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Abstract—This paper derives its link of direction of arrival (DOA)
and direction of departure (DOD) estimation problem for multi-
input multi-output (MIMO) radar to the trilinear model. With
the exploitation of this link, we present a trilinear decomposition-
based blind algorithm for angle estimation in MIMO radar. After
the algorithmic presentation and discussions for identifiability results,
trilinear decomposition-based angle estimation under different array
conditions has also been investigated. Our proposed algorithm works
well without either spectral peak searching or pair matching, has
better angle estimation performance than ESPRIT, and even supports
small sampling sizes. Simulation trials testify that the merits of our
algorithmic performance are in collaboration with theoretical findings.

1. INTRODUCTION

Well-established by the original concept of multi-input multi-output
(MIMO) radar, which takes advantage of multiple antennas to
simultaneously transmit diverse waveforms that could be freely chosen
and utilizes multiple antennas to receive the reflected signals, many
potential benefits have been demonstrated over a conventional phased-
array radar, see [1–4] and references therein. To the best of our
knowledge, compared with other systems with a single transmit
antenna, MIMO radar systems have additional degrees of freedom
that can overcome fading effect, enhance space resolution, strengthen
parameter identifiability and improve target detection performance [5–
9]. Direction of arrival (DOA) and direction of departure (DOD)

Corresponding author: X. Zhang (fei zxf@163.com).



102 Zhang et al.

estimation algorithms for MIMO radar have been investigated in [10–
12]. [10, 12] have discussed the ESPRIT algorithm which exploited the
invariance property of both the transmit array and the receive array
for direction estimation in MIMO radar systems, while [11] presented
another ESPRIT algorithm without pairing, whose complexity was
lower than [10]; nevertheless, both of them have almost the same
angle estimation performance. Notably, most relevant works have been
on the basis of transmit/receive uniform linear arrays (ULA). In this
paper, blind joint DOA and DOD estimation for MIMO radar with
different transmit/receive array manifolds is investigated in this paper.

ESPRIT is a certain technique of closed-form eigen structure-
based parameter estimation that requires the data to possess certain
“invariance” structures. In the past decades, ESPRIT-based ideas
have revolutionized sensor array signal processing. Interestingly, a
general principle underlying ESPRIT has flourished other scientific
fields and disciplines independently. As commonly referred in a
number of ways, the principle includes trilinear model or trilinear
decomposition. It is well known that most of signal processing
methods are based on the theory of matrix, or the bilinear model.
In general, matrix decomposition is not unique, since inserting a
product of an arbitrary invertible matrix and its inverse in between
two matrix factors preserves their product. Note also that matrix
decomposition can be unique only if one imposes additional problem-
specific structural properties including orthogonality, Vandermonde,
Toeplitz, constant modulus or finite-alphabet constraints. In contrast
to the case of matrices, trilinear model or trilinear decomposition
has a distinctive and attractive feature: It is often unique [13]. The
uniqueness of trilinear decomposition is of great practical significance,
which is crucial in many applications such as psychometrics and
chemistry. Thus, trilinear decomposition is naturally related to linear
algebra for multi-way data. In the signal processing field, trilinear
decomposition can be regarded as a generalization of ESPRIT and
joint approximate diagonalization ideas [14, 15], and has been widely
used in blind signal detection [16–18] and parameter estimation [19–
22].

Parameter identifiability of MIMO radar [7] is defined as the
maximum number of targets that can be uniquely identified by the
radar. The identifiability results (based on ULA) have been shown
that the waveform diversity afforded by MIMO radar enables the
significantly improved parameter identifiability over its phased-array
counterpart [2, 7]. In this paper, we give the identifiability results with
reference to different transmit/receive array manifolds. We construct
the trilinear model to deal with the problem of angle estimation for
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MIMO radar, and then derive a trilinear decomposition-based angle
estimation algorithm. Simulation results illustrate the merits of our
proposed algorithm and its better angle estimation performance than
ESPRIT. We also present numerical results for different array antenna
manifolds and a variety of data lengths.

The rest of this paper is organized as follows. Section 2 develops
data model. Section 3 and Section 4 are devoted to the algorithmic
presentation, identifiability results and angle estimation. Section 5
offers simulation results, while Section 6 summarizes our conclusions.

