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QUASI-OPTICAL BESSEL RESONATOR
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Abstract—In this paper, a quasi-optical Bessel resonator (QOBR)
for generating approximations to Bessel-type modes at millimeter
wavelengths has been designed and analyzed. A design approach
is based on the quasi-optical techniques. In order to analyze the
designed QOBR rigorously, a new method based on iterative Stratton-
Chu formula (ISCF) is developed from the classical Fox-Li algorithm
and its validity is demonstrated. Numerical results reveal that at the
output plane the intensity distributions of the Bessel-type modes of the
designed QOBR are modulated by a bell-shaped envelope, and their
phase patterns have a block-shaped profile except slight distortion on
the edges of the output plane due to aperture diffraction. The effect of
varying the parameters of the designed QOBR on the relevant output
characteristics is also examined in our study.

1. INTRODUCTION

Bessel beams, introduced firstly by Durnin and co-workers in
1987 [1, 2], have attracted much attention and been investigated
intensively over more than twenty years, owing to their potential
applications in physics, chemistry, biology, and engineering. Numerous
approaches to generate pseudo Bessel beams have been suggested,
which can be sorted roughly into two classes [3–5], i.e., passive and
active schemes. The first class uses the spatial filter to transform
an incident beam into an approximation to Bessel beam, such as
narrow annular slit [2], computer-generated holograms (CGHs) [6–
8], Fabry-Perot cavity [9], optical refracting systems [10], axicon [11–
14] and diffractive phase elements (DPEs) [15–17]. The other class
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is formed by methods relying on a resonator frame to produce the
Bessel-type modes. For example, resonators with annular intracavity
elements [18], output mirrors having annular apertures [19], phase-
conjugating mirrors [20], and axicon-based resonators [3–5, 21–24].
When compared with the passive schemes, the active have the following
advantages [5, 23]: They generate the Bessel-type modes directly from
the resonators, omitting the external filter elements and resulting in
high-output-power Bessel beams; another is the possibility of realizing
intracavity frequency conversion of Bessel beams.

However, in millimeter range, only the passive schemes for
producing Bessel beams have been proposed and studied currently.
Examples can be found in [7, 8, 12–16]. To our knowledge, no active
schemes have been reported at these wavebands as yet. Accordingly,
the purpose of the present paper is to design and analyze the QOBR
that support approximations to Bessel-type modes at millimeter
wavebands. The configuration of the QOBR is constructed by
the quasi-optical techniques. To precisely calculate the resonant
modes of the designed QOBR at millimeter wavebands, a more
rigorous method (ISCF method), based on the Stratton-Chu diffraction
integral formula, is developed from the famous Fox-Li iterative
algorithm [25]. The demonstration of its validity is made by comparing
the computational results obtained by the ISCF and Fox-Li algorithms.
It is indicated from the numerical simulation results that at the
output plane the modulated intensities in the Bessel-type modes of
the designed QOBR seem like a bell-shaped contour; however, aside
from little deformation on the edges of the output mirror because of
aperture diffraction, the phase patterns of them show a block-shaped
outline. We have also investigated the influence of manufacture errors
of the designed QOBR on the output characteristics.

The rest of the present paper is organized as follows. The design
of the QOBR is described in Section 2. The ISCF method is developed
and its validity is verified in Section 3 and Section 4, respectively. The
numerical results are presented in Section 5. In the last Section 6, a
brief summary is made.

2. QOBR DESIGN

In contrast to structures of the resonators proposed in [18–20], the
axicon-based resonator is probably the most attractive one because of
its simplicity and high conversion efficiency [5]. It is known that an
axicon converts an incident plane wave into an approximation to Bessel
beam [11–14], located within the interference zone ECFD, as depicted
in Fig. 1(a). The field distribution of the lth-order Bessel beam in the
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cylindrical coordinates system is written as:

Ul(ρ, ϕ, z) = U0Jl(k⊥ρ) exp(jkzz) exp(jlϕ) (1)

where U0 is a constant, Jl denotes the lth-order Bessel function of the
first kind, ρ2 = x2+y2, k2

⊥+k2
z = (2π/λ)2, k⊥ and kz are the radial and

longitudinal wave numbers, respectively. λ is the free space wavelength.
Now, assuming that a reflective mirror is embedded at the plane CD,
the Bessel beam would be reflected upon itself. If the base plane AB
of the axicon is backed by a perfectly reflecting plane mirror, whereas
the output mirror CD is only the partially reflective, then the Bessel
resonator can be constructed and the output beam can be obtained
from the plane CD, see Fig. 1(b). In practice, the refractive axicon
with the perfectly reflecting base can be superseded by a reflective
axicon, as shown in Fig. 1(c), leading to an alternative but equivalent
realization of the Bessel resonator [3]. In such case the relation between

(a) (b)

