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Abstract—The hybrid finite-element/boundary-integral method
(FEBI) combined with the multilevel fast multipole algorithm
(MLFMA) has been applied to model the three-dimensional scattering
problems of inhomogeneous media. The stabilized Bi-conjugate gradi-
ent (BCGATAB) iterative solver based on the inner-looking algorithm
is proposed to solve the final FEBI linear system, and the multifrontal
algorithm combined with the approximate minimal degree permutation
(AMD) is used for the LU decomposition of the FEM matrix. The ac-
curacy and efficiency of the combined algorithm has been validated
in the final of the paper. Numerical results show that the proposed
method can greatly improve the efficiency of FEBI for scattering prob-
lems of inhomogeneous media.

1. INTRODUCTION

The finite element method (FEM) has gained great success in
dealing with wave transmission problems owing to its strong ability
for simulating arbitrary geometric structures and inhomogeneous
media [1–4]. However, when dealing with scattering problems with
FEM, the absorbing boundary conditions (ABC) [5, 6] or fictitious
absorbers such as perfectly matched layers (PML) [7–9] should be
adopted to truncate the computational area. In order to absorb
the electromagnetic field efficiently, the absorbing boundary or the
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fictitious absorber should be placed far away from the scatterer, which
will undoubtedly increase the discretization domain significantly. A
larger discretization domain will in turn need finer meshes to suppress
the dispersion errors. As a result, a great deal of unknowns will be
produced. Moreover, the accuracy of the solutions obtained using ABC
or PML is unpredictable as neither of them can completely absorb the
incident wave from all incident angles [1]. As the boundary element
method (BEM) [10–13] can express the radiation conditions accurately
without increasing any discretization area, the combination of FEM
and BEM (FEBI) is a good choice to solve the scattering problems of
inhomogeneous media.

The disadvantage of FEBI is that the BEM matrix is dense,
which greatly limits the application of FEBI in solving electrically-
large problems. To overcome this problem, the multilevel fast
multipole algorithm (MLFMA) [14, 15] or the adaptive integral method
(AIM) [16] can be applied. In this paper, MLFMA is adopted as which
is more widely used. A detailed description of the algorithm can be
seen in [14]. After MLFMA accelerating, the storage needed by the
FEBI matrix and the complexity of the matrix-vector multiplication
in the FEBI method are reduced from O(N+N2

S) to O(N+NS log NS),
which greatly increases the ability of FEBI in simulating electrically
large problems.

Another disadvantage of the FEBI method is that the linear
system is hard to solve using classical methods. When MLFMA is
applied in the formation of the BEM matrix, the linear system is not
given in an explicit form. Hence iterative methods [17–19] are the
only option to solve the problem. However, the efficiency of different
iterative solvers is quite different. In the following section, the solution
strategy to the FEBI linear system is discussed in detail.

2. EFFICIENT ITERATIVE SOLVERS

Consider an arbitrarily inhomogeneous scattering object formed by
one or several media in free space. The object may be formed by
any media, for example, metal structures, isotropic dielectrics, and
anisotropic dielectrics. For simplicity, the region occupied by the
scatterer is assumed to be Ω, and the bounding surface is denoted as Γ,
the normal vector of the outer surface is denoted as n̂, the permittivity
and permeability of the media are denoted as εr and µr respectively.
The illustration of the problem is shown in Fig. 1.

Applying the FEBI process [20] to the above problem, a linear
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Figure 1. The illustration of FEBI computational domain.

system of the following form is generated:
[

KII KIS 0
KSI KSS B
0 P Q

]



EI

ES

H̄S



 =

{ 0
0
b

}
(1)

where EI are the discrete electric fields inside Ω, and ESH̄S are the
discrete electric and magnetic fields on Γ respectively. Denoting W
the Whitney functions for tetrahedrons, w the Whitney functions for
triangular patches, g the Rao-Wilton-Glisson basis functions, and

