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Abstract—In this paper, models of metallic absorbers for electromag-
netic waves in the infrared to microwave frequency range are reported
and discussed. The Hadley’s formalism (1D model) of transmission,
reflection and absorption for semi-infinite layers, which allows to de-
sign all configurations of unstructured absorber films and dielectrics is
generalized. To make the micro-fabrication of the metallic absorbers
easier (that means to have layers thick enough), the metallic layers
need to be structured (grid for example). We developed a model that
allows us to consider the structure of metal as a homogeneous layer,
where the diffraction is negligible. This new layer can be used with the
previous model. When diffraction effects must be taken into account,
we modified an electrical model made by Ulrich. We further developed
it for the configuration of a dielectric before the metallic grid. The re-
sults showed the importance to take into account all the dimensions of
the grid, the dielectric layer parameters and the wavelength to design
the best absorber.

1. INTRODUCTION

One way to detect electromagnetic waves in the infrared to microwave
frequency range is to use a bolometer. This sensor converts the energy
of an electromagnetic wave to heat, which is then transformed to an
electrical signal. Bolometers are made of two main parts: An absorber
and a thermal sensor. The absorber converts the incident wave into
thermal energy by ohmic effect. Metal films can be used as absorbers
for infrared and millimeter-wave radiations [1–3]. The best absorption
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properties are however obtained for very thin metal films, e.g., of the
order of a few nanometer, which is generally difficult to achieve, from
a fabrication point of view. A solution initially proposed by Bock et al.
is to structure the otherwise homogeneous metal film [6]. By way of
explanation, they quote the work of Ulrich [5]. However, this study
concerned the filters and not the absorbers. This method has then
been experimentally implemented [7, 8], but the design of the absorber
usually relies on empirical experimentations.

The conception of such structured absorbers is usually based on
empirical experimentations. The aim of this paper is to propose a
model of such structured metallic absorbers that allows to understand
the phenomena and can be used to facilitate their design.

2. SUPPORTED METAL FILM

Several models exist to calculate the absorption, transmission and
reflection of a plane-wave through homogeneous semi-infinite media.

Hadley and Dennison [1] presented a formalism for a single
metallic layer and for interference filters constituted by metal-
dielectric-metal layers, for which the thickness of the second metal
is the same as the first one for transmission filters or thick enough to
act as a mirror for reflection filters. In the case of unsupported metallic
films, they showed that the maximum absorption is 50% of the incident
power.

Hilsum [2] simplified the absorption’s formulation in the case of
normal incidence. For unsupported film, the power absorption, AH , is
then:

AH =
4f

(f + 2)2
(1)

In this formulation, f is the ratio of free space impedance to the
resistance per square of the film. It was defined as Z0σs, where σ
and s are, respectively, the conductivity and thickness of the metal.
The impedance of vacuum is noted Z0 and is equal to 377 Ω. Since
an unsupported metal film in air is difficult to fabricate, Hilsum [2]
considered the addition of a dielectric substrate with or without
another metal film with the same thickness as the first one. He showed
that the dielectric film allows to obtain an absorption of at least 70%.

Silberg [3] reported a generalization of Hilsum’s problem with
the second metallic film exhibiting an arbitrary thickness. Thus,
absorption rates greater than 95% could be obtained.

The analytical solutions obtained by these models allow to
calculate the best thickness of the different layers. We will now propose
a generalization for all the possible configurations.
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Figure 1. Representation and notation used for specifying the p media
and incident, reflected, and transmitted waves.

Let us consider the one dimensional system with p media as shown
in Figure 1, using the same formalism as previously.

The system is in air, therefore the first and last media have a
refractive index n1 = np equals to unity. The considered media can be
dielectrics with a refractive index nq or metal films with a conductivity
σq, an index of refraction ηq and an extinction coefficient κq, with the
approximation:

ηq = κq =
√

σq

2ωε0
(2)

with ω the pulsation of the wave. The propagation constant kq noted
kqd in the case of a lossless dielectric and kqm for metallic media:

kqd =
2πnq

λ
(3)

kqm =
2π (ηq + jκq)

λ
(4)

with λ the wavelength in vacuum. The interface between two media
q and q + 1 is at the abscissa x = xq. This abscissa is taken as the
phase reference of the propagating (incident and reflected) waves in
the medium number q + 1. The first medium is an exception since its
phase reference is x = x1.

