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Abstract—This paper proposes an enhanced MoM scheme to
integrate arbitrary N-port networks into geometry models. This
scheme is based on the incorporation of network equations into
the standard MoM scheme. The suggested scheme is validated by
comparison of the characteristics of a linear amplifier with those
obtained by PSPICE. A general application of the enhanced MoM
scheme is to handle complicated antenna or EMC problems including
various types of network devices. Its potential to handle antenna-
amplifier systems, automotive or other EMC problems is outlined.

1. INTRODUCTION

The Method of Moments (MoM) [1] is one of the most powerful
full-wave numerical techniques for treating electromagnetic (EM) and
electromagnetic compatibility (EMC) problems on complicated 3-D
geometries. Moreover, MoM is rather flexible for further development
to incorporate new features allowing modeling of realistic geometries
in situations of practical interest [2–5]. That is why the MoM is
intensively used to analyze various complicated problems arisen in
antenna and vehicle design. Meanwhile, a continual complication of
EM and EMC models requires to further enhancing MoM scheme.
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Thus, this is needed to integrate a number of passive or active circuit
elements referred generally to as multiport networks.

The network (circuit) theory [6] is the most commonly used
technique for analysis of separate elements, modules or blocks
of electric and electronic systems, such as transmission lines
(TL), waveguide junctions, coplanar waveguides (CPW), directional
couplers, filters, linear amplifiers, printed circuit boards (PCB) and so
on. Moreover, this theory is often used to interpret or combine the
full-wave analysis results by transforming the EM field problem into
equivalent circuit problem [7–13].

In recent years, an interest has been increased to the EM and EMC
modeling of complicated geometries involving a number of network
devices [14, 15]. However, a detailed analysis of such geometries
in the frame of the MoM is either impossible due to unknown
internal structure of network devices (“black boxes”), or unnecessary
due to the excessive computational intensity. Therefore, a direct
incorporation of these networks in the MoM scheme through their
network parameters, such as open-circuit impedances (Z-matrices),
short-circuit admittances (Y-matrices), scattering parameters (S-
matrices), transmission line (TL) parameters, chain parameters, and
so on, is in great demand.

This paper presents an enhanced MoM scheme to effectively
handle EM and EMC problems including arbitrary N-port networks
having user-defined type (Z, Y, S, TL or chain) and specified
parameters. First, a strategy to integrate network equations into the
standard MoM scheme is presented. Next, the suggested scheme is
validated by comparison of characteristics of linear amplifier model
terminated by a transmission line with those obtained by PSPICE.
Further, this scheme is applied to handle specific antenna and
EMC problems including network devices. Finally, a potential of
the enhanced MoM scheme to handle complicated antenna-amplifier
systems, automotive and other EMC problems is outlined.

The paper is organized as follows. Section 2 derives an enhanced
MoM scheme with incorporation of N-port network equations.
Section 3 considers a numerical validation of the suggested scheme and
discusses its application to specific EM and EMC problems. Finally,
Section 4 is devoted to concluding remarks.

2. METHOD

2.1. Problem Formulation

Let the EM (EMC) model of the problem consists of a given geometry
G, excited by known excitation ~g, and additional electric or electronic
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devices connected to the geometry G by networks and defined by their
network parameters of specified type (Z, Y, S, TL or chain). Our
purpose is to find the EM response of this model, including the currents
through and voltages over the ports (pairs of terminals) of network
devices.

Our strategy is to incorporate the general network equations into
the standard MoM scheme. For this purpose, at first, a standard
MoM scheme is considered in Subsection 2.2. Next, the generalized
network equations are stated in Subsection 2.3. Finally, an enhanced
MoM scheme with incorporation of N-port networks is derived in
Subsection 2.4.

2.2. Standard MoM Scheme

Let consider a standard MoM scheme [1] applied to the boundary-value
EM problem on the given geometry G

L
(

~J
)

= ~g (1)

where G, in general case, is a number of surfaces, wires and surface to
wire junctions, L is a linear integro-differential operator, ~g is a known
excitation, and ~J is unknown current density.

To apply the MoM to Equation (1), we perform the discretization
of geometry G (triangulation of surfaces and segmentation of wires) to
consider the following expansion for the unknown current

~J
(
~r′

)
=

∑
n

In
~fn

(
~r′

)
(2)

where ~fn(~r′) are sub-domain expansion (basis) functions, and In

are the unknown coefficients to be determined. Note, that the
number of unknowns (expansion functions) depends on the quality of
discretization.

