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Abstract—Thin dielectric sheet (TDS) approximation and electro-
magnetic (EM) boundary conditions are considered together to de-
rive out a set of integral equations as an alternative to the impedance
boundary condition (IBC) method to solve the electromagnetic scat-
tering from thin dielectric-coated conductors. Only with discretizing
the induce current on the conductor surfaces and solving an integral
equation similar to that for a perfect electric conductor (PEC), the
scattering fields from the whole coating system (electric or magnetic
material coating) are computed. Both the electric field integral equa-
tion (EFIE), magnetic field integral equation (MFIE) and their combi-
nation form are presented. These equations are converted to a matrix
equation by Galerkin’s method and then solved with multilevel fast
multipole algorithm (MLFMA) to obtain the far fields scattering from
these coated objects.

1. INTRODUCTION

For the purpose of electrical stealth, heat insulation or protection,
many metallic objects are coated by dielectrics which usually include
both electric media and magnetic media. This necessitates an efficient
numerical solution for scattering calculating from dielectric-coated
conductors and the integral equation methods (IEM) are commonly
used due to their high accuracy and generality for arbitrary shapes [1–
8]. For a hybrid object, the conducting component is usually modeled
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as a perfect electric conductor (PEC) and can be easily solved with
surface integral equation (SIE) method [1]. However, the dielectric
component always occupies dominant computational resources both in
memory storage and CPU time, no matter it is solved with volume
integral equation (VIE) approach [1–3] or coupled integral equation
(CIE) approach [4–8].

When the thickness of the dielectric is quite small, many
simplifications can easily be done. The impedance boundary
condition [9–11] has provided good numerical results while it has
much physical restrictions to the practical applications. The hybrid
PEC-dielectric formulation [12], which bases on the rigorous integral
formulation, provides an alternative to the IBC for dielectric-
coated metallic surfaces by combining the thin dielectric sheet
approximation [13, 14] with explicit boundary conditions. However, all
previous researches, including our recent improving research work [15–
20], only can solve the electric dielectric-coated problems. While
unfortunately, most dielectric coatings are consisted of not only electric
materials but also magnetic materials.

In this paper, a method to simulate the scattering from the
dielectric-coated metallic structures is presented by combining the
thin dielectric sheet (TDS) approximation altogether with the explicit
PEC boundary conditions. As an alternative to the IBC, this method
removes the need to solve the field in dielectric layer as well while no
physical restrictions are introduced due to its bases on rigorous integral
formulation. With this method, we only need to discretize the induced
current on the conductor surfaces and solve an integral equation similar
to that for a PEC in order to calculate the scattering fields from the
whole coating system. Different from the work in [12], the proposed
hybrid PEC-dielectric formulation in this paper can deal with the
coating with electric and magnetic materials without any increase
of computational complexity. The electric field integral equation
(EFIE), magnetic field integral equation (MFIE) and their combination
form- combined field integral equation (CFIE) are presented. These
equations are final converted to a matrix equation by Galerkin’s
method and then solved with multilevel fast multipole algorithm
(MLFMA) [21, 22].

The paper is organized as follows. In Section 2 the hybrid
PEC-dielectric formulation for EFIE is derived; The MFIE and
their combination forms are introduced in Section 3. In Section 4,
the MLFMA is used to solve the final integral equations and
the disaggregation and aggregation terms of MLFMA are detailed
represented in this section since they are quite different from those
for only PEC situation. There are two numerical examples to show
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the validation and accuracy of this method in Section 5 and some
conclusions have been finally given in Section 6.

2. FORMULATIONS FOR ELECTRONIC FILED
INTEGRAL EQUATION

For a dielectric-coated PEC system (as shown in Figure 1, a PEC
enclosed by the surface S and a dielectric coating with volume
V ), the electromagnetic field can be described by following two
coupled equations. On the PEC surface, the tangential electric field,
contributed from both the incident field and the scattered field, is zero,
i.e., [

Einc(r) + Escat(r)
]∣∣

t
= 0, r ∈ S. (1)

The subscript “t” stands for taking the tangential component of
the vector. Inside the medium, the incident field, scattered field and
total field satisfy

Einc(r) = E(r)−Escat(r), r ∈ V (2)

where r denotes the field point, and Einc, Escat stands for the
incident field and scattered field, respectively. The scattering fields
include contributions from both conductor components and dielectric
components (εr 6= 1 or µr 6= 1), that is

Escat(r) = Escat
pec (r) + Escat

die (r) (3)

The scattering field from the PEC is established by (time

Figure 1. Geometry of a PEC coated by thin dielectric with associated
quantities.