Like Hadley [1], we suppose the continuity of tangential electrical
and magnetic fields. For the electrical field, it is always true. For the
magnetic field, it is true only when volume currents are considered
without surface currents. In the case of the system represented in
Figure 1, the boundary conditions at the interface x = xq are, for
normal incidence:

Eiqe
jkqx + Erqe

−jkqx = Ei(q+1) + Er(q+1) (5)

Eiqe
jkqx − Erqe

−jkqx =
nq+1

nq

(
Ei(q+1) − Er(q+1)

)
(6)
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Therefore, we obtain:

Eiq =
e−jkqtq

2

[(
1 +

nq+1

nq

)
Ei(q+1) +

(
1− nq+1

nq

)
Er(q+1)

]
(7)

Erq =
ejkqtq

2

[(
1− nq+1

nq

)
Ei(q+1) +

(
1 +

nq+1

nq

)
Er(q+1)

]
(8)

with tq = xq − xq−1.
The power transmission coefficient T is given by EipE

∗
ip/Ei1E

∗
i1,

the power reflection coefficient R by Er1E
∗
r1/Ei1E

∗
i1, and the power

absorption coefficient A by 1−R− T .
By taking Eip equals to unity, the series defined by Equations (7)

and (8) allow to calculate Ei1 and Er1, then T , R and A. This method
allows the prediction of the absorption, transmission and reflection for
all the configurations with the assuming infinitely plane layers and
with normal incident waves (these equations can be easily modified in
non-normal incidence but will not be discussed here).

As predicted by the analytical solutions for the simple cases
described above, an unsupported metallic film absorber should have
a surface impedance of 188.5Ω to allow for the greatest absorption.
The thickness of such a film would be very small. For instance, with a
resistivity ρ = 54µΩ· cm, the thickness is less than 3 nm. Furthermore,
the maximum power absorption coefficient is 50%. By adding of a
dielectric film, it is possible to have 85% of absorption with a thicker
metallic film. But again remember that the manufacturing process of
these metal films is difficult. A possibility to overcome this problem is
to use a structured metal absorber.

3. ABSORPTION OF STRUCTURED METAL LAYERS

The absorbers previously described are hardly feasible due to their
thickness. Several authors [6–8] overcame this problem by structuring
their metallic absorbers. Bock et al. [6] based their conception
on Ulrich’s models [5]. Ulrich studied grids for filter applications:
Transmissive grids are called capacitive grids, and reflective grids
are called inductive grids. These names were chosen since he used
equivalent inductive and capacitive electrical circuit representations
where the different parameters were fitted to his measures.

The inductive grids are presented in Figure 2(a). According to
Ulrich the electrical field is continuous across the grids, and the profile
of the current, localized in the skin depth in both sides of the metal,
is symmetric.
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Figure 2. (a) Inductive grid; (b) inductive line (linearly polarized
wave along the X direction).

Contrary to Ulrich, we used an asymetric current profile, which
follows an exponential decrease across the grid. This exponential
decrease is governed by the equivalent skin depth parameter δeq, which
is different from the intrinsic skin depth of the metal δ. It also depends
on the metal conductivity σ and on the geometry of the grid. We will
initially assume that the pitch g is very small compared to wavelength
λ and that the grid is placed in free space. We also consider a linearly
polarized wave along the vertical lines of the grid that is to say along
the X direction. Since g ¿ λ, diffraction effects are neglected. This
system has a complex reflective coefficient of the electrical field Γ and
a complex transmission coefficient Λ.

3.1. Absorption of Inductive Lines

First, we will consider the inductive line geometry, presented in
Figure 2(b). For the sake of simplicity, we suppose a progressive plane
wave with no reflection on the second interface. The absorption is due
to the current in the metallic structure by Joule effect. The volume
density current Jx (along the X direction) has an exponential decrease
as supposed before:

Jx = σE = J0e
−z
δeq e

−jz
δeq e−jωτ (9)

with τ the time and z the position, with z = 0 corresponding to the
first interface.