Substituting now (2) into (1) and applying the testing procedure
with testing functions ~w1(~r′), . . . , ~wm(~r′), . . ., defined in the range of
operator L, reduces (1) to the system of linier equations written in
matrix form as

ZMoMI = V (3)

where ZMoM and V are the MoM impedance matrix and voltage
matrix-vector with elements ZMoM

mn =
〈

~wm, L~fn

〉
and Vm = 〈~wm, ~g〉,

and I is a vector of unknown coefficients In in the current expansion (2).



138 Bogdanov et al.

Thus, the standard MoM scheme reduces the initial boundary-
value problem (1) to the solution of matrix Equation (3). This solution
can be formally found by inverting the system (3)

I =
(
ZMoM

)−1
V (4)

2.3. Generalized Network Equations

The structures modeled with MoM may furthermore be connected by
a network device given by network parameters and having no physical
extension. Let consider a general N-port network connected to the
elements (wire segments), or ports, of the examined geometry model
presented in Fig. 1 by its MoM segments.

A network connection to the ports 1, 2, . . . , N forces the currents
i1, i2, . . . , iN through and voltages U1, U2, . . . , UN over the ports,
according to the network parameters of the considered network.
This changes the MoM currents I1, I2, . . . , Im, . . . through and
voltages V1, V2, . . . , Vm, . . . on the segments dependent on the network
parameters in question.

A number of network parameters are used to describe relations
between the network voltages Uk and currents ik [6]. These parameters
may be introduced via different forms of network equations. The most
important network equations written in matrix are the following:

U = ZNeti (5)

where i = [i1, i2, . . . , iN ] and U = [U1, U2, . . . , UN ] are the network port
current and voltage matrix-vectors, and ZNet is network Z-matrix with
so-called open-circuit impedance parameters ZNet

mn of N-port network;

i = YNetU (6)

NetworkU1, I1

i1

Uk, Ik

i2

ik

i3

UN, IN

iN
Port 1

Port N

Port k

Port 3

Port 2MoM currents

U2, I2

U3, I3
Vm, Im

Figure 1. N-port network directly connected to the MoM geometry.
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where YNet is the network Y-matrix with short-circuit admittance
parameters Y Net

mn of N-port network;

a− = SNeta+ (7)

where SNet is the network S-matrix with scattering parameters SNet
mn

of N-port network, a± = 1
2

(
Ū± ī

)
are the normalized incident (+)

and reflected (−) port voltage vectors, Ū = Z−1/2
L U and ī = Z1/2

L i are,
respectively, normalized network voltage and current vectors, and ZL

is the diagonal matrix of characteristic impedances ZL1 , ZL2 , . . . , ZLN

of transmission lines, connected to each port (reference impedances).
The network Equations (5)–(7) may be generalized on the case of

cross connections of network ports. This case is shown in Fig. 2, where
the ports 2 and 3 are cross-connected to the MoM geometry.

The cross connection of network ports may be taken into account,
if replace the original network matrix MNet (ZNet, YNet or SNet) by
the generalized matrix M̂Net (ẐNet, ŶNet or ŜNet) with elements

M̂Net
ij = ninjM

Net
ij (8)

where nk are the connection-matrix elements, defined as follows: nk =
1 for the direct connection, and nk = −1 for the crossed connection of
network port to the MoM geometry.

Using the generalized matrix concept, we obtain, instead of (5)–
(7), the following generalized network equations

U = ẐNeti (5a)

i = ŶNetU (6a)

U1, I1

i1

Uk, Ik

i2

ik

i3

UN, IN

iN
Port 1

PortN

Portk

Port3

Port2

U2, I2

U3, I3
Vm, Im

Network

MoM currents

Figure 2. N-port network cross-connected to the MoM geometry.
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a− = ŜNeta+ (7a)

where ẐNet, ŶNet and ŜNet are the generalized network matrices.
The different generalized network equations may be equally used

to describe the behavior of an arbitrary N-port network. Therefore,
different generalized network matrices are related to each other by the
expressions, which may be found by matrix algebra:

ẐNet =
(
ŶNet

)−1
, ŶNet =

(
ẐNet

)−1
(9)

ŜNet =
(
E− Ȳ

)
(E + Ȳ)−1, Ȳ = Z1/2

L ŶNetZ1/2
L (10)

ŶNet = Z−1/2
L ȲZ−1/2

L , Ȳ =
(
E− ŜNet

)(
E + ŜNet

)−1
(11)

where E is a unit matrix.
Our purpose is now to incorporate the generalized network

Equations (5a) to (7a) into the MoM system (3).

2.4. Enhanced MoM Scheme

To incorporate the network Equations (5a)–(7a) into the MoM
system (3), firstly, relate the elements of matrix-vectors V and I in
MoM system (3) to the network port voltage and current matrix-
vectors U and i.

