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Abstract—Inaccurate range estimates often restrict indoor position-
ing systems, resulting in a more remarkable drawback when using an
already-deployed IEEE 802.11 network. This is the case of the time de-
lay based location system that this paper deals with. The main causes
of these inaccuracies are multipath and non-line-of-sight (NLOS) ef-
fects. These effects can be solved to a large degree by characterizing
arrival times and range estimation errors. For this reason, this pa-
per analyzes multipath and NLOS effects involved in the round-trip
time (RTT) discrete measuring process, which is conducted before each
range estimate. RTT observations obtained in this process for differ-
ent real indoor environments provide useful statistical information that
allows to make the work extendable to other similar scenarios. More-
over, from this statistical information, the nodes in the network can
estimate several parameters of the range estimates distribution while
performing the location process. These are used to reduce the error
caused by multipath components and to predict and correct the NLOS
biases produced. In this way, the NLOS error is dynamically estimated
and corrected, achieving better results than classical approaches based
on static parameters.
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1. INTRODUCTION

In the recent past, global navigation satellite system (GNSS) has
changed for the better, with more signals, more satellites, and better
accuracy and integrity, all helping to open up new applications and
possibilities for the future [1–3]. However, the indoor environment
still remains nearly inaccessible for this system. In a parallel way,
WLAN technologies are likely to become more important than they
have ever been before as users and manufacturers find, in this
environment, new scenarios where positioning, navigation and timing
information are useful to them, and where GNSS cannot meet their
needs [4]. Whichever the technology is used, indoor device location is
a challenging research topic mainly due to multipath fading and non
line-of-sight (NLOS) propagation errors [5–7]. Hence, a key issue in
the design of a location system in this environment is measurements
and error characterization [8].

This paper analyzes the results of time of arrival (TOA)
measurements campaign performed at 2.4GHz in a real indoor
environment, using an already-deployed IEEE 802.11 network. TOA
systems have a serious problem in installing and maintaining hardware
for synchronization. However, the use of a round-trip time (RTT)
method removes the time synchronization requirement. In this paper,
the system utilized is a hardware estimator of the RTT between
two wireless nodes, a mobile user (MU) and an access point (AP),
which exchange several pairs of request-to-send (RTS) and clear-to-
send (CTS) frames [9]. In [10] this system was used to estimate the
location of an MU along an indoor route, with known fixed position
of several APs. In spite of the presence of a line-of-sight (LOS) path
between the MU and the AP, multipath components (MPC) alter the
point estimation, generating an observed delay profile (ODP) which
depends on the propagation channel and whose characterization will
improve the resulting distance estimation [11, 12].

Therefore, the first goal is to find an appropriate distribution
function for the description of RTT measurements. The most
widespread model in literature for characterizing the arrival times
is the ∆-K model [13]. Nevertheless, only a few references
address the issue of modeling arrival times at 2.4 GHz in indoor
scenarios, probably due to the difficulty of obtaining accurate TOA
measurements with conventional WLAN devices. In [14], a discrete-
time version of the ∆-K model is used to characterize the path
arrivals from a measurement campaign at 2.4 GHz and 5.8 GHz
in a real underground mine. However, the resulting propagation
characteristics significantly differ from those frequently encountered in
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more typical indoor environments. In this paper, the ∆-K model and
a nonhomogeneous Poisson process (NHPP) are analyzed for modeling
the RTT measurements.

RTT characterization allows to reduce the bias and the error
in distance estimation. As commonly adopted, this error obeys a
Gaussian distribution when the MU and the AP are in LOS [15]. This
feature is contrasted with actual estimations taken by the mentioned
RTT measuring system.

Apart from MPC distortion, if NLOS error is introduced, the
resulting distribution will be the sum of the previous Gaussian error
and another NLOS error frequently treated as Gaussian, Exponential,
Weibull or Gamma [15–17]. The Exponential distribution is the
simplest of these models, since it has only one unknown parameter.
Thus, in this paper, it is selected to characterize the NLOS error, and
a method for dynamically estimating its rate parameter is proposed.
In this way, NLOS error can be partially reduced through the prior
NLOS measurements correction method (PNMC) [16] which will focus
on the last part of the paper. As the final goal is to include this
work in a real-time application, the dynamic computation of PNMC
input arguments, rate parameter and window size will improve the final
distance estimation. Once again, this is corroborated through actual
measurements.

2. RTT MEASURING SYSTEM

This section makes a brief description of the RTT-based positioning
implementation carried out in [10] to locate an MU in an indoor
environment. The obtained RTT measurements can be modeled as
a discrete linear time-invariant (LTI) system whose response is studied
as well. The empirical result of this system is analyzed in the next
section.

2.1. Location Scheme

The hardware system described in [9] was used together with the
IEEE 802.11b RTS/CTS mechanism to measure the RTT. This system
consists of a printed circuit board (PCB) including a 16-bit clock
cycles counter which is activated by the departure of an RTS frame
from the WLAN adapter of the MU and stopped by the arrival of the
corresponding CTS response from the AP. The signals which stamp
these times are located on two leads of the MU’s baseband processor,
and they are clock synchronized, operating at 44 MHz. Therefore, the
theoretical maximum accuracy is 6.8m, which matches up with the
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range resolution for an IEEE 802.11b network [18]. However, several
statistical estimators and a simple linear regression model were assessed
in [19] in order to improve the discrete time resolution.

A driver interacts with the PCB through the PC Parallel Port.
The flowchart in Fig. 1 illustrates the steps that have been performed
on the driver to obtain the MU position. Briefly, the general stages
are:

• Measure received signal strength (RSS): The MU WLAN adapter
detects nearby APs by beacon signals that transmit every 100ms.