The difference of the magnetic fields Hy on the two interfaces of the
metallic structure (z = 0 and z = tgrid) is proportional to the incident
magnetic field Hi. Furthermore, it depends on the complex reflective
coefficient Γ (for the electrical field, -Γ for the magnetic field) and on
the complex transmission coefficient Λ of the system. This difference is
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due to the volume density current Jx as predicted by Maxwell-Ampere
law:

Hy(tgrid)−Hy(0) = (Λ− (1− Γ))Hi = −1
η

∫ tgrid

0
Jxdz (10)

η is a dimensionless form-factor equal to g/2a. If we consider the
approximation Λ = 1 + Γ (continuity of the electrical tangential field,
which can be used when the metal thickness is much smaller than the
equivalent skin depth, which will be introduced later).

2ΓHi = −1
η

∫ tgrid

0
jxdz (11)

With the Equations (9) and (11), we can easily determine the
current density J0.

J0 =
2ΓHilη(1 + j)

δeq

(
e
−(1+j)tgrid

δeq − 1
) (12)

From Equations (9) and (12), the surface dissipated power by
Joule effect Pd is:

Pd =
1
g2

∫∫∫
1
σ
<(Jx)2dV

τ

=
δeq

4ση
|J0|2

[
1− e

−2tgrid
δeq

]
(13)

<(Jx) is the real part of Jx, τ corresponds to the time average.
The absorption A is the ratio of dissipated Pd to incidence Pi

surface power.

A =

4η
δeqσ

|Γ|2
Z0

[
1− e

−2tgrid
δeq

]

1 + e
−2tgrid

δeq − 2e
−tgrid

δeq cos
(

tgrid

δeq

) (14)

We consider an equivalent homogeneous material of the inductive
line, characterized by an equivalent conductivity.

σeq =
σ

η
(15)

The equivalent skin depth of this equivalent homogeneous material
is:

δeq =

√
2

ωσeq µ
(16)
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Figure 3. Comparison of the
ratio absorption to reflection as a
function of the grid thickness (a)
analytical results from our model
and (b) 2-dimensional numerical
results obtained with COMSOL
MULTIPHYSICS software for an
inductive line characterized by
λ/g = 10 and η = 10.
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Figure 4. Comparison for un-
supported metal between (a) an-
alytical results come from our de-
veloped model for a metallic film
with an equivalent conductivity
σeq = σ/η and (b) 2-dimensional
numerical results obtained with
COMSOL MULTIPHYSICS soft-
ware for an inductive line charac-
terized by λ/g and η. Numerical
values: λ/g = 100, η = 10 and σ
= 1851851 Ω−1·m−1.

With titanium’s bulk characteristic, the equivalent skin depth
parameter δeq equals 676.7 nm when η is 10. Note that the intrinsic
skin depth of the metal δ is 214 nm.

To validate this model, numerical simulations using COMSOL
MULTIPHYSICS RF module were performed in two dimensions.
Boundary conditions were used to have a plane-wave. λ was taken
equal to one hundred micrometers. Different ratios λ/g and g/2a were
taken as parameters and the thickness tgrid of the grid as the variable.
We used titanium with its bulk characteristics. Figure 3 shows a
comparison between our model (Equation (14)) and the simulation
results. Model and simulations are in complete agreement.

This equivalent homogeneous material can be used in the
configuration of the previous paragraph. In this case, the thickness of
this equivalent homogeneous material is multiplied by the g/2a ratio
to have the same absorption as for the metallic film. Figure 4 shows
the comparison between our model (Equation (16) combined with our
algorithm presented in paragraph II) and the simulation results.

Our model is therefore validated by simulation results. This
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model is all the better as g/λ is the more negligible. This model
remains valid as long as g/λ ratio is smaller than 0.1. Above this
value, it overestimates absorption with an error of 4% compared to the
simulations. Furthermore, in the particular case of η close to unity, we
find the results predicted for homogeneous metal films.

Note that contrary to Ulrich, the thickness of the metal is
important. The main reason is that Ulrich used very thick grids.

Our model allows for the conception of the inductive lines with
small errors if the ratio g/λ is small. In order to be able to consider
any (arbitrary) polarizations, grids are used instead of lines.