Notation: (.)∗, (.)T , (.)H , (.)† and ‖ ‖F denote the complex conju-
gation, transpose, conjugate-transpose, pseudo-inverse operations and
Forbenius norm, respectively. IP is a P × P identity matrix; ◦ is
Khatri-Rao product; ⊗ is the Kronecker product. 0I is an I×1 vector
of all zeros. Dm(.) is to extract the mth row of its matrix argument
and construct a diagonal matrix out of it. angle (.) returns the phase
angles for each element of complex array.

2. DATA MODEL

Consider a bistatic MIMO radar system, which includes an M -element
transmit array and an N -element receiver array. We assume that there
are K uncorrelated targets located at the same range, and the output
of the matched filters at the receiver can be expressed as [10],

X = [ar(ϕ1)⊗ at(θ1),ar(ϕ2)⊗ at(θ2), . . . ,ar(ϕK)⊗ at(θK)]BT (1)

where θk = (θ′k, θ
′′
k), ϕk = (φ′k, φ

′′
k) are the transmit elevation-azimuth

angles and receive elevation-azimuth angles of the kth target with
respect to the transmit array normal and the receive array normal,
respectively; B ∈ CL×K consists of the phases and amplitudes of
the K sources for L samples, in which phase is caused by Doppler
frequency, amplitude is influenced mainly by the reflection coefficients,
transmit/receive gain and path losses, etc; ar(ϕk) ⊗ at(θk) is the
Kronecker product of the transmit and the receive steering vectors
for the kth target. The signal model in (1) can be expressed as

X = [AT ◦AR]BT =




X1

X2
...

XM


 =




ARD1(AT )
ARD2(AT )

...
ARDM (AT )


BT (2)

where AT = [at(θ1),at(θ2), . . . ,at(θK)] ∈ CM×K and AR =
[ar(ϕ1),ar(ϕ2), ...,ar(ϕK)] ∈ CN×K are the transmit direction matrix
and the receive direction matrix, respectively. AT ◦AR is Khatri-Rao
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product, Dm(.) is to extract the mth row of its matrix argument and
construct a diagonal matrix out of it. Hence, Xm can be denoted as

Xm = ARDm(AT )BT , m = 1, . . . , M (3)

In the presence of noise, the signal model becomes X̃m =
ARDm(AT )BT + Vm, m = 1, . . . ,M , where Vm is the received noise
corresponding to the mth slice. Eq. (3) is also denoted with trilinear
model [13],

xm,n,l =
∑K

k=1
At(m, k)Ar(n, k)B(l, k),

m = 1, . . . , M ; n = 1, . . . , N ; l = 1, ..., L (4)
where Ar(n, k) stands for the (n, k) element of the matrix Ar, and
similarly for the others.

Notably, Xm = ARDm(AT )BT , m = 1, . . . , M , can be interpreted
as slicing the 3-D data in a series of slices (2-D data) along the spatial
direction. The symmetry of the trilinear model in (4) allows two more
matrix system rearrangements, in which we have

Yn = BDn(AR)AT
T , n = 1, . . . , N (5)

Zl = AT Dl(B)AT
R, l = 1, . . . , L (6)

3. TRILINEAR DECOMPOSITION AND ITS
IDENTIFIABILITY RESULTS

3.1. Algorithmic Presentation

Trilinear Alternating Least Square (TALS) algorithm is the common
data detection method for trilinear model [17]. The principle of TALS
can be used to fit low rank trilinear models on the basis of noisy
observations. The basic idea behind TALS can be briefly shown for
three major steps: 1) Each time update one matrix using least squares
(LS) conditioned on previously obtained estimates for the remaining
matrices; 2) proceed to update the other matrices; 3) repeat until
convergence of the LS cost function. In this section, we discuss TALS
algorithm in detail as follows. With respect to (2), LS fitting is

min
AT ,AR,B

∥∥X− [AT ◦AR]BT
∥∥

F
(7)

where ‖ ‖F stands for the Frobenius norm, X̃ is the noisy signal. LS
update for B is

B̂T = [Ĥ ◦ Â]+X̃ (8)

where Â and Ĥ are previously obtained estimates of A and H,
respectively.
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According to the symmetry of the trilinear model, we form the
following matrices,

Y =




Y1

Y2
...

YN


 = [AR ◦B]AT

T (9)

where Yn is shown in Eq. (5). Meanwhile, with respect to (9), LS
fitting is

min
AT ,AR,B

∥∥∥Ỹ − [AR ◦B]AT
T

∥∥∥
F

(10)

where Ỹ is the noisy signal. LS update for ÂT is

ÂT
T = [AR ◦B]+Ỹ (11)

Similarly, according to (6), we obtain

Z =




Z1

Z2
...

