
Progress In Electromagnetics Research, PIER 94, 19–32, 2009

A TRUST REGION SUBPROBLEM FOR 3D ELECTRI-
CAL IMPEDANCE TOMOGRAPHY INVERSE PROB-
LEM USING EXPERIMENTAL DATA

M. Goharian

Medical Physics and Applied Radiation Sciences
McMaster University
Hamilton, Canada

M. Soleimani

Electronic and Electrical Engineering
University of Bath
Bath, UK

G. R. Moran

Medical Physics and Applied Radiation Sciences
McMaster University
Hamilton, Canada

Abstract—Image reconstruction in electrical impedance tomography
(EIT) is an ill-posed nonlinear inverse problem. Regularization
methods are needed to solve this problem. The results of the ill-
posed EIT problem strongly depends on noise level in measured data
as well as regularization parameter. In this paper, we present trust
region subproblem (TRS), with the use of L-curve maximum curvature
criteria to find a regularization parameter. Currently Krylov subspace
methods especially conjugate gradient least squares (CGLS) are used
for large scale 3D problem. CGLS is an efficient technique when the
norm of measured noise is exactly known. This paper demonstrates
that CGLS and TRS converge to the same point on the L-curve with
the same noise level. TRS can be implemented efficiently for large scale
inverse EIT problem as CGLS with no need a priori knowledge of the
noise level.
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1. INTRODUCTION

Electrical impedance tomography (EIT) is a non-invasive technique
that aims to reconstruct images of internal impedance values of a
volume of interest, based on measurements taken on the external
boundary [8, 9]. In EIT the internal electrical conductivity can
be reconstructed from voltage measurements on the surface of an
object under study. EIT has potential application in physiological
measurement as well as industrial process monitoring.

The image reconstruction in EIT is a challenging inverse problem.
In the case of complete and noiseless boundary measurements, the EIT
problem is known to have a unique solution. In practice however, the
measured data is noisy and incomplete. Hence, in this situation it is
difficult to obtain a satisfactory solution from the nonlinear and ill-
posed EIT problem. So it is necessary to use regularization techniques
because of the ill-posed nature of the problem.

Each regularization method employs a special parameter, known
as the regularization parameter, to control the effect of the noise
on the solution. The nature of the regularization parameter is
different for each method. For instance, in Tikhonov regularization the
penalty parameter acts as regularization parameters, and in iterative
approaches the number of iterations will serve as the regularization
parameter [15, 16].

CGLS creates components in the direction of singular vectors
related to large singular values at the early stages of iterations. While
components associated with small singular values will be effective at
later iterations this means that the number of iterations acts as a
regularization parameter. Thus, the regularized solution would be
obtained by stopping the iteration before the unwanted components
added to the current solution.

The success of CGLS strongly depends on knowing when to
stop the iteration, which is a difficult task in itself. On the other
hand, we could use CGLS with the Tikhonov regularization approach,
which is called a damped least squares problem. The convergence of
this technique also depends on both a good choice of the damping
parameter and a preconditioner.

In this paper, we introduce the regularization problem as a
quadratic constrained least squares problem. It has been shown that
this approach is equivalent to Tikhonov regularization [1]. In the area
of optimization this problem is a special case of trust-region methods
which is known as the trust-region subproblem [2]. A comprehensive
study regarding different approaches for solving the regularization
problem as a trust-region subproblem is given in [3].
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We adopted the recently developed method for solving the
trust-region subproblem in the regularization case [4] for the EIT
problem. In this method the regularized solution was obtained using
a parameterized trust region approach to estimate the region of
maximum curvature of the L-curve. Method proposed here can be
used in other imaging techniques [17–21].