(c)

Figure 1. Design of the QOBRs. (a) An incident plane wave is
converted by an axicon into a conical wave (Hankel wave); (b) the
QOBR with a refractive axicon; (c) the QOBR with a reflective axicon.
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the conical angel α of the reflective axicon and the apex angle β of the
refractive axicon is expressed by α = arcsin(η sin(β)) − β, where η is
the refractive index. The configuration in Fig. 1(c) is more suitable
for standing high power in comparison with that in Fig. 1(b), since
the reflective axicon can be made of perfect conductor rather than the
dielectric, which is used to make the refractive one. For this reason,
the structure illustrated in Fig. 1(c) is adopted to form the QOBR in
our design. It has been shown that the gain in the cavity volume is
maximized if distance L between the axicon and the plane mirror is
chosen to be [21]

L =
R2

2 tanα
(2)

where R2 is the aperture radius of the refractive or reflective axicon
and R2 = 2R1.

3. DEVELOPMENT OF ANALYSIS METHOD

The famous Fox-Li algorithm, proposed by Fox and Li in 1960 [25], has
been used successfully to analyze the resonant modes in optical cavities.
This method, based on the Kirchhoff scalar formula for diffraction, is
permissible and justifiable, if the numerical aperture (NA) is rationally
small; the Fresnel number is very large; and the incident radiation
is unpolarized [26]. Looseness of any of these three assumptions
invalidates the Kirchhoff analysis. In general, the above requirements
are easily satisfied in optical region and the Fox-Li algorithm can thus
be applied reliably. However, it is not quite fit for analysis the resonator
in the spectrum of millimeter rang, as all constraints mentioned above
are usually no longer satisfied simultaneously. Therefore, to rigorously
compute the resonant modes of the designed QOBR at millimeter
wavelengths, the ISCF method is developed in our analysis. It applies
the vector form of the Stratton-Chu formula for diffraction, rather than
the scalar form of the Kirchhoff formula for diffraction, to compute the
electromagnetic fields in the cavity. The magnetic field component ~H
of the Stratton-Chu diffraction integral formula is given by [27]

~H (~r) =
∫

S′

{
jωε

[
~n× ~E

(
~r ′

)]
G0

(
~r, ~r ′

)
+

[
~n× ~H

(
~r ′

)]

×∇′G0

(
~r, ~r ′

)
+

[
~n · ~H

(
~r ′

)]∇′G0

(
~r, ~r ′

)}
dS′ (3)

where ~r and ~r ′ represent an arbitrary observation point in the far
region and an source point on the integral surface S′, respectively;
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unit vector ~n is the outer normal of the integral surface S′; ω and ε are
the angular frequency and the permittivity, respectively. G0

(
~r, ~r ′

)
is

the free-space Green’s function given by

G0

(
~r, ~r ′

)
= exp(jk

∣∣~r − ~r ′
∣∣)/4π

∣∣~r − ~r ′
∣∣ (4)

for the three-dimensional (3-D) problem and by

G0

(
~r, ~r ′

)
= − j

4
H

(2)
0 (k

∣∣~r − ~r ′
∣∣) (5)

for the 2-D problem. H
(2)
0 is the zero-order Hankel function of the

second kind and k is the wave number in the free space. When Eq. (3)
is employed to calculate the field reflected by a perfectly conducting
surface, the boundary conditions: ~n× ~E = 0 and ~n ·µ ~H = 0 should be
imposed on it. In such case, Eq. (3) is reduced as

~H (~r) =
∫

S′

{[
~n× ~H

(
~r ′

)]×∇′G0

(
~r, ~r ′

)}
dS′

=
∫

S′

{[
2~n× ~Hi

(
~r ′

)]×∇′G0

(
~r, ~r ′

)}
dS′ (6)

where the fact that ~n × ~H
(
~r ′

)
= 2~n × ~Hi

(
~r ′

)
on the perfectly

conducting surface is considered, ~Hi denotes the incident magnetic
field vector.

Now, let us describe the ISCF algorithm. To understand easily and
calculate conveniently, the round-trip propagation inside the cavity is
divided into two one-way transits, as illustrated schematically in Fig. 2.
In the first transit, namely, the propagation of the electromagnetic
wave from the mirror M1 to mirror M2, according to Eq. (6) the
diffracted field ~H2 (~r2) at the M2 can be written as

~H2 (~r2) =
∫

S1

{[
2~n1 × ~H1 (~r1)

]
×∇′G0 (~r2, ~r1)

}
dS1 (7)

Similar expression can be obtained for the diffracted field ~H3 (~r1) at
the M1 in the second transit

~H3 (~r1) =
∫

S2

{[
2~n2 × ~H2 (~r2)

]
×∇′G0 (~r1, ~r2)