• AP MAC Filter : The driver selects only the APs whose position is
known. If there are at least 3 APs or more (needed for trilateration
in two dimensions), the driver goes on to the next step.

• Measure RTT : In this stage, the system obtains the RTT to each
AP in range through several sub-processes, which are detailed in
the right of Fig. 1. This will allow computing the distance between
the MU and each AP, storing it in a database.

• Trilateration: This process uses the databases Distance
Estimations and AP Positions as inputs to estimate the MU
location. The Trilateration technique is based on the radical axis
of the circles centered at each AP position whose radii will be the
estimated distances [10].

• Print MU position: the MU position is updated after each loop.

On the other hand, the right plane of Fig. 1 describes the child
flowchart of the Measure RTT stage. It depicts the specific processes
which this paper will deal with in depth. First, the driver selects
the AP with the highest signal strength, sending RTS frames until
the number of frames injected (NPKT ) exceeds the minimum needed
(nmin) to guarantee a given confidence level. Simultaneously to the
RTS last bit departure, the system counter is activated, and it will
be stopped with the corresponding CTS arrival, saving the LOS and
NLOS RTT measurements (RTTsNLOS). Next, the scale parameter
of the Weibull distribution (WS) is used to obtain a single RTT value
(RTTNLOS). This RTT value is the independent variable in a simple
linear regression model whose result is the desired distance estimation
[19]. Depending on the environment characteristics, this estimation
will be distorted by NLOS error [20]. Therefore, this error is corrected
through the PNMC method which is based on a statistical processing of
a record of range estimates taken over a time window [16]. Afterwards,
the driver connects to the next AP in terms of signal strength and the
whole Measure RTT process is repeated.
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Figure 1. Flowchart for PCB main program driver. NPKT =
number of RTS frames injected, nmin = minimum number of RTS
frames needed, RTTsNLOS = RTT measurements affected by NLOS
error, RTTNLOS = single value for the RTT after computing the WS
of RTTsNLOS .

2.2. Discrete Time LTI System

In Fig. 2(a) the three frequency stages of the classical heterodyne MU
adapter are illustrated for both directions, transmission and reception,
together with three blocks: two of them representing RTS and CTS
propagation channels (h(t) and h′(t)) and a black box symbolizing
the AP. For the same distance and the same environment the channel
impulse responses (CIR), h(t) and h′(t), are modeled as LTI systems.
Different MPCs will alter the value of h(t) and h′(t) which will
be detailed in the next section. These MPCs and the rest of the
mentioned blocks will influence the impulse response of the discrete
RTT measuring system.

As shown in the discrete-time blocks in Fig. 2(a) (PCB and h′′[n]),
initial and final timestamps are generated at baseband processor in
RTS transmission and CTS reception respectively. Thus, grouping the
RTS timestamps together (generated at times ni in Fig. 2(b)), they
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can be expressed as an impulse train:

s[n] =
N∑

i=1

δ[n− ni] (1)

being N the total number of RTT measurements. Assuming that none
of the frames is lost, and grouping the CTS timestamps together (ODP
in Fig. 2), the response to s[n] can be defined by:

r[n] =
N∑

i=1

δ[n− n′′i ]. (2)

With this RTT measuring system, time windows in the upper
part of Fig. 2(b) are never overlapped. Therefore, assuming all the
transmitted impulses generated at the initial time, n0, as in the bottom
of Fig. 2(b), s[n] and r[n] can be rewritten as:

s[n] = Nδ[n] (3)

r[n] =
M∑

j=1

F [j∆] δ [n− j∆] (4)

where M is the number of different bins of width ∆ and F [n] the
frequency of occurrence, i.e., the number of received samples at each
bin, thus N =

∑M
j=1 F [j∆]. In (4), j∆ represents in some way the

discrete multipath delay. Therefore, when the propagation channel
does not vary, the measuring system can be treated as a discrete-time

(b) Discrete time LTI response.(a) Block diagram of the MU-AP co-

mmunication (continuous-time bloc-

ks) and of the RTT measuring syste-

m (discrete-time blocks).

Figure 2. Discrete time LTI system and its impulse response.
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LTI system, whose impulse response is:

h′′[n] =
M∑

j=1

w[j∆]δ[n− j∆] (5)

where w[n] is the relative frequency of each bin, i.e., w[n] = F [n]/N .
In this way, when the channel is constant, the ODP can be obtained by
convolution (r[n] = s[n] ∗ h′′[n]). In the next section, w[n] is modeled
as the intensity function, λ(t), of an NHPP where t is discretized in
bins of duration ∆.

3. MODELING THE RTT

This section first outlines the experimental setup of the RTT measuring
process conducted in [9] and [19] and certain general aspects observed
in the measurements behavior. After that, channel characteristics,
which cause the deviation from the actual RTT, will be described
together with their influence in the measurements (i.e., in the stored
values in the database RTTsNLOS in Fig. 1). All of this, will help to
investigate the statistical behavior of the RTTs.