2. THE INVERSE PROBLEM

In the EIT problem, the relation between perturbations in the internal
conductivity distribution and the perturbations in the boundary
measurements is nonlinear. However, this nonlinear relation can be
formulated using a linearized form. If in the continuous region, J is
the Fréchet derivative of the potential, U , with respect to conductivity,
σ, for the nonlinear mapping σ 7→ U(σ), then the linearized form has
following form

Jx = δU (1)

where x ∈ <n is the perturbation in conductivity distribution that
maps to the differential measurements δU ∈ <m, and J ∈ <m×n is the
Jacobian matrix. Due to the ill-posed nature of problem, x cannot be
recovered from (1). In practice, the most popular technique is to apply
the conjugate gradient method to the normal equations associated with
problem (1). In this way a least square conjugate gradient approach
to solve the inverse problem can be implemented in a similar fashion
to a least square problem

min
x
‖Jx− δU‖2 (2)

The regularized Gauss-Newton method is the most commonly used
method for the inverse problem in EIT. In regularized Gauss-Newton
method the second order term in the Hessian is approximated. The
regularized optimization is to find x, given x0 as the initial guess, Rx
the regularization function; we also include regularization parameter
α here, so that the cost functional is

g(x) =
1
2
‖δU − Jx‖+ α2R (3)

For regularized Gauss-Newton the iteration steps are xi+1 =
x −H(xi)−1∇g(xi), where H(xi) = JT J + α2R′′(xi), where H is the
modified Hessian here and R is regularization function and ∇g(xi) =
J ′(δU−Jx)+α2R′(xi). Here R′(xi) and R′′(xi) are the first and second
derivatives of R(xi) with respect to xi.
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3. TRUST REGION SUBPROBLEM

3.1. Structure of Problem

We formulate the EIT regularization problem as the following
quadratically constrained least squares problem

R∆ := min ‖Jx− δU‖2
s.t. ‖x‖2 ≤ ∆ (4)

with ∆ > 0. Using the method of Lagrange multipliers it was shown [1]
that this formulation is equal to Tikhonov regularization. This means
that any solution to (4) with the value of ∆ is equivalent to solving
the following Tikhonov regularization with parameter α

(JT J + α2I)xα = JT δU (5)
It gives xα = x∆. The solutions for (4) are the same as the

following problem which can be formulated by squaring both objective
and constraint in (4),

η∆ := min Q(x) := xT Hx− 2GT x

s.t. ‖x‖2
2 ≤ ∆2 (6)

where H = JT J and G = JT δU . The optimization problem in (6)
is called the trust region subproblem (TRS). The solution for the
regularization problem (4) is found by solving the TRS (6) sequentially.
The TRS can be used to form the L-curve,

L(J, δU) = {(log(∆), log ‖Jx∆ − δU‖) : ∆ > 0} (7)
The regularization parameter, ∆, can be found through the point

of maximum curvature, or the elbow, on the L-curve [5]. Therefore,
the trust region radius, ∆, needs to change iteratively to steer the
algorithm to the elbow of the L-curve.

A feasible vector x∗ = x∆ is a solution to (6) if and only if [6]:
(H − λ∗I)x∆ = G
(H − λ∗I) ≥ 0
λ∗

(
‖x∆‖2

2 −∆2
)

= 0
λ∗ ≤ 0

(8)

for a Lagrange multiplier λ∗ = λ∆. These conditions relate the
Tikhonov regularization (5) to the TRS (6).

A solution x∗ to the TRS (3) is a solution to (3) corresponding to
α2 = −λ∆

(H − λ∆I)xλ∆
= G (9)

Conversely, any solution xα to (4) for α, solves (5) for ∆2 = ‖xα‖2
2.

So the objective function value in (4) and ∆ represent a unique point
on the L-curve.
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3.2. Creation of L-curve with TRS

From [7] we know the strong Lagrangian duality is satisfied for TRS so
that TRS can be formulated as an unconstrained concave maximization
problem, i.e.,

η∆ = max
λ≤0

min
x

L(x, λ) (10)

where L(x, λ) = xT Hx− 2GT x + λ(∆2 − ‖x‖2
2) represents Lagrangian

of TRS. Define

D(t) =
(

t −GT

−G t

)
, k(t) := (∆2 + 1)λ1(D(t))− t (11)

where the λ1(D(t)) is the smallest eigenvalue for D(t). Then the
unconstrained dual problem for TRS is as follows

η∆ = max
t

k(t) (12)

The L-curve is formed using ∆ in TRS as a parameter and finding
the residual for the corresponding optimal x∆. The L-curve can be
formed using any of t,∆, and λ∆. They are interchangeable and used
to parameterize the regularization problem to give points on the L-
curve. These parameters are related to each other as follows:

t = λ∆ + δUT J
(
JT J − λ∆I

)−1
JT δU

∆2 = δUT J
(
JT J − λ∆I

)−2
JT δU

λ∆ = λ1 (D (t))

(13)

More details regarding derivation of the above parameters are
given in [4].