L(X)=jk0

∫∫

Γ
X(r′)G0(r, r′)dΓ′+

∫∫

Γ

j

k0
∇′ ·X(r′)∇G0(r, r′)dΓ′(2)

K(X)=
∫∫

Γ
X(r′)×∇G0(r, r′)dΓ′ (3)

The FEM matrix KII , KIS , KSIKSS can be expressed with the
following formulation:

Kij =
∫∫∫

Ω

[
1
µr

(∇×Wi) · (∇×Wj)− k2
0εrWi ·Wj

]
dΩ (4)

And the matrix B, P , Q and b can be expressed as follows:

Bmn = jk0

∫

Γ
(wm ×wn) · n̂dΓ (5)

Pmn =
∫

Γ
−αgm ·K(gn) + (1− α) (n× gm) · L(gn)dΓ (6)

Qmn =
∫

Γ
gm · L(gn) + (1− α) n× gm ·K(gn)dΓ (7)

bm =
∫

Γ
αgm ·Einc + (1− α) n× gm · H̄incdΓ (8)
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In Eq. (1), the matrix KII , KIS , KSI , KSS and B is constructed with
the FEM method, P and Q is constructed with the BEM method.

As can be seen from Eq. (1), the FEBI system matrix is formed
by the FEM sparse matrix and the BEM dense matrix. The special
structure of the FEBI matrix brings more difficulties for the solution
of the linear system. As BEM matrix cannot be given in an explicit
form when MLFMA is used in the formation of the BEM matrix,
the FEBI linear system can only be solved with an iterative solver.
However, with the existence of the FEM matrix, the whole FEBI
matrix is highly ill-conditioned, which makes the linear system very
difficult to solve. Conventional iterative methods [17], such as the
conjugate gradient method (CG), converge very slowly. To overcome
this difficulty, two methods are available. One method is to construct
highly efficient preconditioners for conventional iterative algorithms
(CA). The most effective preconditioner, which is proposed in [21], is
constructed by applying the following absorbing boundary condition
on the outer surface Γ:

n× n×E− n× H̄ = n× n×Einc − n× H̄inc (9)

Applying the FEM process to Eq. (9), a sparse FEM matrix M
can be obtained, which is a good approximation of the BEM matrix
in many cases. As a result, M can be used in constructing efficient
preconditioners of Eq. (1).

Another efficient method is to construct effective iterative solvers.
In [20], an iterative solver based on the Schur decomposition algorithm
(DA) was proposed, which has been proven very effective to solve
FEBI linear systems. Briefly speaking, the FEBI linear system can
be rewritten as: [

K B′
P ′ Q

] [
E
H̄s

]
=

{
0
b

}
(10)

K =
[

KII KIS

KSI KSS

]
, B′ =

[
0
B

]
, P ′ = [ 0 P ]

Applying the Schur decomposition, Eq. (10) can be decoupled into two
linear systems: [

Q− P ′K−1B′] H̄s = b (11)

KE = −B′H̄s (12)

As the electric unknowns E are eliminated, solving Eq. (11) is
much easier than solving Eq. (1) with an iterative solver. After Eq. (11)
is solved, E can be obtained by solving Eq. (12) with an appropriate
solver.
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In both of above methods, a multiplication of the inverse FEM
matrix to a vector is involved in each iteration, which is equivalent
to the solution of a FEM linear system. However, the FEM matrix
involved in the DA-based method is smaller than that in the ABC
preconditioned CA. What is more, as demonstrated in [20], the DA-
based method outperforms the ABC preconditioned CA in convergence
for many problems. For these reasons, the DA-based method is
adopted in this paper, and the stabilized bi-conjugate gradient solver
(BCGSTAB) [18] is applied for solving Eq. (11).