3.1. RTT Measurements

In order to analyze the RTTs when the MU and the AP are in LOS
situation, the first RTT measuring campaign was performed in an
outdoor environment, with few street lamps within a 40 meter radius.
MU and AP were located guaranteeing the first Fresnel zone clearance,
conducting three series of 5000 samples for 15 distances between 0
and 40m. Commercial Linksys WRT54GL IEEE 802.11b/g AP was
selected whose reference clock has a frequency of 20MHz and which
includes two rubber duck omnidirectional antennas in diversity mode,
working with the one with better reception. Antennas provide vertical
polarization with 360 degrees of coverage in the horizontal plane and
75 degrees in the vertical one. The MU WLAN adapter is a Cisco
Aironet AIR-PCM340 IEEE 802.11b card with the Intersil HFA3861B
baseband processor working at 44 MHz. This WLAN adapter includes
two on-board patch antennas with a diversity switch which toggles to
and from and stops when a significant amount of RF power is detected.

ODP for distances 0, 8 and 35meters is shown in Fig. 3. The
binwidth (∆) used to plot the histogram is 2 clock cycles (45.45 ns).
This value is selected because, using one clock cycle, there is a large
spike approximately every other clock cycle, and a less significant one
in the rest, so statistical nature of the dataset would be hidden. This
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behavior is caused by the frequency difference between MU and AP’s
clocks.

As a consequence of implementing the location system in a real
scenario, incoming traffic from other networks and signal multipath
will induce noise in distance estimations. Moreover, shot and thermal
noise, as well as manufacturing and semiconductor defects of electronic
devices, will cause signal disturbances even being the MU and the
AP still and in LOS situation. These will be other sources of error
in measuring the RTT. As seen in Fig. 3, identical distribution is
appreciated if measurements are carried out at the same distance,
i.e., at the same propagation channel. Thus, the RTT measurements
distribution changes among the three subfigures are mainly due
to propagation channel changes (while slight time deviations are
caused by electronic errors). Besides, in Fig. 3, the NHPP and ∆-
K model fits are very close, which is due to the independence of
the RTT measurements, corroborated in [10]. These fits will be
detailed in the last part of this section. Therefore, in the following,
RTT measurements will be treated as independent and identically
distributed (i.i.d.) observations.

3.2. Multipath Components in the Propagation Channel

In Fig. 3, RTT measurements do not consist of a single delta delayed a
fixed RTT. This is due to electronic behavior and propagation channel
structure and composition. Even in LOS situation, the receiver’s
measured signal represents a constructive or destructive summation
of individual MPCs due to several scatterers [7]. Thus, the CIR can
be represented by an LTI filter as:

h(t) =
R∑

n=1

Anδ(t− τn) (6)

where An is the amplitude of the nth MPC, τn its arrival excess
delay, and R the total number of MPCs whose amplitudes exceed the
detection threshold [21].

In Fig. 3, the symmetry of the ODP is affected, being the
mass of the distribution concentrated on the right (negative skew)
as the number of MPCs is higher, like Fig. 3(c), and in contrast,
measurements exhibit the opposite behavior when there are fewer
MPCs, as in Fig. 3(a). Therefore, the skewness (i.e., the asymmetry)
can be a measurement of the degree of multipath being more negative
as multipath is more noticeable. Moreover, considering all the
distances, an inverse dependence is observable between distance and
skewness, i.e., the more distance the more negative the skewness.
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Figure 3. Three series of RTT measurements obtained in the LOS
scenario for three different distances. Besides, NHPP and ∆-K model
fits are shown (Section 4).

The latter means that longer signal paths are finally reflected before
completing the round-trip. This is due to the fact that, when MU and
AP are close enough, a greater number of signals follow the direct path
(since small angles are insignificant), but when MU and AP are more
distant, narrow angles are more noticeable, and most of the signals
reflect on the ground.

Also, from Fig. 3, kurtosis (i.e., the degree of peakedness) tends
to be greater as distance is larger since direct and ground-reflected
paths tend to be the same length. This is trivial since the height of
the MU and the AP is constant, thus, the segment MU-AP (direct
path) tends to be the same length as the sum of the segments MU-
G and G-AP (reflected path), being G the reflection point on the
ground. Similarly, [21] proposed a NLOS identification technique based
on the kurtosis and two statistics of the delay of the received MPCs
in an UWB channel. However, with this technique several series of
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measurements at each position and to each AP have to be conducted
to obtain the distribution of these statistics, in order to compare them
to the LOS/NLOS channel models. This is not feasible in a real-time
application. Future work could be addressed to estimate the degree of
multipath from the skewness and kurtosis of one series of measurements
(the one needed for estimating the RTT) at each position, whereas
NLOS would be detected and corrected with the PNMC method.

3.3. RTT Distribution

MPCs cause that the RTT follows a statistical pattern which depends
on the propagation channel even in LOS scenarios. Thus, although
electronic errors were negligible, a signal in transit from transmitter
to receiver would undergo multipath dispersion due to reflections,
refractions, and scattering from nearby objects or walls [7]. Hence,
arrival times form a point process on the positive time axis. Several
point process models have been discussed in the literature for the
distribution of path arrival times for wireless urban [13, 22] or indoor
environments [23, 24], where inadequacy of the homogeneous Poisson
process (HPP) model has been proved. They all agree by fitting the
arrival time sequences to a modified Poisson distribution. Here, two
models have been considered to fit the RTT measurements (i.e., the
relative frequency, w[n]), the ∆-K model and an NHPP.