ZL


 = [B ◦AT ]AT

R (12)

LS fitting is
min

AT ,AR,B

∥∥∥Z̃− [B ◦AT ]AT
R

∥∥∥
F

(13)

where Z̃ is the noisy signal. LS update for ÂT is

ÂT
R = [B ◦AT ]+Z̃ (14)

According to (8), (11) and (14), matrices B, AT and AR are updated
with conditioned least squares, respectively. All the matrix updates
will stop until convergence. For zero-mean white Gaussian noise, TALS
yields rnaximum likelihood (ML) estimates [23]. Under mild regularity
conditions, ML is asymptotically unbiased and asymptotically achieves
the Cramér-Rao bound (CRB). While TALS algorithm is quite easy
to process and guaranteed to converge, its major shortcomings lies on
the occasional slowness of the convergence steps [23]. TALS algorithm
can be initialized randomly, or initialized by eigen-decomposition to
accelerate convergence. To overcome the weakness of TALS, the
COMFAC algorithm [24] is hereby adopted, which essentially utilizes a
fast implementation of TALS, and speeds up the LS fitting for trilinear
decomposition.
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3.2. Identifiability Results

Theorem 1 [25]: Xm = ARDm(AT )BT , m = 1, . . . ,M , where
AT ∈ CM×K , AR ∈ CN×K and B ∈ CL×K , when matrices AT , AR

and B are full k-rank [17], if the parameter identifiability satisfies

min(M,K) + min(N, K) + min(L, K) ≥ 2(K + 1) (15)

then AT , AR and B and are unique up to permutation and scaling of
columns.

Notably, if the receive array is a ULA, AR should be a
Vandermonde matrix, and hence, the discussion for identifiability
should be

min(N + min(M,K), 2K) + min(L,K) ≥ 2(K + 1) (16)

When the transmit array is a ULA, AT has been with
Vandermonde characteristic, the identifiability results yields

min(N,K) + min(M + min(L,K), 2K) ≥ 2(K + 1) (17)

If the transmit array and receive array are both ULAs, matrices
of AT and AR should be with Vandermonde structure, hence, the
identifiability condition should be

M + N + min(L,K) ≥ 2K + 2 (18)

Generally we have L ≥ K, and then Eq. (18) becomes M + N ≥
K +2. The maximal number of targets which our algorithm can detect
Kmax = M + N − 2 or K ≤ M + N − 2.

Suppose that K ≥ L, identifiability condition becomes M + N +
L ≥ 2K +2, in that case our algorithm can even support small sample.

For the received noisy signal, we use trilinear decomposition to
obtain the estimated matrices, in which we have ÂT = ATΠ∆1 +
N1, ÂR = ARΠ∆2 + N2, B̂ = BΠ∆3 + N3, where Π is a
permutation matrix, ∆1, ∆2, ∆3 are diagonal scaling matrices
satisfying ∆1∆2∆3 = IK , N1, N2 and N3 are noise matrices. Within
trilinear decomposition, permutation ambiguity and scale ambiguity
are inherent. Notably, the scale ambiguity can be resolved by means
of normalization.

4. ANGLE ESTIMATION

We firstly use trilinear decomposition to attain the direction matrix,
and then obtain the estimates for angles according to LS principle.
Different array conditions are considered in this section.
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4.1. Uniform Linear Array (ULA)

We consider that the receive array is a ULA with half-wavelength
antenna spacing, for which only one-dimension angle can be estimated.
Define ϕk = (φ′k, φ

′′
k), where φ′k, φ

′′
k are the receive elevation angle and

the azimuth angle of the kth target, respectively; assume φ′k = 90◦ in
the ULA. The receive array steer vector for ϕk is given by ar(ϕk) =
[1, e−jπ sin φ′′k , . . . , e−jπ(N−1) sin φ′′k ]T , from which we get

h = −angle(ar(ϕk)) (19)

After this operation, Eq. (19) becomes h = [0, π sinφ′′k, ..., π(N −
1) sinφ′′k]

T , then LS principle is adopted to estimate sinφ′′k.
In the following steps, the estimated receive array steer vector

âr(ϕi) (the ith column of the estimated matrix ÂR) is processed
through normalization, which also resolves the scale ambiguity.
Moreover, the normalized sequence is processed to attain ĥ with
respect to Eq. (19). Finally, LS principle is adopted to obtain the
estimated value of sinφ′′i .