}
dS2 (8)
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The various symbols are defined in Fig. 2. According to the self-
consistency condition, we can obtained the following relation after
transiting m times and approaching a steady state

~Hm+1 =
1
γ

~Hm−1 (9)

where ~H represents the eigenfield distribution at the M1 or M2; γ is
the complex eigenvalue independent of the position coordinate, which
defines the fractional power loss per round-trip

δ = 1−
∣∣∣∣
1
γ

∣∣∣∣
2

(10)

and the additional phase shift per round-trip

Φ = arg
1
γ

(11)

The procedure of implementing the ISCF algorithm is summarized
as follows. The first step of the ISCF algorithm is to generate an
initial field distribution ~H1 (~r1) at the M1. General speaking, it can
be assumed arbitrarily. Secondly, substitution of ~H1 (~r1) into Eq. (7)
yields ~H2 (~r2). Then, normalizing ~H2 (~r2), i.e., | ~H2 (~r2) |max = 1, and
substituting it into Eq. (8), we get ~H3 (~r1). This computation process
is repeated until the relative field distribution reaches a steady state,
that is, satisfies Eq. (9). We regard this field distribution as an iterative
normal mode of the resonator [25].

4. DEMONSTRATION THE VALIDITY OF THE ISCF
METHOD

It is worth pointing out that the ISCF method described in Section 3
is not only suitable for analysis the resonator at millimeter wavebands
but also in the optical region. In other words, the applicable range
of the ISCF method is wider than the Fox-Li approach. Therefore,
the validity of the ISCF method can be demonstrated by comparing
the analysis results obtained by the ISCF and Fox-Li algorithms.
The cavity, used to analyze comparison, originated from [25], and its
configuration is composed of two parallel infinite strip mirrors, which
is a 2-D problem. The dimension of the strip mirrors is R = 25λ
and the cavity length is L = 100λ. Assuming an initial excitation
~H1 (x1) = ~y and employing Eqs. (7) and (8) for the computation, the
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Figure 2. A computational model for the QOBR. A propagating wave
is reflected back and forth by two mirrors; and a round-trip is divided
into two one-way transits. The inner surfaces of the M1 and M2 are
denoted by S1 and S2, respectively. n1 and n2 are the normal of the S1

and S2, respectively. R1 and R2 represent the aperture radius of the
M1 and M2, respectively; L is the cavity length and α is the conical
angel of the M2. Hm+1 represents the filed distribution of the mth-time
transit.

 

(a) (b)

Figure 3. Comparison of the results obtained by the ISCF and Fox Li
algorithms. (a) Relative intensity distributions of the field for the
infinite strip mirrors; (b) relative phase distributions.

steady state can be reached after three hundred transits. The intensity
and phase distributions for the ~H1, ~H2, ~H301, calculated by the ISCF
and Fox-Li algorithms, are plotted respectively in Figs. 3(a) and 3(b).
It can be seen obviously from Fig. 3 that not only the intensity but
also the phase curves exhibit excellent agreements. Additionally, the
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power loss and phase shift per transit gotten by the ISCF algorithm
are 0.6679% and 1.565◦, respectively, which are almost the same as
the results of 0.6673% and 1.578◦, obtained by the Fox-Li approach in
our calculation. Moreover, these results are very close to the values of
0.688% and 1.59◦ computed by Fox and Li in [25]. These numerical
results serve to validate the ISCF method. Now, it can be employed
confidently to analyze the designed QOBR in millimeter range.

5. NUMERICAL ANALYSIS

Recently, a quasi-optical open resonator supporting Gaussian modes
has been designed and employed to measure dielectric parameters
at millimeter wavebands in our group [28–30]. The geometrical
parameters for the designed QOBR are hence related to this Gaussian
resonator: aperture size of the reflective axicon R2 = 85mm, cavity
length L = 103.1mm, and wavelength λ = 8 mm. And then the
aperture radius of the output mirror is R1 = R2/2 = 42.5mm.
From Eq. (2), the value for the conical angel α is computed to be
approximately α = 22.4◦. The rotational symmetry of the QOBR
enables us to reduce a 3-D calculation to a 2-D one, which can save
computational resources significantly. Using an initial excitation of a
uniform plane wave at the M1, i.e., ~H1 (x1) = ~y, and applying Eqs. (7)
and (8) for the iterative calculation, the fundamental mode of the

  

(a) (b)