3.3.1. The ∆-K Model

Standard Poisson distribution should only be appropriate if the
obstacles which cause MPC appearance are located with complete
randomness in space, a good assumption for homogeneous urban areas,
but not in indoor scenarios where clusters of scatterers are commonly
present (and therefore isolated clusters of reflected signals arrive at
the receiver) [22, 23]. The most widespread model in mentioned
publications is the ∆-K model, first proposed by Turin et al. [13]. Two
possible states for a bin i of duration ∆ are considered: Xi = 0, which
indicates no path in the bin; and Xi = 1 that signifies a path in the
bin. The model is based on the conditional probabilities of change of
state. In this way, {λi} and {Ki} are defined as P (Xi = 1|Xi−1=0) = λi

and P (Xi = 1|Xi−1=1) = Kiλi. In this case, the duration of each bin
is selected to be 2 clock cycles (∆ ≈ 45.45 ns). In Fig. 3, ∆-K model
shows a good fit to the RTT measurements with the PCB. However,
λi and Kiλi exhibit a similar distribution, since RTT measurements
are i.i.d. Thus, although λi and Kiλi are conditional probabilities, the
probability of event Xi−1 occurring does not affect the probability of
event Xi occurring. For K = 1 or ∆ = 0 and constant λ(t), this process
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Table 1. P -value resulting from the two-samples KS test comparing
NHPP or ∆-K models to empirical samples.

0 m 8 m 35 m

NHPP ∆-K NHPP  NHPP  

1st   Series 0.8055 0.2752 0.0693 0.0397 0.8370 0.0208

2nd  Series 4.4 ·10 -4 7.8 ·10-4 0.9994 0.9999 0.9630 0.0240

3rd  Series 4.8 ·10
-7

8.3 ·10
-12

0.0707 4.2·10
-4

0.9883 0.0026P
-v

a
lu

e

∆-K ∆-K

reverts to an HPP [22]. When arrival times are i.i.d. random variables,
the standard (and stationary) Poisson hypothesis should be adequate.
However, RTTs do not show a constant λ(t). The explanation is that —
with the described PCB — clusters of paths are not detected, storing
only the time for the first arrival, leaving out multipath dispersion
not involved in this measure. In order to develop useful statistical
multipath channel models, it is imperative to determine the average
number of MPCs and the distributions about the average [25], not
possible with the PCB since it has to wait for a CTS response to
start another count. For insensitive receivers the Poisson fit should be
relatively good [23].

3.3.2. Nonhomogeneous Poisson

For systems whose rate, λ(t), varies with time, as in Fig. 3, an NHPP
is often used as model. An NHPP is a generalization of an HPP, and
the rate at which events occur is determined by the intensity function
λ(t) [26]. The intensity function is assumed to be nonnegative for all
t ∈ (0,M∆], with M a known constant. For the RTT measurements
the cumulative intensity function is defined by:

Λ(t) =
∫ t

0
λ(τ)dτ, t > 0 (7)

and it can be used to generate a point process for simulation by
inversion.

Figure 3 illustrated the probability of path occupancy for each
delay time bin, ∆, of 2 clock cycles for the ∆-K model and the
NHPP. This probability distribution depends on propagation channel
characteristics. Thus, it has to be modeled each time the channel
changes. Both models provide a high goodness of fit (GOF) to WLAN
fading data. A good ∆-K model fit is probably due to the fact that
this distribution has two parameters, increasing the flexibility to match
the empirical data. However, K is close to 1, so NHPP, with λ(t)
as intensity function, provides a similar fit to the data (NHPP is
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equivalent to ∆-K model with K = 1). Actually, in Table 1, P -
values resulting from the two-samples Kolmogorov-Smirnov (KS) test,
comparing NHPP or ∆-K models to each series of empirical samples,
are shown. Better results for the NHPP model are obtained with a
high GOF (P -value > 0.05) for almost all the series of measurements.

4. CHARACTERISTICS OF RANGE ESTIMATES

RTT characterization allows to reduce the bias and the error in
the database Distance Estimations in Fig. 1. Estimate RTTNLOS

and Linear Regression processes will explain how to obtain these
estimations in case RTT measurements are carried out in an LOS
scenario. Afterwards, the estimation error is analyzed, assuming LOS
between the MU and the AP (thus, Correct NLOS process is not
included). Based on this result, the process Compute nmin will be
detailed searching for a reduction in the number of frames injected in
the WLAN network. Finally, the analysis of the error distribution will
be performed generalizing for the NLOS case. Once the NLOS error is
characterized, this work is used in the next section to correct it.

4.1. Distance Estimation

As seen in the previous section, RTT characterization is not an easy
task. Therefore, it is necessary to select the statistical estimator which
best approximates the RTT from the measurements conducted by
the PCB, as they are affected by different sources of errors. It was
analyzed in depth in [19], selecting the WS as the best estimator (see
Appendix A for further information). In Fig. 1, the block Estimate
RTTNLOS reflected this process.

As explained in Fig. 1, after obtaining a single value for the RTT,
a simple Linear Regression is performed to obtain an estimation of the
distance between the MU and each AP in terms of meters. Table 2
contains the analysis of variance for the simple linear regression model
for the measurements of previous section, taking 50 range estimates
at each one of the 15 distances [27]. The description column shows
the source of variation of each row which contain: the sum of squares
(SS), its associated degrees of freedom (df), and the ratio of these
or the mean square (MS = SS

df ). Last column contains the F -ratio,
which is the ratio of the regression mean square to the residual mean
square. It follows that this ratio is distributed as Snedecor’s-F with
1 and T − 2 degrees of freedom, T being the number of treatments
(T = 50 · 15). A test with significance level α for the null hypothesis is
given by rejecting H0 if F > Fα;1,T−2. Rather than comparing F with
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Fα;1,T−2 for a specified value of α, a common practice is to assess the
P -value for the test of the hypothesis of zero slope. The hypothesis is
rejected at level α if P (F > Fα;1,T−2) < α. In this case, F = 17250,
the P -value is close to zero.