We have LS fitting given by

P1c = ĥ

where

P1 =




1
1
...
1

0
π
...

π(N − 1)


 (20)

c =
[

f0

fi

]
, in which fi represents the estimated value of sinφ′′i .

Obviously, the LS solution for c is shown as
[

f̂0

f̂i

]
= (PT

1 P1)−1PT
1 ĥ

Correspondingly, the receive angle φ′′i can be estimated via

φ′′i = sin−1
(
f̂i

)
(21)

Provided that the transmit array is also a ULA, the matrices AT

and AR should be also with Vandermonde characteristic, and hence,
we can use the same method to estimate transmit angle.
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4.2. Uniform Circular Array (UCA)

We also consider that a UCA is adopted by the receive array, then the
receive array steer vector, for which ϕk = (φ′k, φ

′′
k), can be written as

ar(ϕk) =




exp (j2πR sin(φ′k) cos (φ′′k − 0) /λ)
exp

(
j2πR sin(φ′k) cos

(
φ′′k − 2π

N

)
/λ

)
...

exp
(
j2πR sin(φ′k) cos

(
φ′′k − 2π(N−1)

N

)
/λ

)


 (22)

where R is the radius of UCA. With respect to (22), we firstly divide
each column by the first element, then remove the first element to get
an new vector a1, and finally obtain angle (a1), which is shown




ξ sinφ′k cosφ′′k
(
cos 2π

N − 1
)

+ ξ sinφ′k sinφ′′k sin 2π
N

ξ sinφ′k cosφ′′k
(
cos 2×2π

N − 1
)

+ ξ sinφ′k sinφ′′k sin 2×2π
N

...
ξ sinφ′k cosφ′′k

(
cos (N−1)2π

N − 1
)

+ ξ sinφ′k sinφ′′k sin (N−1)2π
N




(23)

where ξ = 2πR/λ. In Eq. (23), ith element is divided by (cos 2πi
N − 1),

i = 1, . . . , M − 1, then we get

g =




c0 + c1 sin 2π
N /

(
cos 2π

N − 1
)

c0 + c1 sin 2×2π
N /

(
cos 2×2π

N − 1
)

...
c0 + c1 sin (N−1)2π

N /
(
cos (N−1)2π

N − 1
)




(24)

where c0 = ξ sinφ′k cosφ′′k, c1 = ξ sinφ′k sinφ′′k. We also use LS principle
to estimate DOA. Throughout trilinear decomposition, the estimated
direction vector âr(ϕk) is attainable. The estimated direction vector is
processed like mentioned above to get ĝ. LS fitting is hereby referred
as

P2

[
c0

c1

]
= ĝ

where

P2 =




1 sin 2π
N /

(
cos 2π

N − 1
)

1 sin 2×2π
N /

(
cos 2×2π

N − 1
)

...
...

1 sin (N−1)2π
N /

(
cos (N−1)2π

N − 1
)




(25)
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Similarly, LS principle for the estimate of
[

c0

c1

]
is shown

[
ĉ0

ĉ1

]
=

(
PT

2 P2

)−1
PT

2 ĝ (26)

Furthermore, DOA estimation can be given by

φ′k = sin−1

(√
ĉ2
0 + ĉ2

1/ξ

)
(27)

φ′′k = tan−1 (ĉ1/ĉ0) (28)

4.3. L-shaped Array

We consider an L-shaped array with sensors at M different locations
as shown in Fig. 1. A uniform linear array (ULA) containing M1

elements is located in Y -axis, and the other ULA containing M2

(M2 + M1 = M + 1) elements is located in X-axis. Antenna spacing
is half-wavelength. The receive array steer vector for ϕk = (φ′k, φ

′′
k) is

divided into two parts, which is shown as follows

ax(ϕk)=
[

1 e−jπ cos φ′k sin φ′′k . . . e−jπ(M2−1) cos φ′k sin φ′′k
]T (29a)

ay(ϕk)=
[

1 e−jπ sin φ′k sin φ′′k . . . e−jπ(M1−1) sin φ′k sin φ′′k
]T (29b)

According to (29a) and (29b), we obtain

gx = −angle (ax(ϕk)) (30a)
gy = −angle (ay(ϕk)) (30b)

Define mx = cosφ′k sinφ′′, ny = sin φ′k sinφ′′k, then Eqs. (30a) and (30b)
becomes

gx = [0, πmx, . . . , π(M2 − 1)mx]T

gy = [0, πny, . . . , π(M1 − 1)ny]T .