For the sake of simplicity, let choose the expansion and testing
functions ~fn(~r′) and ~wm(~r′) in (2) and (3) so that Vm and In in the
system (3) would be interpreted as segment currents and voltages.
Then, segment voltages V = [V1, V2, . . . , Vm, . . .] may be shared
between those caused by external sources VS = [V s

1 , V s
2 , . . . , V s

m, . . .]
and network voltages U = [U1, U2, . . . , UN ]

V = Vs + U, (12)

supposing the forcing (impressed) voltages to be applied over the
network ports (included in U).

Let classify the network ports into the free ports (those with
controlled voltages) and forcing ports (with forcing voltages), and
derive the enhance MoM scheme for these two cases.

For free-port network, port currents i = [i1, i2, . . . , iN ] may be
easily related to the corresponding segment currents I = [I1, I2, . . . , IN ]
as

i = −I (13)
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Therefore, inserting (13) in (5a) and next in (12) leads to relation

V = Vs − ẐNetI (14)

Introducing now (14) into the MoM system (3) and regroup the
components with currents I results in the following integrated MoM-
network system (

ZMoM + ẐNet
)
I = Vs (15)

Thus, free-port network is that way included into the MoM
solution, so that total impedance matrix is obtained as a superposition
of the MoM matrix and generalized network matrix.

Consider now extension of (15) on the case of N-port network with
mixed free and forcing ports. Let N ′ and N ′′ are the numbers of free
and forcing ports, such as N ′+N ′′ = N. Then, network Equation (6a)
for free ports may be written as

i = Ŷ′Net
U + Ŷ′′Net

US (16)

where Ŷ′Net
and Ŷ′′Net

are, respectively, the free-port and mixed-
port generalized network admittance matrices (mixed matrix is with
row index for free port, and column index for forcing port), U and
US are the free-port and forcing-port network voltage matrix-vectors.
Remind, that generalized network matrix takes account of cross-
connections of network ports.

Multiplying (16) by the inverse matrix
(
Ŷ′Net

)−1
gives the

following matrix equation for network voltages in free ports:
(
Ŷ′Net

)−1
i = U +

(
Ŷ′Net

)−1
Ŷ′′Net

US (17)

or
U = Ẑ′

Net
i + Vadd (18)

where Ẑ′
Net

= (Ŷ′Net
)−1 is the free-port generalized impedance matrix

of N-port network, and

Vadd = −Ẑ′
Net

Ŷ′′Net
US (19)

is the additional voltage matrix-vector on free network ports induced
due to the connection to forcing ports. These voltages may be
interpreted as voltage drops at network free port impedance elements
due to the currents induced by the connection to forcing ports.
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Equation (18) relates the network currents and voltages in free
ports. Since (13) is also valid in free ports of the mixed network,
introducing (18) in (12) with taking account of (13) yields

V = Vs − Ẑ′
Net

I + Vadd (20)

Next, inserting (20) into the MoM system (3) results in the following
general integrated MoM-network system

(
ZMoM + Ẑ′

Net
)
I = Vs + Vadd (21)

The system (21) represents the general enhanced MoM-network
system, incorporating the network equations into the MoM scheme. In
this system, the total impedance matrix is obtained as a superposition
of the MoM matrix and a reduced general network matrix for free
ports, while the voltage column is composed of the MoM voltages and
impressed network voltages, induced by the connection to the forcing
ports.

In particular case of free-port network, (21) reduces to (15), while
for forcing-port network to the MoM system (3) with V = Vs. In
latter case, the MoM system remains unchanged, and the presence of
network reveals only in extra powers of forcing voltages contributing
to network currents.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Validation of the Enhanced MoM Scheme

The suggested scheme is validated on a simple PSPICE model shown in
Fig. 3. It consists of 2-port linear amplifier network (selected by dash)
connected to a voltage generator with internal resistance 50Ω and
loaded by the transmission line of 1m length, characteristic impedance
150Ω and termination resistance R. The different values of R = 50 Ω,
100Ω and 150Ω have been considered to examine the system behavior
for the different matching conditions.

The enhanced MoM simulation model, corresponding to PSPICE
model, consists of 4 wire segments to model the networks ports (of
S- and TL-types), and 8 wire segments to model the excitation,
connections and loads. The frequency dependent S-matrix of the
network has been obtained by PSPICE.

Figure 4 presents the transfer function

TFV = Vout/Vin (22)
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between the voltages on the transmission line termination and the
amplifier input versus the frequency of excitation calculated by the
suggested enhanced MoM scheme [16] (shown by lines) and PSPICE
(shown by markers).