Table 2 also includes the coefficient of determination (R-squared),
defined as the ratio of the regression sum of squares to the corrected
total sum of squares. R-squared is commonly used as an indicator of
the proportion of the total variation in the response (distance) that
is accounted for by variation in the input variable (RTT estimation).
Both the F -test and R-squared provide evidence that WS is a useful
predictor. Note that R-squared is made without regard to sample size
whereas the F -test takes this into account in the degrees of freedom.
However, the long sample size allows to assess the GOF with both
indicators [27].

4.2. LOS Scenario

In LOS scenarios, distance estimation can be expressed as a function
of the actual distance di adding an error for the j treatment at that

Table 2. Analysis of variance for linear regression data.

Description df SS MS F

Regression 1 98240 98240 17250

Residual 748 4260 5.6951

Total 749 102500 136.8 R2 = 0.958
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Figure 4. RTT estimations distribution in LOS obeying a Gaussian
distribution.
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distance:

d̂LOS
ij = di + εLOS

ij , i = 1, . . . , k; j = 1, . . . , ti. (8)

Then, the total number of estimates is T =
∑k

i=1 ti, ti being the
number of estimates at each position. As shown below, LOS error in
distance estimation can be modeled as a Gaussian distribution of zero
mean and standard deviation σLOS

ε (εLOS ∼ N(0, σLOS
ε )). The latter will

depend on the propagation channel and the measuring clock resolution.
The value of σLOS

ε is computed as SLOS
ε , the sample standard deviation

of the errors at all distances:

SLOS
ε =


 1

T − 1

k∑

i=1

ni∑

j=1

(
εLOS
ij − εLOS

)
2




1/2

(9)

Figure 4(a) provides a histogram of LOS estimation errors,
superimposed with the probability density function (PDF) of a
Gaussian distribution. Each treatment consists of nmin RTT samples,
α = 0.05 and sample error E = 0.5 clock cycles, as detailed in
next subsection. The superimposed Gaussian curve is zero mean
and has a standard deviation, σLOS

ε , of 2.3347 m. Thirty series of
measurements at the same distances as Section 2 were carried out.
How well a Gaussian distribution fits the range estimates is assessed
through a probability plot. Fig. 4(b) makes clear the convenience of the
proposed model since the probability plot for actual range estimates
and theoretical values from a Gaussian distribution is close to the 45-
degree reference line. The correlation between both data-sets is 0.9976
which means an extremely strong linear relationship. If instead of LOS
errors, estimations distribution at each distance is represented (d̂LOS

ij

for a given i), the mean of the Gaussian PDF curve should fit for the
actual distance, di.

The resulting Gaussian distribution, as a model for εLOS , is the
most commonly adopted in related references, considering it as the bias
induced by the MPCs and a function of the system’s bandwidth [15].
This simple model is used below to generalize the error when NLOS is
present, and LOS value of σLOS

ε will be essential to obtain an accurate
estimation of the new error.

4.3. Selecting the Number of Samples

Being WS the statistical estimator to be introduced in the regression
model, it is possible to dynamically infer the minimum number of
samples needed to be injected. This technique will allow to minimize
the traffic over the network and reducing the latency of obtaining an
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MU position. Accuracy of distance estimation can be managed through
the number of measurements whereby a confidence level is guaranteed.
However, this number is not worth increasing indefinitely as measuring
system accuracy is limited by the 44MHz MU baseband processor
clock. Hence, it is possible to minimize it until accuracy reduction
is appreciated.

In case RTT measurements were Weibull distributed, the
maximum likelihood estimator (MLE) of the WS (η̂) would be
Gaussian with mean the WS (η) and variance the inverse of the Fisher
information (i.e., (In(η))−1) [28]. Although, in the previous section,
it was shown that the RTT distribution is more complicated than the
Weibull, Fig. 4 proves the Gaussian behavior of range estimates (η̂)
for a sufficiently large number of samples (n). Therefore, as distance
is obtained as a linear combination of the WS of RTT measurements,
the distribution of η̂ is approximately Gaussian with mean η. This was
proved thanks to the fact that actual measurements could be carried
out by the PCB.

Moreover, in Fig. 5(a), η̂ as a function of
√

n is shown for a distance
of 35m, repeating the experiment thirty times. As range estimates are
Gaussian, the standard deviation of η̂, σLOS , is the standard error of
the RTTs, seRTT :

σLOS = seRTT =
σRTT√

n
(10)

being σRTT the standard deviation of the RTTs. In Fig. 5(a), σLOS

approximately fits
√

(In(η))−1, and by 95% of range estimates are
within the curve σLOS . This result can be used to approximate seRTT

by
√

(In(η))−1. Appendix A shows that Fisher information depends on
WS, thus, substituting η̂ for η in the expression of In(η), it is possible
to compute the expected Fisher information, In(η̂), and hence, the
estimated standard error, ŝeRTT :

In(η̂) =
n · β2

η2
(11)

where β is the shape parameter of Weibull distribution. Thus,
considering (10), it is possible to define an approximate 100 (1− α)%
confidence interval (CI) for the significance level α, as:[

η̂ − z1−α/2 · ŝeRTT , η̂ − z1−α/2 · ŝeRTT

]
(12)

where z1−α/2 is the point on the standard Gaussian density curve such
that the probability of observing a value greater than z1−α/2 is equal
to 1− α/2.

Once selected the confidence level, 1 − α, and the sample error,
E = ±z1−α/2 · ŝeRTT , and under the assumptions which allow RTT
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measurements to be treated as i.i.d. observations, it is straightforward
to calculate the minimum number of frames needed:

nmin >
z2
1−α/2 · η̂2

β̂2 · E2
(13)

being β̂ the observed shape parameter of Weibull distribution. This is
the work carried out in the respective process of the flowchart of Fig. 1.