1
1,...,M

2
1,...,M

Y

X

Z d

Figure 1. The structure of an L-shaped array.
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The estimated receive array steer vector âr(ϕi) (the ith column
of the estimated matrix ÂR) is processed through normalization, and
divided two parts like (29a) and (29b), and then normalized sequences
are processed to attain gx and gy according to Eqs. (30a) and (30b),
respectively. LS principle is used to obtain the estimated value of
cosφ′k sinφ′′ and sinφ′k sinφ′′k.

Similarly, LS fitting is denoted as

P1c = gx

where P1 is shown in Eq. (20),

c1 =
[

m0

mx

]

The estimate for c1 adopted by LS principle is written as
[

m̂0

m̂x

]
= (PT

1 P1)−1PT
1 ĝ1 (31)

Meanwhile, we have LS fitting for gy

P1c2= gy

where

c2 =
[

n0

ny

]

Then the estimate for c2 becomes[
n̂0

n̂y

]
= (PT

1 P1)−1PT
1 ĝ2 (32)

DOA estimation is finally shown as

φ̂′′ki
= sin−1

(√
m̂2

x + n̂2
y

)
(33)

ϕ̂′k = tan−1 (n̂y/m̂x) (34)

In sum, we have deducted trilinear decomposition-based blind
angle estimation for MIMO radar and shown the detailed steps as
before. Our algorithm firstly applies trilinear decomposition to obtain
the estimated direction matrices, then estimate angles correspondingly
with respect to LS principle.

Computational cost can be evaluated as follows. In our algorithm,
the complexity of each TALS iteration is O(K3 + MNLK), and the
number of iterations depends on the three way data to be decomposed.
In contrast, ESPRIT normally requires O(LM2N2 + M3N3 + K3).
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5. SIMULATION RESULTS

The received noisy signal is X̃m = ARDm(AT )BT + Wm, m =
1, . . . , M , where Wm is the additive Gaussian white noise (AWGN)
matrix. We define SNR

SNR = 10 log10

∑M
m=1

∥∥ARDm(AT )BT
∥∥2

F∑M
m=1 ‖Wm‖2

F

dB (35)

We present Monte Carlo simulations to assess the angle estimation
performance of the proposed algorithm. The number of Monte Carlo
trials is 500. Note that: L is the number of snapshots.

Define root mean squared error (RMSE) as RMSE =√
1

500

∑500
m=1 (θ̂′,m − θ′)2 + (θ̂′′,m − θ′′)2, where θ̂′,m, θ̂′′,m are the

estimated transmit elevation-azimuth angles of the mth Monte Carlo
trial, respectively. RMSE of the receive angles can also be defined as
above.

Firstly, we consider that transmit array and receive array are
both ULAs in a bistatic MIMO radar. M = 8 and N = 6 is
used in the simulations. Three noncoherent sources are assumed
to be located at angles (θ′′1 , φ′′1) = (10◦, 15◦), (θ′′2 , φ′′2) = (20◦, 25◦)
and (θ′′3 , φ′′3) = (30◦, 35◦), respectively. We firstly investigate the
convergence performance of our proposed algorithm in this simulation.
The sum of squared residuals (SSR) in the trilinear fitting is defined as
SSR =

∑
m,n,l [x̃m,n,l −

∑K
k=1 At(m, k)Ar(n, k)B(l, k)]2, where x̃n,k,i

is the noisy data. Define DSSR = SSRi − SSR0, where SSRi is
the SSR of the ith iteration, SSR0 is the SSR in the convergence
condition. Fig. 2 presents the algorithmic convergence performance of
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our algorithm with L = 50 and SNR = 20 dB. From Fig. 2, COMFAC
algorithm has faster convergence than TALS.

Figure 3 shows angle estimation RMSE results of our proposed
algorithm. The algorithmic simulation have been verified over 100
Monte Carlo trials in condition of SNR = 8 dB. From Fig. 3, we
find that our algorithm works well. Then we present the algorithmic
comparison (in contrast to ESPRIT and multi-invariance MUSIC
algorithm [26]) with L = 40. Fig. 4 depicts RMSE of estimation
for three targets under different SNR. From Fig. 4, we find that our
algorithm has better angle estimation than ESPRIT algorithm [10],
and our algorithm has slightly better angle estimation than multi-
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Figure 4. RMSE of estimation for two targets with different SNR
(both ULAs, and L = 40).
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invariance MUSIC algorithm. TALS, which is used for trilinear
decomposition in our algorithm, can be optimal for additive i.i.d.
Gaussian noise [23], and hence, our algorithm has improved angle
estimation performance than ESPRIT algorithm.

