure 6(a))
and 64× 64 (Figure 6(b)). The latter resolution is preferred and taken
in this first step for TWA+ process as well as in full-analysis using
conventional TWA.

5.2. Setp2

Next and during the execution of TWA+ code, the total number of
pixels M ×N is modified and the discretization becomes non-uniform
(This option is absent in conventional TWA process.) by applying the
refinement mesh only on the surface defining the analysis circuit. This
allows an important reduction on total number of cells while keeping
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(a) (b)

Figure 6. Planar structure studied with two different uniform meshes:
16× 16 ((a)) and 64× 64 ((b)).

a good resolution for simulation. The example below clarifies this
step. Indeed, applying the mesh only on the patch antenna shown in
Figure 6(a) by adopting the resolution presented in Figure 6(b), we
obtain a good resolution with a minimum total number of pixels as
depicted in Figure 7.

However, three mesh categories have been applied: the first
represents a refinement uniform mesh on the surface characterizing
the considered circuit (i.e., application of small uniform pixels on the
circuit’s domain) given by zone 1, the second defines other uniform
mesh-size as shown in zone 2, and the last delineates a regular mesh
everywhere else (i.e., outside the circuit’s domain) as depicted in
zone 3. Form this, a discontinuity of cells (i.e., sudden change between
two different cells mainly on the region close to circuit’s domain) is
observed as shown in Figure 7. Such can affect the good analysis of
considered circuit.

5.3. Setp3

In order to tackle the problem mentioned earlier, we propose an
adaptive refinement mesh allowing a suitable graduation on the mesh
in the change from small pixel to another greater essentially in the
regions close to circuit’s domain so as to avoid the sudden change
between pixels as shown in Figure 8. The density of non-uniform
cells in this case becomes important compared to the one presented
in previous step.
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Figure 7. Refinement mesh
only on the surface defining the
analysis circuit and discontinuity
of cells.

Figure 8. Adaptive refinement
mesh applied to analysis struc-
ture.

Figure 9. Adaptive refinement
mesh applied to analysis struc-
ture.
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Figure 10. S11 of 30GHz
patch antenna by three different
versions of TWA method.

5.4. Setp4

To this end, the final total number of pixels considered for TWA+

process must be an integer to the power of 2. Therefore, combining
the adaptive refinement mesh with AMT technique mentioned already
in [1], we implement a sub-procedure making sure that the total
number of cells in x as well as in y is always an integer to the power of 2
before full-wave analysis of the considered circuit. The following figure
shows the final mesh considered in TWA+ process for investigation of
patch antenna.

It is remarkable that the total number of pixels presented in
Figure 6(a) is equal to the one depicted in Figure 9. Yet, an important
gap can be observed between them in the quality of simulations results.
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Figure 11. Well configured arbitrary meshing for 2D-NUDFT
algorithm.

6. APPLICATION EXAMPLE FOR WIRELESS
SYSTEMS

In order to show the efficiency of our work developed above, the 30 GHz
patch antenna used in wireless applications already investigated in [1]
has been considered as application example for full-wave analysis
taking into consideration their geometric and modeling parameters
given in Table 2 presented also in [1].

On the one hand, pick up again the results obtained in [1] related
to the return loss for the 30GHz patch antenna. This antenna
was simulated by both conventional TWA with and without AMT
technique adopting, respectively, as meshing resolution 256 × 256
and 16 × 256 and the obtained simulation results have shown a full
agreement between them. So, a considerable gain in CPU computation
time has been achieved for conventional TWA with AMT compared to
the one without AMT.

On the other hand, we run the considered 30 GHz patch antenna
on TWA+ code. It should be noted that the final total number of non-
uniform pixels chosen for implementation is 8 × 64. The simulation
result characterizing the evolution of S11 parameter in decibel versus
frequency (i.e., return loss) is favorably compared (error 0.5% approx.)
to the result obtained with ‘conventional TWA with AMT’ as depicted
in Figure 10.
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Furthermore, the execution time in TWA+ process for the
simulation of this antenna is almost seven times faster than the
consumed time in conventional TWA process where the AMT
technique is applied in both cases.

7. CONCLUSION

In this paper, an advanced TWA (TWA+) based on two-dimensional
non-uniform fast Fourier mode transform has been presented,
developed and successfully implemented for full-wave investigation
of microwave structure. A detailed description of the procedure
explaining the mesh handling adopted in TWA+ process has been
presented. The obtained simulation results for applications belonging
to wireless systems have been favorably compared showing the
efficiency and the speediness of TWA+ compared to the conventional
TWA even if in presence of AMT technique in the context of EM
simulations.

Further, this work can be improved by the implementation of
a fast parallel algorithm computing the non-equispaced fast Fourier
transform on commodity graphics hardware (the GPU). This can be
achieved by referring to [36].

Although their efficacy and rapidity, TWA+ method presents
some shortcomings mainly at the manipulation of mesh on the surface
discontinuity. Indeed, the arbitrary mesh which is a significant
parameter in CPU computation time cannot be treated with this
method. For that reason, the two-dimensional non-uniform discrete
Fourier transform (2D-NUDFT) in matrix form can be implemented
in TWA process offering the possibility to handle this meshing with
suitable configuration according to the studied circuit as depicted in
Figure 11. Referring to [25], the 2D-NUDFT for the well configured
arbitrarily meshing can be accomplished by an extension of the studied
case ‘Non-uniform Sampling on Parallel Lines’ presented in the latter
reference following the structure shown in Figure 11. Vandermonde
matrices [37] must be manipulated in this case in order to find the
inverse of 2D-NUDFT easily. To this end, the existence of very large
matrices which may make TWA very slower allows us to call some fast
algorithms such as Fast Multi-resolution Algorithms for Matrix-Vector
Multiplication [38], Fast Matrix Multiplication Algorithms [39] and
Fast Multiplication of larges matrices using wavelets [40, 41] in view of
the much presence of the sparse matrices (large matrices with a high
percentage of zero-valued elements) in the RFIC applications.
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