Comparison of the obtained results with those calculated by
PSPICE demonstrates a perfect agreement between them in a
frequency range up to 500 MHz, including a gain flatness range up
to 10 MHz and a high frequency oscillation range due to the mismatch
at the transmission line end for the unmatched termination resistances
R = 50 Ω and 100Ω.

The obtained results validate the enhanced MoM scheme to
calculate integrated EM and EMC models including networks.

3.2. Application of the Enhanced MoM Scheme

Further, the suggested scheme is applied to estimate the amplifier effect
on coupling characteristics from active cable to a simple glass antenna,
and to validate the suggested MoM scheme by measurements.

Figure 5 shows the measurement setup consisting of a single-wire
cable and a simple grid antenna printed on a dielectric (glass) substrate
placed both over metallic plate. One of the terminals of the cable
and antenna is connected to network analyzer either through BNC
connector (cable), or FM amplifier (antenna), the outputs of which
are considered as ports. The second terminals of them are grounded
through 50-Ohm resistances. The input impedance of antenna and the
transmission coefficient from the cable to antenna are measured.

A schematic representation of the measurement setup with
dimensions of the included elements is depicted in Fig. 6. The metallic
strips of glass antenna are of width w = 2mm and length L = 60 cm.
The dielectric substrate is of width W = 30 cm, height H = 80 cm,

+5 V

50 Ω

150 Ω

R

0.001 µF0.1 µF

-5 V

1 kΩ 1 kΩ 

1 V

-

+

0.1 µF 0.001 µF
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AD8072
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Figure 3. Amplifier model with a transmission line.
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Figure 5. Measurement setup for
an active cable and glass antenna
above the metallic plate.
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Network
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Figure 6. Schematic representation of EMC model consisting of active
cable and a glass antenna above the metallic plate.

thickness l = 3mm, relative permittivity εr = 6.6, and loss tangent
δ = 0.02. The cable is of the total length Lw = 1.86 m, height over plate
h = 2 cm, radius r = 0.4mm, and dielectric insulation of thickness
ld = 0.35mm and relative permittivity εrd = 3.8. The metallic plate is
of the size 1 m × 2m.
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An EMC simulation model of measurement setup shown in
Fig. 7 consists of 261 metal triangles and 587 triangles with dielectric
impedance [18] to model the glass antenna, 248 wire segments to model
the active cable and antenna ports, and 2,514 metal triangles to model
the metallic plate, giving totally N = 5, 143 unknowns. The metallic
elements are considered to be perfectly conducting.

Figure 7. Simulation model including a glass antenna and a cable
above the metallic plate.
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Besides, the simulation model includes a 2-port S-type network
to model the FM amplifier, and TL (transmission line) networks to
model the BNC connectors. The model is excited by a lumped voltage
applied to active port of the cable with series resistance 50 Ohm.

Figure 8 shows the frequency dependent S-parameters of FM
amplifier used to model the S-type network in EMC simulations. The
TL networks are represented by segment elements of 2 cm length and
50-Ohm characteristic impedance.

To estimate the amplifier effect on coupling characteristics, a
proper modeling of the glass antenna is first validated.
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Figure 9 shows a comparison of the input impedance of glass
antenna simulated in TriD with measurement data. In Fig. 9, the
simulated results are shown by solid lines, and measurement data is
represented by markers. The comparison between the simulated and
measured results shows, that a numerical model correctly describes the
frequency behavior of the input impedance and the levels of its maxima
and minima.

Next, the coupling problem from the cable to antenna has been
considered, and the transmission coefficient S21 from the cable to
antenna has been measured and simulated using the enhanced MoM
scheme. Two cases have been examined: for passive antenna (without
amplifier), and active antenna (with amplifier). These two cases are
presented in Figs. 10 and 11, respectively.

50 100 150 200 250 300
-70

-60

-50

-40

-30

-20

Frequency [MHz]

S
2
1
[d

B
]

Without amplifier

TriD

Measurements

Figure 10. Transmission coeffi-
cient from the cable to passive an-
tenna (without amplifier).

50 100 150 200 250 300
-70

-60

-50

-40

-30

-20

Frequency [MHz]

S
[d

B
]

With amplifier

TriD

Measurements

2
1

Figure 11. Transmission coeffi-
cient from the cable to active an-
tenna (with amplifier).

The examination of Figs. 10 and 11 shows a rather good agreement
between the simulated and measurement results both for the passive
and active antenna models.