Figure 5(b) shows the relationship between nmin, the sample error
and the confidence level 1− α for the RTT measurements taken from
one AP inside the Higher Technical School of Telecommunications
Engineering of the University of Valladolid, Spain (ETSIT-UVa). nmin
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is highly influenced by sample error. However, common choices for the
confidence level do not alter nmin significantly, increasing this number
to a large extent only for values greater than 99%. Fig. 5(b) focuses
on the sample error influence on nmin and Fig. 5(c) on its influence on
range estimation error.

Other advantage of WS estimation over a traditional estimation
based on the sample mean [9, 29] is the number of frames injected.
Comparing the minimum number of RTT measurements needed to
guarantee a given confidence level using the WS as estimator, to the
one using the sample mean, for any series of RTT measurements taken
with the PCB, this value is always lower for the WS, being for the
sample mean:

nsample mean >
z2
1−α/2 · S2

E2
(14)

where S is the sample standard deviation of the RTT measurements.
Thus, as well as obtaining the most accurate range estimates, time and
traffic savings are achieved with the WS parameter.

Apart from reducing positioning time and network traffic, nmin

will affect the positioning accuracy if it is reduced too much. Fig. 5(c)
depicts the cumulative distribution function (CDF) for the error in
distance estimation for different values of sample error, being the
confidence level 95% for all the functions. CDF was computed with
nmin samples of the RTT LOS measurements of previous section.
According to Fig. 5(c), accuracy gotten by increasing nmin (as a
consequence of a sample error drop) is limited by the measuring system
resolution. CDF for a sample error of 0.4 clock cycles almost fits with
the one obtained with 0.6 cycles. Therefore, a significant level of 0.05
and a sample error of 0.5 cycles are good choices for this measuring
system.

4.4. NLOS Scenario

For modeling the NLOS case, the sum of two random variables is
considered as the distribution of distance estimation error. The first
one is related to the LOS error, εLOS

ij . The second one contains NLOS
estimation errors, εNLOS

ij . Similar to (8), in NLOS scenarios, RTT
estimation can be expressed as:

d̂NLOS
ij = di + εLOS

ij + εNLOS
ij , i = 1, . . . , k; j = 1, . . . , ti. (15)

The distribution that εNLOS obeys has been analyzed in depth
in the literature. Gaussian, Exponential, Weibull, and Gamma
distributions are commonly proposed as NLOS error distribution [15–
17]. It is known that the PDF of the sum of two random variables,



234 Prieto Tejedor et al.

εLOS and εNLOS , is equal to the convolution of the PDFs, pLOS and
pNLOS , of the two variables. As explained in the previous section,
εLOS ∼ N(0, σLOS

ε ). Thus, in the general case, the PDF of the error in
distance estimation in NLOS is:

pε(d̂) =
∫ ∞

−∞
pNLOS

ε (x)
1√

2πσLOS
ε

e
−

(
d̂−x−d√
2πσLOS

ε

)2

dx

=
∫ ∞

−∞
pNLOS

ε (x)
1√

2πσLOS
ε

e
−

(
x−(d̂−d)√
2πσLOS

ε

)2

dx (16)

therefore,

pε(d̂) = E (pNLOS
ε (x)) , x ∼ N

(
d̂− d, σLOS

ε

)
. (17)

In this paper, εNLOS will be modeled as Exponentially distributed,
as proposed in [15]. Particularizing (16) for εNLOS ∼ Exp(1/λNLOS

ε ),
the PDF for the errors being the MU and the AP in NLOS situation
is as follows:

pε(d̂) = c

√
π

2
(1 + erf(l)) (18)

where, as explained in Appendix B, l and c are defined as a function of
d̂, σLOS

ε and the rate parameter of the NLOS error Exponential PDF,
λNLOS

ε .
Probably, Gamma or Weibull distribution would provide a better

fit to actual NLOS errors than Exponential distribution, due to the fact
that these distributions have two degrees of freedom instead of only
one of the Exponential, and thus, NLOS effects can be controlled by
varying more than one parameter. However, the use of the Exponential
distribution is more desirable as λNLOS

ε can easily be estimated from
RTT measurements through the sum distribution, with known value
of σLOS

ε , 2.3347m. The value of σLOS
ε was computed as the sample

standard deviation of the errors at all distances. Computing λNLOS
ε,i each

time the channel changes (subindex i implies the distance), results will
better fit actual samples. However, as the first approach, 0.3514m−1 is
used as only λNLOS

ε value for the indoor NLOS environment in order to
treat errors at the same level of generality. In the next section, a simple
method to estimate λNLOS

ε , through the record of measurements taken
over a time window, is evaluated in order to assess the improvement of
the PNMC correction method when λNLOS

ε and the window size change
dynamically.

Figure 6(a) shows a histogram of range estimation errors,
superimposed with the convolution of Gaussian and Exponential PDFs.
The number of samples taken to carry out each distance estimation is
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Figure 6. RTT estimations distribution in NLOS obeying the
convolution of a Gaussian and an Exponential distribution.

nmin, being α = 0.05 and E = 0.5 clock cycles. The superimposed
curve is the convolution of a zero mean Gaussian distribution with the
value σLOS

ε obtained in the previous subsection, and an Exponential
distribution with λNLOS

ε the described above. Again, thirty groups of
measurements at the same distances as Section 2 were carried out but,
in this case, MU and AP were inside the ETSIT-UVa and always in
NLOS separated by a brick wall 16.4 cm width. As well as in LOS case,
if instead of NLOS errors, estimations distribution at each distance is
represented (d̂NLOS

ij for a given i), the mean of the Gaussian curve should
fit for the actual distance.