4. EXPERIMENTAL MEASURMENT SETUP

4.1. Measurements on Phantom

To validate the proposed approach, experiments were conducted on
a cylindrical phantom of 10 cm height and 5 cm radius containing 48
circular stainless steel electrodes in three rings with each ring composed
of 16 electrodes connected peripherally around the cylinder. The radius
of each electrode was 0.3 cm, and the gap between electrodes was
1.35 cm. The phantom was filled with saline solution with 0.2 molar
concentrations and connected to a newly designed EIT system. Our
EIT system currently consists of 48 channels operating at multiple
frequencies from 100 Hz–125 kHz that are continuously selectable. A
digital signal processor (DSP) is used to control the operation of every
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module. In order to convert measured raw data into amplitude and
phase information, we have implemented a PC-based phase-sensitive
detection which is used lock-in amplifiers.

The test objects were a metal rod 6 cm tall with diameters 1.5 cm
and a plastic rod of the same height and diameter. These are high
contrast objects when used in the saline solution background. Figure 1
depicts the objects and the overhead view of the electrode geometry.

The metal rod was 1.5 cm from electrode 1 and the plastic rod
at the same depth near electrode 9. The adjacent current injection
pattern and adjacent voltage measurement (‘adjacent’-‘adjacent’)
were implemented, and 2160 pairs of measurements in total were
obtained. The frequency of the sine wave current was chosen for

Figure 1. A cylindrical phantom with two test objects.

Figure 2. Reconstructed images with TRS at different height of
phantom.



Progress In Electromagnetics Research, PIER 94, 2009 25

this test to be 125 kHz with a peak current of 4mA. Two sets of
measurements without and with test objects were performed. Each set
of measurement was repeated fifty times for the purpose of standard
deviation calculation. The calculated standard deviation was used as
an estimation of measurement noise which was used to determine the
stopping point for the CGLS approach.

In this study all three-dimensional reconstructed images are
displayed as a series of two-dimensional image slices along the z-axis.

Figure 3. Reconstructed images with CGLS at different height of
phantom.

Figure 4. L-curve with TRS, CGLS, and best solution with Tikhonov.
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4.2. Summary of Results

Figures 2–3 show the background-subtracted images for two TRS and
CGLS methods. The metal rod appears as red while the plastic rod
appears as blue. Figure 4 shows the different points on L-curve for
both methods. The best possible solution that was obtained using
Tikhonov method is also shown in the graph. Even though the
curve is not strongly L-shaped, both horizontal and vertical parts are

Figure 5. Reconstructed images with CGLS at 30% standard
deviation.

Figure 6. L-curve with TRS and CGLS at 30% standard deviation.
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distinguishable. The TRS algorithm was able to locate the elbow, and
this was close to the best solution by Tikhonov. Figures 5 shows the
reconstructed images with CGLS where level of measurement noise was
set to be 30% of calculated standard deviation. The norm of noise is
used to terminate the iterations. Figure 6 shows the associated L-curve
for CGLS.

(a) (b)

(c)

Figure 7. A piece of cucumber inside of saline tank, (b) position of
cucumber relative to electrodes. (c) Reconstructed conductivity images
of cucumber using TRS approach at 50 kHz. The cucumber was close
to electrode 3.
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In another experiment a piece of cucumber was inserted inside
the phantom holder to evaluate the capability of TRS to reconstruct
conductivity distribution of this test sample. Figure 7(a) illustrates
the position of the cucumber inside the phantom holder. Figure 7(b)
shows pictorially the placement of the cucumber near electrode 3. The
TRS technique was used to reconstruct the conductivity variation of
cucumber. Figure 7(c) shows the reconstructed images using the TRS
technique. Cucumber was chosen as it is cellular structure should
display impedances closer to what would be expected in vivo.