In particular, Fig. 10 shows, that a numerical model correctly
describes the coupling characteristics of the combined cable and
antenna model in a passive case (without amplifier network). Fig. 11
shows, that this model behaves well also for active antenna (with
including amplifier network). Meanwhile, the coupling characteristics
in Fig. 11 are significantly differing from those in Fig. 10. Thereby,
proper numerical modeling of combined MoM and network geometry
is validated.

The obtained results validate the suggested enhanced MoM
scheme and illustrate its capacity to effectively solve complicate EMC
problems.
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4. CONCLUSION

In this paper, an enhanced MoM scheme, that can handle arbitrary
N-port networks, has been suggested. With this method, complex
electrical networks can be easily integrated into MoM geometry models.
The method has been validated by comparisons to PSPICE and
measurement data. Application examples of the enhanced MoM
scheme to simulate advanced EM and EMC antenna problems have
proven its reliability. An important application is the integration of
antenna amplifiers models, based on the circuit model descriptions,
into the MoM calculations.
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2. Bücker, M., “Enhanced numerical integration technique,” IEEE
EMC Symposium, 328–333, Seattle, Washington, 1999.

3. Bogdanov, F. G., R. G. Jobava, and S. Frei, “Scheme of
improving accuracy of MoM solutions based on analysing
boundary conditions performance,” East-west Workshop on
Advanced Techniques in Electromagnetics, ATE-2004, 217–224,
Warszawa, Poland, 2004.

4. Jobava, R., F. Bogdanov, A. Gheonjian, and S. Frei, “Application
of adaptive scheme for the Method of Moments in EMC
automotive problems,” 16th Zurich EMC Symposium, 131–136,
Zurich, Switzerland, 2005.

5. Bogdanov, F. G., R. G. Jobava, P. Tsereteli, and S. Frei, “A
partitioned MoM scheme for treating EMC problems on a series of
geometries with a predominant common part,” 16th Zurich EMC
Symposium, 415–418, Zurich, Switzerland, 2005.

6. Tesche, F. M., M. V. Ianoz, T. Karisson, EMC Analysis Methods
and Computational Models, John Wiley & Sons, Inc., New York,
1996.

7. Kinowski, D. and M. Guglielmi, “Multimode network represen-
tations for the scattering by an array of thick parallel plates,”



148 Bogdanov et al.

IEEE Transactions on Antennas and Propagation, Vol. 45, 608–
613, 1997.

8. Parrikar, R. P. and K. C. Gupta, “Multiport network model for
CAD of electromagnetically coupled microstrip patch antennas,”
IEEE Transactions on Antennas and Propagation, Vol. 46, 475–
483, 1998.

9. Kim, J. P. and W. S. Park, “Network modeling of an inclined and
off-center microstrip-fed slot antenna,” IEEE Trans. Antennas
and Propagation, Vol. 46, 1182–1188, 1998.

10. Peterson, A. F. and E. O. Rausch, “Scattering matrix integral
equation analysis for the design of a waveguide Rotman lens,”
IEEE Transactions on Antennas and Propagation, Vol. 47, 870–
878, 1999.

11. Georgakopoulos, S. V., C. A. Balanis, and C. R. Birtcher,
“Coupling between transmission line antennas: Analytic solution,
FDTD, and measurements,” IEEE Transactions on Antennas and
Propagation, Vol. 47, 978–985, June 1999.

12. Stefanski, T. and B. J. Janiczak, “Experimental and numerical
investigation of crosstalk effect in coupled coplanar waveguides —
Parts I, II,” IEEE Transactions on Electromagnetic Compatibility,
Vol. 48, 669–676; 677–684, 2006.

13. Anderson, R. W., “S-parameter techniques for faster, more
accurate network design,” Hewlett-Packard Application Note 95-1,
5952–1130, 1997.

14. Loyka, S., “EMC/EMI analysis in wireless communication
networks,” IEEE International Symposium on Electromagnetic
Compatibility, Vol. 1, 100–105, Montreal, Canada, 2001.

15. Su, D. Y., D.-M. Fu, and Z.-H. Chen, “Numerical modeling of
active devices characterized by measured S-parameters in FDTD,”
Progress In Electromagnetics Research, PIER 80, 381–392, 2008.

16. Bogdanov, F. G., R. G. Jobava, and P. Tsereteli, TriD: Tri-
dimensional Code for Electromagnetic Modeling of Arbitrary
Surface and Wire Configurations. User’s Manual, version 5.0.01,
EMCoS, Tbilisi, 2009.

17. EMC Studio User’s Manual, version 5.0, EMCoS, Tbilisi, 2009.
18. Harrington, R. F. and J. R. Mautz, “An impedance sheet

approximation for thin dielectric shells,” IEEE Transactions on
Antennas and Propagation, Vol. 23, 531–534, 1975.