342 He, Nie, and Hu

dependence e−iωt is assumed)

Escat
pec (r) = iωµ0

∫

S

Ḡ
(
r, r′

) • Js(r′)dS′

= iωµ0

∫

S

Js(r′)g(r, r′) +
1
k2

0

∇g(r, r′)∇′ • Js(r′)dS′ (4)

and that from the dielectric is given as

Escat
die (r) = iωµ0

∫

V

Ḡ
(
r, r′

) • Jv(r′)dV ′ −
∫

V

∇g(r, r′)×Mv(r′)dV ′

= iωµ0

∫

V

Jv(r′)g(r, r′) +
1
k2

0

∇′ • Jv(r′)∇g(r, r
′
)dV ′

−
∫

V

∇g(r, r′)×Mv(r′)dV ′ (5)

Here the primes refer to the source coordinates. Js is the
conducted surface current density on S, Jv/Mv is the polarization
volume electric/magnetic current density in V . Ḡ(r, r′) is the dyadic
Green function defined as

Ḡ(r, r′) =
[
Ī− 1

k2
∇∇′

]
g(r, r′) (6)

and g(r, r′) is the scalar Green’s function in free space which is defined

by g(r, r′) = eik0|r−r′|
4π|r−r′| . All other quantities are defined according to

convention.
The polarization volume electric/magnetic current density in the

dielectric is defined by

Jv(r′) = iω(ε0 − ε)E(r′) = iωχ(r′)D(r′) (7)
Mv(r′) = iω(µ0 − µ)H(r′) = iωξ(r′)B(r′) (8)

where

χ(r′) =
1

εr(r′)
− 1 (9)

ξ(r′) =
1

µr(r′)
− 1 (10)

E, H and D, B are the field and flux vectors in the dielectric region.
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Substitute formulas (7) and (8) into expression (5) to achieve

Escat
die (r)= iωµ0




∫

V

χ(r′)g(r, r′)iωD(r′)

+
1
k2

0

χ(r′)∇g(r, r′)iω∇′•D(r′)dV ′− 1
k2

0

∫

SA

χ(r′)∇g(r, r′)iωn̂′•D(r′)dS′




−
∫

V

∇g(r, r′)× iωξ(r′)B(r′)dV ′ (11)

In the above formula, SA, which is consist of S+
n , S−n and St (top,

bottom and side surfaces respectively), denotes the interfaces where
the dielectric constant is discontinuous at each side and n̂′ is the unit
normal vector directing out of the dielectric at these interfaces.

Taking into account that

∇ •D(r′) = 0 (12)

finally we obtain contributions from the dielectric component when it
is completely coated on the conductor surfaces:

Escat
die (r) = iωµ0




∫

V

χ(r′)g(r, r′)iωD(r′)dV ′

− 1
k2

0

∫

S+
n

χ∇g(r, r′)iωn̂′ •D(r′)dS′ +
1
k2

0

∫

S−n

χ∇g(r, r′)iωn̂′ •D(r′)dS′




−
∫

V

∇g(r, r′)× iωξ(r′)B(r′)dV ′ (13)

here, n̂′ is the unit vector normal to the upper surface.
When the thickness of the dielectric coating is very small compared

to the wavelength, the field varies little in the normal direction. A
straightforward way is to approximate the fields to no variation with
respect to the normal direction and this procedure is so named thin
dielectric sheet (TDS) approximation [12–20]. Decompose the D and
B fluxes into tangential and normal components, namely

D(r′) = Dt(r′) + n̂′Dn(r′) B(r′) = Bt(r′) + n̂′Bn(r′) (14)
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then approximate Dt(r′) ≈ 0, Bn(r′) ≈ 0 in the whole coating
layer because they are continuous across the PEC surface and almost
no variation. Further consider the current continuous boundary
conditions

iωn̂′ •D(r′) = iωDn = ∇′ • Js(r′)

n̂′ ×Bt(r′) = µn̂′ ×Ht(r′) = µJs(r′),
r′ ∈ S−n (15)

and finally obtain these two approximate expressions in the whole
dielectric layer:

Dn(r′) ≈ ∇′ • Js(r′)/iω

Bt(r′) = −n̂′ × n̂′ ×Bt(r′) ≈ −µn̂′ × Js(r′),
r′ ∈ V (16)

The volume integral can be further approximated to surface
integral through conversion dV ≈ τdS. Here, τ is the thickness of the
dielectric coatings. Therefore, the scattering field from the coatings
can be expressed as