Figure 5 presents angle estimation performance of our algorithm
with different numerical values of L. It is indicated in Fig. 5 that with
the multiplies of L increasing, angle estimation performance via our
proposed method is improving. Fig. 5 also shows small sample results:
L = 5. It is clear that our algorithm can even perform well for a quite
small sampling sizes.
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targets with both UCAs (SNR = 20dB).
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Figure 7. Angle estimation for three targets with different L (both
UCAs).
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Then we consider that transmit array and receive array
are both uniform circular arrays (UCA) in MIMO radar. 8-
element transmit array and 8-element receive array are used in
the simulation, both of which R is half-wavelength. Three
noncoherent targets are hereby assumed to be located at
angles (θ′1, θ

′′
1 , φ′1, φ

′′
1) = (10◦, 15◦, 12◦, 17◦), (θ′2, θ

′′
2 , φ′2, φ

′′
2) =

(20◦, 25◦, 22◦, 27◦), (θ′3, θ
′′
3 , φ′3, φ

′′
3) = (30◦, 35◦, 32◦, 37◦), respectively.

Fig. 6 shows angle estimation RMSE results of the proposed algo-
rithm for all three targets over 100 Monte Carlo simulations with
SNR = 20dB. From Fig. 6, we find that our algorithm works well in
condition of both UCAs. Moreover, Fig. 7 presents RMSE of estima-
tion for three targets under different L. From Fig. 7, it is also noted
that the angle estimation performance of our proposed algorithm is
improved with L increasing.

Furthermore, both L-shaped arrays have been adopted for trans-
mit/receive array of MIMO-radar in the simulations followed by. 9-
element transmit array and 9-element receive array have been used
in the simulation. We assume that the three noncoherent tar-
gets have been located at angles (θ′1, θ

′′
1 , φ′1, φ

′′
1) = (10◦, 15◦, 10◦, 15◦),

(θ′2, θ
′′
2 , φ′2, φ

′′
2)=(20◦, 25◦, 20◦, 25◦), (θ′3, θ

′′
3 , φ′3, φ

′′
3)=(30◦, 35◦, 30◦, 35◦),

respectively. Fig. 8 presents angle estimation results of the proposed
algorithm for all three targets over 100 Monte Carlo simulations with
SNR = 20dB. From Figs. 8–9, we find that our algorithm has mer-
itorious performance with both L-shaped arrays. Angle estimation
performance of our algorithm with different values of L is proposed
in Fig. 9. Clearly, it is indicated in Fig. 9 that similar improvements
for angle estimation performance of our algorithm comes out with L
increasing.
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Figure 8. Angle estimation results of the proposed algorithm for all
three targets with both L-shaped arrays (SNR = 20 dB).



116 Zhang et al.

10 20 30
10

-2

10
-1

10
0

10
1

SNR/dB

R
M

S
E

 /
d
e
g

DOD of target 1

10 20 30
10

-2

10
0

10
2

SNR/dB

R
M

S
E

 /
d
e
g

DOA of target 1

10 20 30
10

-2

10
0

10
2

SNR/dB

R
M

S
E

 /
d
e
g

DOD of target 2

10 20 30
10

-2

10
0

10
2

SNR/dB

R
M

S
E

 /
d
e
g

DOA of target 2

10 20 30
10

-2

10
0

10
2

SNR/dB

R
M

S
E

 /
d
e
g

DOD of target 3

10 20 30
10

-2

10
0

10
2

SNR/dB

R
M

S
E

 /
d
e
g

DOA of target 3

Figure 9. Angle estimation for three targets with different L (both
L-shaped arrays).

6. CONCLUSION

In this paper, we have expanded the application of trilinear model,
and derived a blind angle estimation algorithm for MIMO radar.
Deductions for the proposed algorithm, as well as identifiability results,
have been presented with reference to several transmit/receive array
manifolds, independently. The usefulness of our method has been
verified that it has better performance of angle estimation than that
of ESPRIT, and can be compatible for different array conditions.
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