3.2. Inductive Grid Absorption

We now consider the inductive grid, presented in Figure 2(a). We
realize this study in the same conditions as for the inductive line with
the same hypothesis. For an elementary crossed line in the Y direction,
we suppose that the current density Jz in the metal is described in
Equation (17).

Jz = J0 sin
(

2π

(
xs + a

λ

))
(17)

xs corresponds to the position in the horizontal line numbered s, with
xs between −a and a.

The dissipated power Pd is now the sum of Pd1 and Pd2, with Pd1

the dissipated power in the vertical line and Pd2 the dissipated power
in the rest of the structure (horizontal line). Pd1 corresponds to the
dissipated power described in the last paragraph for inductive line.

The same type of calculation as before leads to an equivalent ho-
mogeneous material with the conductivity σeq given by Equation (18).

σeq = σ

[
2a

g
+

g − 2a

g2

(
a− λ

sin(4πa/λ)
4π

)]
(18)

Note that Pd2 is usually far smaller than Pd1.
With this equivalent media, we can determine the optimum

thickness of the grid to have the highest absorption with the one-
dimension model presented before. It is now possible to design
unsupported grid with a dielectric layer to increase absorption.

4. ELECTRICAL MODEL

Our model allows for the design of grids with ratios g/λ smaller
than 0.01 with negligible errors. However, technology limits g/λ and
g/2a ratios. Therefore diffraction effects must be taken into account.
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Figure 5. Equivalent circuit
for thin inductive grids given by
Ulrich [5].
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Furthermore, the grids are usually supported by dielectric, which also
must be included.

4.1. Unsupported Grids

To take into account the diffraction effects, R. Ulrich used an electrical
analogy based on his experiments [5], shown in Figure 5. RU represents
ohmic losses to take into account the grid absorption. R. Ulrich has
shown that Marcuvitz’s formula [9] for L and C gives a good fit for
ratios a/g smaller than 15%.

The absorption AU of this equivalent electrical circuit is given by
Equation (19).

AU = 2RU |Γ|2 =
2RU

(1 + RU )2 + (Lω/(1− LCω2))2
(19)

The first metallic grid, which was designed for absorbing the
infrared radiation was presented in 1995 [6]. This grid was suspended
on air by supporting legs. The authors used Ulrich’s model with
RU = 1 (corresponding to a surface impedance of 188.5Ω for a film)
and showed the influence of the g/2a ratio of the grid for different g/λ
ratio: Absorption increased with the 2a/g ratio.

Due to technology limits the ratio g/λ is limited, so the conception
of the grid must take into account the ratio g/λ. Figure 6 presents the
absorption of a suspended grid on air with a 2a/g ratio of 5% for
different RU . The best configuration of thickness for a given geometry
(g, 2a) directly depends on the g/λ ratio.
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Figure 7. Equivalent circuit for a grid (impedance ZG) supported by
a dielectric (characteristic impedance Z0/n, length d, and refractive
index n).

Thus, we can find, for a given ratio g/λ (the one chosen for
technology’s sake), the optimum RU of the grid. In other words, it
is possible to have an optimum thickness tgrid for particular g/λ and
g/2a ratios.

4.2. Grids with a Dielectric Layer

Practically, the grids are usually supported by a dielectric substrate.
Let us therefore consider Figure 7. The line representing the dielectric
has a characteristic impedance Zn = Z0/n and a length d. Its
propagation coefficient is β = 2πn/λ. The grid is modelled as a lumped
impedance ZG, as shown before in Figure 5. The rest of the line has a
characteristic impedance Z0.

Since there is no reflection after the grid, the rest of the line
can be replaced by a discrete element of impedance Z0. In the
electrical transmission line model, we can calculate the equivalent
impedance ZT of the system: The dielectric line and the two parallel
discrete impedances Z0 and ZG seen in the plane just before the line
representing the dielectric. The reflective coefficient in voltage before
the dielectric Γ is given by Equation (20).

Γ =
ZT /Z0 − 1
ZT /Z0 + 1

(20)

The transmission coefficient Λ is given by Equation (21) obtained
from the calculation of the electrical line output current.