The BCGSTAB algorithm is an advanced version of the BiCG
algorithm. It outperformed the CG algorithm for many problems. The
deficiency of BCGSTAB is that the convergence behavior is erratic,
and its convergence cannot be guaranteed in theory. For some very ill-
conditioned linear systems, such as the edge-based FEM linear systems,
it may dissipate. For this reason, many people prefer to use the CG
algorithm. However, for some ill-conditioned linear systems, the CG
algorithm is also hard to converge, though the convergence behavior
of CG is monotonous. If some strategy are adopted to improve the
condition number of the matrix, such as a suitable preconditioner is
applied, the BCGSTAB algorithm rarely dissipate, and can converge
rapidly to the accurate solution, as is the case especially in the solution
of BEM linear systems [19]. In this paper, the Schur decomposition
algorithm is used in combination with the BCGSTAB algorithm, which
exhibits a superior convergence in the solution of scattering problems
of inhomogeneous media, as shown in our numerical results.

One important factor that affects the efficiency of the DA-based
method is the solution of the FEM linear system in iteratively solving
Eq. (11). As the FEM matrix is highly ill-conditioned, the classical
iterative methods, such as ICCG, SSORCG, etc., converge very slowly.
What is more, the iterative process has to restart when the right-hand
side is changed. In this paper, the multifrontal algorithm is applied to
solve the FEM linear system, which is more efficient and more stable
compared with iterative solvers.

The multifrontal algorithm is an advanced version of the frontal
algorithm proposed by Irons [22], which was designed especially for
large sparse FEM linear systems. In essence, this algorithm is a
right-looking version of the LU decomposition algorithm. However,
it partitions the whole factorization process into the factorization of a
number of small dense frontal matrices, i.e., frontal matrices. During
factorization, only the frontal matrix remains in the core memory. The
factorized equations are stored in the out-of-core memory. Through
this strategy, the memory needed can be reduced to minimal, and
thus very large problem can be solved. Compared to the conventional
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LU factorization algorithms, the multifrontal algorithm has several
advantages: an efficient out-of-core scheme, effective vector processing
on dense frontal matrices, and more liable to parallelize, etc. When
applied in the solution of FEBI linear systems, the FEM matrix need
to be factorized only once with the multifrontal algorithm. Only the
forward substitution and backward substitution need to be performed
during the iteration, which is really attractive compared to iterative
solvers.

Based on the above algorithm, a general, accurate, and efficient
code has been developed for scattering problems. In the following
section, the accuracy of FEBI-MLFMA in different kinds of problems
and the convergence property of the proposed DA-BCGSTAB
algorithm are investigated in details by simulating several complex
inhomogeneous targets.

3. NUMERICAL RESULTS

In this section, some numerical experiments are performed to
investigate the performance of the described algorithm. In our tests,
the residual error of iterative solvers is set to −40 dB in all examples.
The first example is a perfectly conducting sphere with a diameter of
2λ, which is coated with a 0.017λ thick lossy dielectric layer. The
relative dielectric constant of the coating is εr = 4.0− j, and µr = 1.0.
In order to use FEBI-MLFMA, the problem is discretized into 14642
tetrahedrons, and the average mesh length is 0.075λ. As a result, 25131
unknowns were generated. In this problem, 3-level MLFMA is used,
and the time used for filling the FEBI matrix is 17.65 s. The bi-static
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Figure 2. Bi-static radar cross sections of a dielectric-coated sphere
with the relative permittivity εr = 4− j.
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Figure 3. Convergence history of different solvers in the solution of
scattering by the dielectric-coated sphere.

radar cross section (RCS) computed with FEBI-MLFMA is plotted in
Fig. 2. The comparison with the exact Mie series solution is given and
excellent agreement is found.

In order to test the efficiency of the suggested DA-BCGSTAB
algorithm, the convergence characteristics of residual errors versus
iteration number of DA-CG, DA-BCG, DA-BCGSTAB and the
conventional CG algorithm for the dielectric-coated sphere are shown
in Fig. 3, from which it can be seen that the DA-based iterative
methods can converge much faster than conventional CG iterative
methods. And the convergence number was further reduced when DA-
BCGSTAB was used compared with DA-CG.