As appreciated in Fig. 6(b), the probability plot for the
experimental data and theoretical values from (18) falls approximately
on a straight line, corroborated by the strong correlation (0.9952)
between both data-sets. However, its intercept and slope differ slightly
from the theoretical values since a single parameter is used to fit the
data.

5. CORRECTING THE NLOS ERROR

Regarding the flowchart in Fig. 1, this section deals with the process
Correct NLOS which is based on the PNMC method. In [16],
the authors demonstrated a great increase in the accuracy obtained
through the previous usage of the PNMC method to correct the
measurements. This paper suggests a dynamic actualization of two
of its input arguments: the window size and the value of λNLOS

ε for
the Exponential distribution. The results included in this section are
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obtained from the NLOS RTT estimations regarding an AP along the
route followed in [10], a 34.7m × 19.4 m rectangle around several offices
and rooms.

In LOS case, the sample standard deviation (SLOS
ε ) is an unbiased

and efficient estimator of σLOS
ε . In order to assure that SLOS

ε fits with
σLOS

ε , similarly to Section 4, the minimum number of estimators, Tmin,
needed to guarantee a confidence level, 1− α, can be computed. In a
normally distributed population with variance σLOS

ε , sample standard

deviations follow a χ2 distribution, i.e., χ2 = (T−1)SLOS 2
ε

σLOS 2
ε

. Therefore, it

is possible to define an approximate 100 (1 − α)% CI for σLOS
ε at the
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significance level α, as:


√

T − 1 · SLOS
ε√

χ2
α/2,T−1

,

√
T − 1 · SLOS

ε√
χ2

1−α/2,T−1


 (19)

whereby Tmin is obtained, as in previous case, once fixed a constant
value for the CI.

PNMC method assumes that LOS and NLOS samples, included in
distance estimation process, are independent. Thus standard deviation
of sum distribution is σε = (σLOS

ε
2 + σNLOS

ε
2)1/2. As sample standard

deviation is larger than in LOS case, the condition that the number
of estimators, Tmin, must satisfy is more restrictive, i.e., Tmin will be
greater in the presence of NLOS. Standard deviation of an Exponential
distribution fits with its mean (in this case, the inverse of λNLOS

ε ), thus,
it is straightforward to compute σε, whereby λNLOS

ε can be obtained as:

λNLOS
ε =

1√
σε

2 − σLOS
ε

2
(20)

As PNMC is applied to the record of measurements over a time
window, where propagation channel is similar and NLOS errors obey
approximately the same distribution, λNLOS

ε will be different for each
one of these windows. Hence, a better correction result should be
achieved if λNLOS

ε is computed for each one of them. Known σLOS
ε and

computing σε for the range estimates included in each time window,
λNLOS

ε is easily obtained, using (20), and dynamically changed each
time PNMC is applied. However, the assumption of independence
of NLOS estimations is not totally satisfied as drawn from a similar
analysis as the one made for individual RTT measurements in [9]. In
Fig. 7(a), adjacent and near-adjacent estimations show a high degree of
autocorrelation probably due to the fact that in indoor environments,
and for nearby positions, NLOS effects are not randomly distributed.
Therefore, channel structure does not change appreciably over very
short distances. This is a similar behavior to the one commented in
Section 3, when obstacles which cause multipath fading are not located
with complete randomness. With these estimations, the value of λNLOS

ε
obtained is slightly greater than the actual one, due to the dependence
between the estimations. Despite this, NLOS correction will achieve
a smaller error using dynamic λNLOS

ε than the one obtained with a
constant value.

Nevertheless, this drawback can be solved if it is utilized to identify
the size of the time window where to apply PNMC and compute
the corresponding λNLOS

ε [30]. As new range estimates are obtained,
autocorrelation among original (still not corrected) estimations is
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carried out. Next, PNMC is applied to the first estimations, where
autocorrelation is not near zero (in Fig. 7(a) autocorrelation exceeds
0.02 until 16th estimation), with the λNLOS

ε obtained for this window
using (20). Moreover, the window size must be, at least, Tmin to
guarantee Gaussian behavior of LOS errors.

This dynamic version of the PNMC correction method (D-PNMC)
corrects a greater number of measurements and obtains a smaller
error for those corrected by simple PNMC. This feature is observed
in Fig. 7(b), where the CDF of the distance estimation error is shown
for the following cases: original, static PNMC, PNMC and dynamic
window size computation (PNMC+WSC), PNMC and dynamic λNLOS

ε
computation (PNMC+SC), and D-PNMC estimations. Moreover, in
Fig. 7(c), D-PNMC estimations tend to cluster around actual distances
in a more marked manner than in the simple PNMC case. In fact, the
root mean square error is respectively 6.51, 5.96 and 4.98 m for original,
PNMC and D-PNMC estimations.

6. CONCLUSION

In this paper, results obtained with a discrete RTT measuring system
have been discussed. The work focuses on statistical behavior of RTT
measurements and of the error in distance estimation, for both LOS
and NLOS indoor environments.