As can be seen, the TRS was able to build images based on correct
position of the cucumber inside of phantom.

In another experiment two pieces of polyvinyl alcohol (PVA)-
based cryogel (PVA-C) were suspended in phantom. A PVA-cryogel
(or PVA-C) is a hydrogel manufactured by freezing up to (−20◦C)
and thawing (+20◦C) in an aqueous PVA solution [12]. PVA-C gel
phantom has been used to mimic organs and tissues in MR and
ultrasound imaging studies [13]. In another work, we demonstrated
that there are significant changes in the electrical properties of PVA-C
that undergoes different doping [11]. Figures 7(a) and (b) illustrate
the position of the two PVA-C inside the phantom. The top PVA-C is
a pure polymer whereas the bottom one is a doped PVA with salt (1
Molar). Figure 7(c) depicts the reconstructed conductivity for these
two pieces of PVA using TRS algorithm.

4.3. Discussion

The results show that the TRS was able to reconstruct images with
the same performance as CGLS.

The two test objects were clearly distinguishable at correct
positions in all different heights in Figure 2. The TRS algorithm
was able to follow points on curvature and locate elbow as shown in
Figure 4. The TRS selected solution (marked with +) was close to the
best possible Tikhonov solution.

CGLS is known to be a fast and robust approach that has
been used for regularization of ill-posed problems. It requires very
low memory. The disadvantage of CGLS is the behaviour called
semiconvergence which requires a knowledge of exactly when to
terminate the iteration. The stopping criterion for CGLS is based
on the discrepancy principle. It terminates when the residual is
smaller than a predefined level. This level is set based on the norm of
measurements noise. In this paper, the norm of measurements noise
was estimated from standard deviation of repeated measurements.
When the norm of noise was set equal to standard deviation of
measurements the CGLS converges to the same result as TRS
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(Figure 3). The CGLS results at each iteration were shown as circles
above the TRS points in Figure 4.

The advantage of the TRS method compared to CGLS is that
the former does not need any knowledge of noise for its process. As
shown in Figures 5–6 when the norm of noise is estimated to be 30% of
standard deviation of measurements, the CGLS terminated with larger
number of iterations, and final result was much worse (Figure 5).

An additional advantage of the constrained least square approach
in comparison to the Tikhonov method is that the physical properties
of the problem could be used to estimate the norm of constraint ∆.

Trust region algorithms generate new iterates within a region near
the current iteration point. This region is called the trust region. An
example of trust region approach is the dogleg algorithm [14]. The

(a) (b)

(c)

Figure 8. (a), (b) the actual position of two polyvinyl alcohol cryogel
(PVA-C). The bottom PVA is doped with salt and top one is a pure
PVA. (c) Reconstructed conductivity images of two PVA using TRS.
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dogleg approximates a Levenberg-Marquardt approach within the trust
region of the model function with a quadratic model. The iteration
steps are calculated to minimize the model function inside the trust
region. The success of the dogleg approach depends on a good choice
of the regularization parameter.

It is shown that the Tikhnov regularization (Equation (4)) is
equivalent to a special form of the trust-region subproblem with
a quadratic constraint (Equation (3)). Therefore the trust region
subproblem technique can be used to solve regularization problems
of type (2), where instead of specifying a value for the Tikhonov
parameter as required for (2), we need to define a bound on the norm
of the desired solution.

5. CONCLUSIONS

In this study, a parameterized trust region technique was used to find
the region of maximum curvature of the L-curve which was used to
find the regularized solution.

The performance of TRS was compared to the conjugate gradients
based method for solving the least-squares problems (CGLS). CGLS
is an iterative method to solve linear equations and is a robust
regularization technique for the case of very large problem.

However, comparing both CGLS and TRS solutions in Figures 2–
3 we can see that both techniques reconstruct the same distribution.
The TRS algorithm, though, does not require a specific value of the
norm of the noise in its iteration process. The TRS algorithm has
proven to be robust by converging towards solutions as it is shown in
Figures 2–7.
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