Table 1 displays the iteration number and CPU time used by the
three different iterative methods. As can be seen from the table, the
number of iterations and the CPU time used by the DA-BCGSTAB
method are 19 and 4.26 s, respectively, 45 and 37.4 times smaller than
the conventional CG algorithm, which shows the great advantage of
the DA algorithm.

In the DA algorithm, the total LU factorization time used by the
multifrontal method is 2.45 s. Before factorization, the total number of
nonzero elements in the FEM matrix K is 197455. After factorization,
the total number of nonzero elements is 2132294, about 9.8 times
increased. However, the CPU time used per iteration by the DA
method is about 0.2 s, only 22.5% to the conventional CG method.
This is because the addition of nonzero elements is small compared
with the nonzeros in the whole matrix.

In order to investigate the ability of FEBI-MLFMA in simulating
inhomogeneous dielectric scatters, a spherical Luneburg lens with
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Table 1. Iteration number and CPU time (s) needed by different
solvers in the solution of scattering by the coated sphere.

Solver iterations
Total

CPU time (s)
CPU time (s)
Per iteration

CA-CG 883 159.2 0.1803
DA-CG 35 7.55 0.2157

DA-BCG 37 7.58 0.2049
DA-BCGSTAB 19 4.26 0.2242

relative permittivity εr = 2 − (r/a)2 was simulated, where r is the
distance from the center of the sphere, a is the radius, k0a = 5.0.
After discretization, a total of 70836 FEM unknown edges and 5679
BEM unknown edges are generated. In this problem, 3 level MLFMA
is used. As the permittivity of the lens is not uniform, this problem
has no analytical solutions. One method to validate the accuracy of
the algorithm is to compare the results with the data given in [23].
However, another simple but accurate method is provided in this paper.
As the permittivity is a slowly varied function of r, the sphere is firstly
partitioned into 20 co-concentric spheres, denoted as Si, 1 ≤ i ≤ 20.
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Figure 4. Bistatic RCS of a spherical Luneburg lens with relative
permittivity εr = 2 − (r/a)2, the circle represents data given by the
Mie series solution. (a) HH polarization, (b) VV polarization.
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The radius of Si is determined by the relation: r = a
√

2− εri and
εri− εri−1 = 0.05. In each layer between two adjacent sphere surfaces,
the variation of the permittivity is no more than 0.05 and can be
neglected. In this way, the Mie series solution can be used. The
comparison of the bistatic RCS parameter given by FEBI-MLFMA
and the Mie series solution was shown in Fig. 4. Both solutions agreed
fairly well. Note that in Fig. 4, the Bistatic RCS are normalized to the
geometrical cross section in order to keep consistence with the results
in [23].

The convergence characteristics of residual errors versus iteration
number of the DA-CG, DA-BCG and DA-BCGSTAB algorithm for
the spherical Luneburg lens are displayed in Fig. 5, from which we can
see that the DA-BCGSTAB algorithm still converges faster than DA-
CG and DA-BCG for this problem. Comparatively, DA-BCGSTAB is
more stable than DA-BCG. Table 2 depicted the iteration number and
CPU time used by the various methods.

Table 2. Iteration number and CPU time (s) needed by different
solvers in the solution of scattering by the spherical Luneburg lens.

Solver iterations
Total

CPU time (s)
CPU time (s)
Per iteration

CA-CG >1000 — —
DA-CG 45 83.5 1.856

DA-BCG 51 92.7 1.818
DA-BCGSTAB 38 74.8 1.968
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Figure 5. Convergence history of different solvers in the solution of
scattering by the spherical Luneburg lens.
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Figure 6. Bistatic RCS of the anisotropic sphere, the circle represents
data given by the BOR-FEM method. (a) HH polarization, (b) VV
polarization.