Escat
die (r) = iωµ0




∫

S

n̂′τχg(r, r′)∇′ • Js(r′)dS′

+
∇
k2

0

∫

S

χ
[
g(r, r′)− gτ (r, r′)

]∇′ • Js(r′)dS′

+ (1− µr)
∫

S

τ∇g(r, r′)× n̂′ × Js(r′)dS′


 (17)

here gτ (r, r′) = g(r, r′ + τ n̂′), representing the contribution from the
sources on the interface S+

n .
Up to this point, the total scattering field can be represented by

combining (4) and (17)

Escat(r) = iωµ0


(1− µr)

2
Js +

∫

S

g(Js + n̂′τχ∇′ • Js)dS′

+
∇
k2

0

∫

S

(g + χg − χgτ )∇′ • JsdS′

+ (1− µr)
∫

S

τ∇g × n̂′ × JsdS′


 (18)
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In (18), the first term in the right-hand side is the principle value
of the last integral and there is only one unknown quantity Js. So only
Equation (1) is needed to establish a linear equation and solve this
problem. The final integral equation is established as

Einc(r)
∣∣
t

= −iωµ0


(1− µr)

2
Js +

∫

S

g(Js + n̂′τχ∇′ • Js)dS′

+
∇
k2

0

∫

S

(g + χg − χgτ )∇′ • JsdS′

+ (1− µr)
∫

S

τ∇g × n̂′ × JsdS′


 r ∈ S. (19)

This is the electric field integral equation (EFIE) form resulting
from electric field boundary condition. In this equation, only the
induced current density on the PEC surfaces and surface integral are
involved. By using the curvilinear triangular patches to discretize the
PEC surfaces and selecting the curvilinear RWG as the basis functions,
we can solve this integral equation with multilevel fast multipole
algorithm (MLFMA) [21] as we do for pure electric conductors.

3. MAGNETIC FILED AND COMBINED FILED
INTEGRAL EQUATIONS

As is known, the electric field integral equation converges slowly for
iteration solution and suffers from inner resonance problems. While
the combined field integral equation (CFIE), which is a combination
of electric field integral equation and magnetic field integral equation
(MFIE) with a certain combine coefficient, can overcome the inner
resonance problem and reduce the matrix condition number, improving
the accuracy and accelerating the iteration speed. This section will
focus on the derivation of the magnetic field integral equation starting
from magnetic field boundary condition:

n̂× [
Hinc(r) + Hscat(r)

]
= Js(r), r ∈ S. (20)

where n̂ denotes the unit vector normal to the PEC surfaces. Similarly,
the scattering fields include contributions from both conductor
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components and dielectric components

Hscat(r) = Hscat
pec (r) + Hscat

die (r) (21)

Hscat
pec (r) =

∫

S

∇g(r, r′)× Js(r′)dS′ (22)

Hscat
die (r) = iωε0

∫

V

Mv(r′)g(r, r′) +
1
k2

0

∇′ •Mv(r′)∇g(r, r′)dV ′

+
∫

V

∇g(r, r′)× Jv(r′)dV ′ (23)

Through the thin dielectric sheet approximation and boundary
conditions mentioned in last section,

Hscat
die (r) = iωε0

∫

S

−iωµ0(1− µr)τg(r, r′)n̂′ × Js(r′)dS′

+
∫

S

τχ∇′ • Js∇g(r, r′)× n̂′dS′ (24)

Hscat(r) = −1
2
n̂× Js +

∫

S

∇g × JsdS′ +
∫

S

k2(1− µr)τgn̂′ × JsdS′

+
∫

S

τχ∇′ • Js∇g × n̂′dS′ (25)

The final magnetic field integral equation is established as

n̂×Hinc(r) =
1
2
Js−n̂×




∫

S

∇g × JsdS′+
∫

S

k2(1−µr)τgn̂′×JsdS′

+
∫

S

τχ∇′ • Js∇g × n̂′dS′


 (26)

Combining the EFIE (19) with MFIE (26), the CFIE is defined
by

CFIE = αEFIE + η(1− α)MFIE (27)

where, α is the combine coefficient and η is the wave impedance in free
space.
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4. APPLICATION OF MULTILEVEL FAST MULTIPOLE
ALGORITHM

The integral Equations (19), (26) or (27) is readily to be converted to
a matrix equation Z̄ • I = V with Galerkin’s method. In this section,
multilevel fast multipole algorithm (MLFMA) is used to accelerate the
calculating of the final matrix equation.