The results have pointed out the following about the propagation
channel: (1) The RTT measuring system can be modeled as a discrete
time LTI system whose impulse response is determined by the MPCs
present at each propagation channel. (2) The indoor propagation
channel is quasi-static, varying as MU is moving. Spatial correlations
govern the RTT, thus channel structure does not change appreciably
over very short distances. (3) An HPP model is inadequate to describe
the RTT. The distribution of the RTT measurements within a building
tends to be an NHPP, and its skewness and kurtosis give information
about the multipath and the distance between the MU and the AP.
However, the commonly adopted ∆-K model does not work out since
RTT measurements are i.i.d. (4) Errors in distance estimation obey a
Gaussian distribution when MU and AP are in LOS. (5) Exponential
distribution fits closely the error in distance estimation caused by
the presence of NLOS measurements. The curve fittings between
empirical measurements and the theoretical sum of a Gaussian and
an Exponential random variables is satisfactory and, moreover, the
simplest model has been selected.

Regarding the mentioned results, a dynamic computation of
PNMC input arguments has been proposed to correct the NLOS error.
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This method outperforms the conventional PNMC based on static
values of the Exponential rate parameter and window size. The results
achieved proved the goodness of this approach for positioning error
minimization when locating an MU in an indoor environment.
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APPENDIX A. MLE OF THE SCALE PARAMETER OF
THE WEIBULL DISTRIBUTION

In this appendix, the scale parameter of Weibull distribution (WS)
is estimated by using the MLE method and assuming that the shape
parameter is known.

The probability density function of a Weibull (two parameter)
random variable x is

f(x; β, η) =
β

η

(
x

η

)β−1

· e−
(

x
η

)β

x ≥ 0

=
β

ηβ
· xβ−1 · e−

(
x
η

)β

x ≥ 0

where β > 0 is the shape parameter and η > 0 is the WS.
Let X1, X2, . . . , Xn be a random sample of random variables with

a two-parameter Weibull distribution, β and η. The likelihood function
is

Ln(x1, . . . , xn; β, η) =
n∏

i=1

f(xi; β, η)

Therefore,

lnLn(x1, . . . , xn; β, η)

=
n∑

i=1

ln f(x1, . . . , xn;β, η)

=
n∑

i=1

(
ln

(
β

η

)
+ (β − 1) · ln

(
xi

η

)
−

(
xi

η

)β
)
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= n · ln
(

β

η

)
+ (β − 1) ·

n∑

i=1

ln
(

xi

η

)
−

n∑

i=1

(
xi

η

)β

= n · ln
(

β

η

)
+ (β − 1) ·

[
−n · ln(η) +

n∑

i=1

ln(xi)

]
−

n∑

i=1

(
xi

η

)β

= n · ln(β) + (β − 1) ·
n∑

i=1

ln(xi)− n · β · ln(η)− η−β ·
n∑

i=1

xβ
i

thus,
∂ ln Ln

∂η
= −n · β · 1

η
+ β · 1

ηβ+1
·

n∑

i=1

xβ
i

in order to find the maximum, ∂lnLn
∂η = 0 then,

0 = −n · β · 1
η

+ β · 1
ηβ+1

·
n∑

i=1

xβ
i

=
∑n

i=1 xβ
i − n · ηβ

ηβ+1

=
n∑

i=1

xβ
i − n · ηβ

hence, the MLE of the WS

η̂ =

[
1
n

n∑

i=1

xβ
i

] 1
β

this expression is known as the generalized mean or Hölder mean.
Once η̂ is the MLE of η of Weibull distribution, the Fisher

information (In(η)) and the Cramer-Rao lower bound (I−1
n (η)) are

computed.
The Fisher information, In(η):

In(η) = −Eη

[
∂2 ln L

∂η2

]

= −Eη

[
−n · β ·

(
− 1

η2

)
+ β · (−β − 1) · 1

ηβ+2

n∑

i=1

xβ
i

]

= −n · β
η2

+
β · (β + 1)

ηβ+2
·

n∑

i=1

Eη(x
β
i )
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where,

Eη(xβ) =
∫ ∞

0
xβ · β

η
·
(

x

η

)β−1

· e−
(

x
η

)β

dx

taking t =
(

x
η

)β
therefore,

Eη(xβ) =
∫ ∞

0
t · e−t · ηβdt = ηβ

∫ ∞

0
t · e−t = ηβΓ(2) = ηβ

Then,

In(η) = −n · β
η2

+
β · (β + 1)

ηβ+2
· n · ηβ

= −n · β
η2

+
β · (β + 1) · n

η2

=
n · β2

η2

And thus, the Cramer-Rao lower bound, I−1
n (η):

I−1
n (η) =

η2

n · β2

APPENDIX B. DENSITY FUNCTION OF ERRORS

Let X and Y be two independent random variables being X ∼ N(0, σ)
and Y ∼ Exp(1/λ). And let Z be Z = X + Y . The PDFs of X and Y
are respectively:

f(x) =
1√
2πσ

e−
1
2( x

σ )2

, (x ∈ R)

and,
g(x) = λe−λx, (x > 0)

The density function of the sum of X and Y (i.e., the PDF of Z)
is the convolution of f(x) and g(x). Thus, h(z) = (f ∗g)(z). Therefore
the PDF of Z is:

h(z) =
∫ z

−∞

1√
2πσ

e−
1
2( x

σ )2

λe−λ(z−x)dx

which after some manipulation simplifies to

h(z) =
λe−λ(z)e

(λσ)2

2√
π

∫ 1√
2σ

z− λσ√
2

−∞
e−t2dt
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Using the relationship l = 1√
2σ

z− λσ√
2

and c = 1√
π
λe−λze

(λσ)2

2 , then
h(z) is given by

h(z) = c

√
π

2
(1 + erf(l))
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