Next, the ability of FEBI-MLFMA in simulating the scattering
of anisotropic dielectrics is examined. The problem is an anisotropic
sphere with a diameter of 1λ, and the relative permittivity in the r, θ,
φ direction is:

εr =

[ 2.0− 4.0j
2.5− 5.0j

2.5− 5.0j

]

Note that in the x, y, z direction, the permittivity is a 3× 3 full
tensor, and is varied with the variation of θ and φ. To accurately
simulate this dielectric, the 5 point Gauss integration was used in the
formation of the FEM matrix. The problem is divided into 54715
tetrahedrons, with 66949 unknown FEM edges and 6102 unknown
BEM edges. For validation, the bistatic RCS parameter computed by
FEBI-MLFMA and by the BOR-FEM method was depicted in Fig. 6.
As can be seen, both curves are totally coincident, which demonstrated
the accuracy of FEBI-MLFMA in simulating anisotropic dielectrics.
In this problem, the conventional CG algorithm used more than 1000
iterations to converge, the DA-CG algorithm used 46 iterations and
69.4 s CPU time, while DA-BCGSTAB used only 15 iterations and
23.4 s CPU time. Fig. 7 showed the convergence curves of the different
algorithms.

The last example is the scattering of a metal-dielectric compound
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Figure 7. Convergence history of different solvers in the solution of
scattering by an anisotropic sphere.

Figure 8. Configuration of the conducting-dielectric compound
cylinder, a = 5.08 cm, b = 10.16 cm, d = 7.62 cm.

cylinder. The dielectric part is formed by plexiglass (εr = 2.6), the
metal part is aluminum. The configuration and dimension of the
structure are illustrated in Fig. 8. In our FEBI-MLFMA simulation,
aluminum is treated as PEC for simplicity. Firstly, the cylinder
was meshed into 15408 tetrahedrons, with 21027 FEM edges and
4434 BEM edges generated. In this problem, 3 level MLFMA is
used. The computed monostatic RCS parameter for this case and the
measurement data are depicted in Fig. 9. In the figure, the two sets of
data are nearly coincident except some small discrepancies, which may
be because PEC is used to replace the aluminum in the FEBI-MLFMA
simulation. However, our computed results using FEBI-MLFMA have
excellent agreements with the computed results given in [24].

For comparison, the problem is computed repeatedly using DA-
CG and DA-BCGSTAB with incident angles from θ = 0◦ to θ =
180◦, and the iteration numbers at different angles are recorded and
depicted in Fig. 10. From the figure, DA-BCGSTAB showed a much



102 Ping, Cui, and Lu

-60

-50

-40

-30

-20

-10

0

0

30

60

90

120

150

180

210

240

270

300

330

-50

-40

-30

-20

-10

0

 Simulation

 Measured

M
o

n
o

st
a
ti

c
 R

C
S

(d
B

sm
)

-60

-50

-40

-30

-20

-10

0
0

30

60

90

120

150

180

210

240

270

300

330

-50

-40

-30

-20

-10

0

Simulation

 Measured

M
o
n
o
st

a
ti

c
 R

C
S

 (
d
B

sm
)

(a) (b)

Figure 9. Computed and measured backscatter cross sections at
3.0GHz for the inhomogeneous conducting-dielectric cylinder. (a) HH
polarization, (b) VV polarization.
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Figure 10. Number of iterations of DA-CG and DA-BCGSTAB for
the inhomogeneous conducting-dielectric cylinder.

better convergence behavior than DA-CG at all angles. Once again,
the efficiency of the DA-BCGSTAB algorithm in solving scattering
problems of inhomogeneous media was demonstrated.

4. CONCLUSION

In this paper, the FEBI-MLFMA method is applied to model the
scattering problems of inhomogeneous media. In order to improve
efficiency, the discrete FEBI linear system is firstly decoupled with
the Schur decomposition algorithm. Then the BCGSTAB iterative
solver combined with the multifrontal solver is applied. Through
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the presented numerical results, it can be concluded that the FEBI-
MLFMA method is very accurate and powerful in simulating scattering
problems of inhomogeneous media, and the combination of DA-
BCGSTAB with the multifrontal algorithm is a very efficient method
for the FEBI-MLFMA solution of dielectric-scattering problems.
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