Figure 4. The intensity and phase distributions of the dominant
Bessel-type mode for the designed QOBR at the output mirror. (a)
The intensity profile is modulated by a bell-shaped envelope (broken
red line); (b) the phase pattern has a block-shaped profile excluding
tiny aberration on the edges of the output mirror; moreover, it is even-
symmetric about z-axis.
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designed QOBR can be readily acquired after three hundred transits.
Fig. 4 shows the intensity and phase distributions of the field at the M1.
It can be observed clearly from Fig. 4(a) that the intensity profile of
the dominant Bessel-type mode is modulated by a bell-shaped envelope
(broken red line –), which corresponds to the lowest-order mode of a
cavity constructed by two parallel plane mirrors with aperture radius
R1 and separated by length 2L. The modulation resulted from the
fact that within the QOBR each plane wave component of the Hankel
wave will be suffered from reflection by two parallel plane mirrors
[see Fig. 1(c)], having radius R1 and cavity length ∼ 2L [21, 22].
Moreover, this modulation in a Bessel intensity profile is inevitable
owing to the finite extent of elements in a real QOBR. The phase
pattern of an ideal Bessel beam has a block-shaped profile. However,
the phase distribution of the fundamental Bessel-type mode depicted
in Fig. 4(b) exhibits little aberration due to diffraction on the edges of
the aperture of the M1. In addition, from Eqs. (10) and (11), the power
loss and phase shift per round-trip is computed, yielding δ = 5.49%
and Φ = 60.81◦, respectively.

If an initial field at the M1 is preset as: ~H1 (x1 > 0) = ~y but
~H1 (x1 < 0) = −~y, the high-order Bessel-type mode can be excited.
Its intensity and phase distributions at the M1 are plotted in Fig. 5.
The normalized intensity distribution is not unit one but zero at the

(a) (b)

Figure 5. The intensity and phase distributions of the high-order
Bessel-type mode for the designed QOBR at the output mirror. (a)
The intensity distribution has a zero at the center, and its profile is still
modulated by a bell-shaped envelope (broken red line); (b) the phase
pattern shows a block-shaped frame; however, it is odd-symmetric
about z-axis.
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center of the M1, due to the existence of phase singularity there. The
modulation in the intensity profile of high-order Bessel-type mode is
the same as that of the lowest-order one. The phase distribution of
the high-order mode still displays a block-like frame, but it is odd-
symmetric about z-axis, which is different from that of the lowest-order
one with an even symmetry about z-axis. In the same way, the values
of δ = 7.85% and Φ = 60.83◦ can be obtained. As expected, they are
a little larger than those of the dominant mode, correspondingly.

The manufacture errors of the designed QOBR are unavoidable.
Therefore, it is great helpful to examine the influence of varying
the parameters of the designed QOBR on the output characteristics
including the intensity and phase distributions, power loss and phase
shift per round-trip. Provided that only the aperture radii of two
elements have an error, i.e., R1 = 42.5 ± 1mm and R2 = 85 ± 2mm,

 

(a)

 

(b)

(c) (d)

Figure 6. The influence of changing the radii of two elements
on the output distributions. The intensity and phase distributions
of the fundamental mode for (a), (b) R1 = 41.5mm and (c), (d)
R1 = 43.5 mm.
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the fundamental modes can by evaluated, respectively. And their
intensity and phase distributions at the M1 are illustrated in Fig. 6.
The influence of changing the conical angle of α = 22.4 ± 0.5◦ on the
output distributions are shown in Fig. 7. From Figs. 6 and 7, it can
be seen clearly that their distributions agree with those represented
in Fig. 4, correspondingly. This means that Bessel-type modes are
still maintained well within the designed QOBR, although there exist
machining errors of the radius and conical angle. The power losses and
phase shifts per round-trip are summed up in Table 1. From Table 1,
we can see that the power losses of the fundamental modes are close
to the value of 5.49%; however, the phase shifts are more sensitive to
conical angle errors than aperture radius errors.

 

(a)                             (b)

 

(c)                            (d)

Figure 7. The effect of varying the conical angle of the reflective
axicon on the output distributions. The intensity and phase
distributions for (a), (b) α = 21.9◦ and (c), (d) α = 22.9◦.
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Table 1. The power losses and phase shifts of the dominant Bessel-
type modes.

Aperture radius R1 (mm) Conical angle α (◦) power loss δ (%) phase shift Φ (◦)
42.5 22.4 5.49 60.81

42.5− 1 22.4 6.14 61.14

42.5 + 1 22.4 4.85 60.55

42.5 22.4− 0.5 5.80 30.56

42.5 22.4 + 0.5 5.13 91.79

6. SUMMARY

On the basis of quasi-optical techniques and the developed iterative
method (ISCF method), the QOBR at millimeter wavelengths is
designed and its resonant modes is analyzed. The processing errors
of the designed QOBR are also considered. Similar to the practical
applications of a quasi-optical open resonator sustaining Gaussian
modes [31–38], we believe that the designed QOBR, besides the
production of Bessel-type modes, have many promising applications in
millimeter range, such as frequency measurement, spectrum analysis,
transmission characteristic research, power combination, and dielectric
parameter measurement. Therefore, the study of the QOBR in these
spectrum ranges has important practical significance.
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