The multilevel fast multipole algorithm is a most robust
electromagnetic analysis approach for accelerating the matrix-vector
multiplication in an iterative solver, which would reduce the
computational complexity (in terms of the memory requirement and
CPU time) to O(N log N) for an N -unknown problem. For a given
testing function, all the basis functions are classified into two categories
based on the distance between the testing and basis functions. The
matrix-vector multiplication is represented as the summation of the
contribution from the near- and far-region

∑

i

ZjiIi =
∑

i∈NR

ZjiIi +
∑

i∈FR

ZjiIi (28)

where NR and FR represent the near-region and far-region,
respectively. The near-region matrix elements are calculated directly
in the way as in the conventional MoM [23], and the far-region coupling
is dealt with the MLFMA.

For far-region matrix element calculation, the dyadic Green’s
function can be written into a multipole expression when the addition
theorem is applied

Ḡ(rj , ri) =
ik

(4π)2

∫
d2k̂(̄I− k̂k̂)eik•(rjm−rim′ )αmm′(r̂mm′ • k̂),

|rmm′ | > |rjm − rim′ | (29)

Similarly, the gradient of Green’s function

∇g ≈ ikg = ik
[

ik

(4π)2

∫
d2k̂eik•(rjm−rim′ )αmm′(r̂mm′ • k̂)

]
,

|rmm′ | > |rjm − rim′ | (30)

where rj and ri are the vectors of the field and source points,
respectively, rm and r′m respectively present the center of the field
and source group. αmm′ denotes the translation term. Therefore, the
second term in the right-hand side of (28), which represents the far-field
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matrix elements, can be written as
∑

i∈FR

ZjiIi

=
ik

(4π)2

∫
d2k̂Vfmj(k̂)

∑

m′∈FR

αmm′(r̂mm′ • k̂)
∑

i∈Gm′

Vsm′i(k̂)Ii (31)

where Vfmj(k̂) and Vsm′i(k̂) represent the disaggregation and
aggregation terms, respectively.

For the electric field integral equation, we define

< tj ,−iEscat(r)/kη >=
∑

i

ZE
jiIi (32)

According to all the concerning formulas, the impedance element
for far-region is rewritten as

ZE
ji =

∫

S

dStj •




∫

S′

dS′
ik

(4π)2

∫
d2k̂(̄I− k̂k̂) • eik•(rjm−rim′ )

αmm′(r̂mm′ • k̂)(ji + n̂′τχ∇′ • ji) +
∫

S′

dS′ik× ik

(4π)2

∫
d2k̂eik•(rjm−rim′ )αmm′(r̂mm′•k̂)

[
τ(1−µr)n̂′×ji

]
}

i∈FR (33)

Through comparing (33) with (31), we can obtain the
disaggregation and aggregation terms for the electric field integral
equation:

VE
fmj(k̂) =

∫

S

dSeik•rjm (̄I− k̂k̂) • tj(rjm) (34)

VE
sm′i(k̂) =

∫

S′

dS′e−ik•rim′
{

(̄I− k̂k̂) • (ji + n̂′τχ∇′ • ji)

+ik× [
τ(1− µr)n̂′ × ji

] }
(35)
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For the magnetic field integral equation, we define

< tj ,−in̂×Hscat(r)/k > =
∑

i

ZM
ji Ii (36)

ZM
ji = −n̂× i

k

∫

S

dStj •




∫

S′

dS′
ik

(4π)2

∫
d2k̂ik× eik•(rjm−rim′ )

αmm′(r̂mm′ • k̂)(ji + n̂′τχ∇′ • ji) +
∫

S′

dS′
ik

(4π)2

∫
d2k̂(̄I− k̂k̂)

•eik•(rjm−rim′ )αmm′(r̂mm′•k̂)
[
k2τ(1−µr)n̂′ × ji

]
}

i ∈ FR (37)

According to the identity: −k̂×k̂×A = A−k̂(k̂•A) = (̄I−k̂k̂)•A,
there exists that

(̄I− k̂k̂) • k2τ(1− µr)n̂′ × ji = ik× ik× [τ(1− µr)n̂′ × ji] (38)

Substitute (38) into (37) and then the disaggregation and
aggregation terms for the magnetic field integral equation are derived
out as follows:

VM
fmj(k̂) = −k̂ ×

∫

S

dSeik•rjmtj(rjm)× n̂ (39)

VM
sm′i(k̂) = VE

sm′i(k̂) =
∫

S′

dS′e−ik•rim′
{

(̄I− k̂k̂) • (ji + n̂′τχ∇′ • ji)