Λ =
4∣∣∣cos(βd)

[
Z0
ZG

+ 2
]

+ j sin(βd)
[

1
n( Z0

ZG
+ 1) + n

]∣∣∣
2 (21)

The absorption coefficient A is given by Equation (22) obtained
from the calculation of the current in ohmic resistance R of the model
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of the grid.

A =
2R∣∣∣cos(βd)

[
2ZG

Z0
+ 1

]
+ j sin(βd)

[
1
n(ZG

Z0
+ 1) + nZG

Z0

]∣∣∣
2 (22)

with ZG the impedance of the grid:

ZG = Z0

[
R

2
− j

1
2

Lω

1− LCω2

]
(23)

The normalized ohmic resistor R, which characterizes the ohmic
losses is given by Equation (24). We replace RU by R in the Ulrich’s
equivalent electrical model of the metallic grid to explicit our relation
with metallic grid parameters. The normalized ohmic resistor R is
obtained from Equation (14) and from the relation A = 2R |Γ|2 in the
case of metallic grid alone.

R =

2η
δeqσ

1
Z0

[
1− e

−2tgrid
δeq

]

1 + e
−2tgrid

δeq − 2e
−tgrid

δeq cos
(

tgrid

δeq

) (24)

Results obtained with our first model (without diffraction effects) and
with this latter model in the case of 2a/g equals to 0.1 and g/λ equals
to 0.01 are the same. With increasing g/λ, they differ since diffraction
effects are taken into account in the second model.

Figure 8 shows the influence of the dielectric thickness on the
absorption. The two curves show that the best thickness to have
the highest absorption is no longer a quarter of the wavelength
because of diffraction effects. For instance, with g/λ = 0.2, the best
absorption is obtained for a dielectric thickness is 95% of this value.
The optimum thickness must therefore be calculated using all the
parameters (tgrid, λ, g, a).

Figure 9 shows the absorption versus the wavelength λ of a grid
with a dielectric optimized for a wavelength of 100µm. The parameters
a and g, respectively, equal 3µm and 20µm. The absorption is
optimized only for a band of frequency. This is partially because of the
dielectric, which can reduce the absorption instead of to increase it, if
it is used at frequencies different from those for which it was designed.
In that case, absorbers have a finite bandwidth.

Although Ulrich’s expression is relevant in many situations, we
suggest that in the future the expression given here will be used instead.
With this model, it is possible to find easily the optimum parameters
to have the best absorption.
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Figure 8. Absorption of 23 nm
thick titanium grids with a resis-
tivity of 54µΩ·cm as a function
of the dielectric’s thickness. g =
20µm and g = 10 µm with a =
3µm and dielectric coefficient of
2.9.
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Figure 9. Absorption of 23 nm
thick titanium grids with a resis-
tivity of 54µΩ·cm as a function of
the wavelength λ. a = 3 µm, g =
20 µm and d = 0.95λ/4n with di-
electric coefficient of 2.9.

5. CONCLUSIONS AND PERSPECTIVES

A bolometer is a sensor based on the absorption of electromagnetic
waves. In order to design a bolometer, the theory of the absorption of
metallic structures was studied. The simple model of semi-infinite
layers has already shown the best configuration with one metallic
layer (surface impedance of 188.5Ω). The generalization of this
model allowed to choose other configurations for the absorber with
more metal or dielectric layers. However, the obtained metallic
thickness is usually too small to be easily fabricated using standard
microfabrication techniques. One solution is to structure the metallic
layer. Until now, theory of such structures was studied only for
filter applications where the absorption rate is small. We modified
Ulrich’s theory for unsupported metallic grids. It still showed the
dependence of the metallic structures absorption with the wavelength.
In this context, the best design is not necessary the same for different
wavelengths. Furthermore, an equivalent metallic homogeneous model
was implemented to simplify the conception. Using the semi-infinite
model, the best configuration with only one metal layer is to have
the dielectric before the metal layer. We have adapted the electrical
model for this configuration. The results show that the optimum
dielectric thickness to have the best absorption changes according to
the structuration of the grid. This model shows the necessity to take
into account all the dimensions of the absorbers to design the optimized
structures.
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