+ik× [
τ(1− µr)n̂′ × ji

] }
(40)

Finally the disaggregation and aggregation terms for the combined
field integral equation can be expressed as:

VC
fmj(k̂) = αVE

fmj(k̂) + (1− α)VM
fmj(k̂)

= α

∫

S

dSeik•rjm (̄I− k̂k̂) • tj(rjm)

−(1− α)k̂ ×
∫

S

dSeik•rjmtj(rjm)× n̂ (41)
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VC
sm′i(k̂) =

∫

S′

dS′e−ik•rim′
{

(̄I− k̂k̂) • (ji + n̂′τχ∇′ • ji)

+ik× [
τ(1− µr)n̂′ × ji

] }
(42)

The expression of translation term is the same as references and
will not be given here.

5. NUMERICAL EXPERIMENTS

The resulting linear system has the same number of unknowns as a
pure PEC problem and the same computational complexity in solving
the final matrix equation. In this section, two numerical applications
are considered.

The first example is the scattering from a PEC sphere coated by
thermal protective materials with relative permittivity 4.5 + i0.15 and
relative permeability 0.16 + i0.09. The radius of the sphere is 1 m and
the coating thickness is 0.06 m. The plane wave is incident from (0◦, 0◦)
at 0.3 GHz. There are 2,352 patches used in this simulation, which
results in an unknown count of 3,528 unknowns and a 4-level MLFMA
using both the EFIE and CFIE formulations. Figure 2 compares the
bistatic radar cross section (RCS) using IBC and the formulations
presented in this paper accelerated with MLFMA to the MIE series.
The scattering result of the PEC sphere without dielectric coating is
also give as a reference. Figure 2(a) shows that the results from TDS
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Figure 2. Bistatic RCS at 0.3 GHz for a PEC sphere coated with
thermal protective materials. (a) Calculated with TDS approximation.
(b) Calculated with IBC.
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Figure 3. The geometry of a UFO like objects.
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Figure 4. Backscattering cross sections at 0.3 GHz for a UFO coated
with wave absorbing materials.

approximation have good agreement with the analytical ones. The
relative RMS error, which is defined as

RMS =

√∑ |fc − fr|2∑ |fr|2
× 100% (43)

is less than 3%. Where fc and fr are the computational and
reference values. However, because the dielectric constants do not
stratify the validation criteria mentioned in reference [9], the IBC
approximation brings great numerical errors to the final results as
shown in Figure 2(b). Compared with the MIE series, the relative
RMS for IBC is as large as 23%.

In the second example, a simple unidentified flying object (UFO)
as shown in Figure 3 is calculated. It consists of a sphere with diameter
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3m and an ellipsoid with axial lengths 6 m, 6 m and 1 m, respectively.
We presume wave-absorbing materials coated on the PEC object and
the coating with electromagnetic parameters: relative permittivity
29.78 + i2.31, relative permeability 1.87 + i1.96 and coating thickness
5mm. 25,840 triangular patches, which give rise to 38,760 unknowns,
are used in this simulation. CFIE formulation with combine coefficient
0.8 and a 5-level MLFMA are chosen to solve this problem. The
backscattering cross sections (HH-polarization and VV-polarization)
at the frequency 0.3 G are calculated and compared with the results
from IBC method. The final results, including a reference without
dielectric coating are shown in Figure 4. We can see that the result
from the proposed method in this paper almost fully coincide with that
from IBC (RMS error is no more than 2%) and the RCS has an obvious
reduction due to the influence of wave-absorbing materials.

6. CONCLUSION

In this paper, an alterative method to the impedance boundary
condition (IBC) is presented to simulate the scattering from the
dielectric-coated metallic structures by combining the thin dielectric
sheet (TDS) approximation altogether with the explicit PEC boundary
conditions. This method removes the need to solve the field in dielectric
layer in a manner like IBC while no physical restrictions is introduced
by basing on the rigorous integral formulation. The proposed hybrid
PEC-dielectric formulations in this paper can deal with the coating
with electric and magnetic materials with the same computational
complexity as surface integral equations for PEC objects. The electric
field integral equation (EFIE), magnetic field integral equation (MFIE)
and combination field integral equation (CFIE) are presented. These
equations are final converted to a set of matrix equations and then
efficiently solved with multilevel fast multipole algorithm (MLFMA).
Numerical results from this method agree well with the analytical
ones or those from the IBC method, demonstrating its validation and
accuracy. The detailed comparison and analysis on the accuracy and
application scopes between this method and IBC will be presented
shortly as our further research work.
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