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Abstract—The scattering of electromagnetic plane wave from an
artificial object containing thin long perfectly conducting needles
embedded in a homogeneous background material is characterized
by parameters like positioning, orientations and lengths of needles.
Firstly, models of random errors in positioning and orientation of
perfectly conducting needles are proposed. Secondly, their effects upon
ensemble averaged RCS is analyzed. It is investigated theoretically
that increasing error in positioning and orientation of conducting
needles reduces ensemble averaged RCS.

1. INTRODUCTION

Scattering of electromagnetic waves from perfectly conducting thin
wires has been the subject of several investigations. It has been of
great interest in the study of artificial wire medium or called rodded
medium, Epsilon-Negative (ENG) materials, sensing technology and
radar engineering problems. Scattering characteristics of a single finite
length perfectly conducting thin wire has been analyzed in [1–4] using
numerical and approximate analytical techniques. Lin and Maston
studied the backscattering from two identical finite length perfectly
conducting parallel thin wires based upon integral equation method [5].

A surface composed of densely packed thin long wires is called
super-dense dipole surface or gangbuster surface in the literature [6, 7].
For such types of surfaces, wire lengths may be greater than the lattice
periodicity. These surfaces have applications in broad-band frequency-
selective surfaces and polarization-selective surfaces. Experimental
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study of scattering of EM waves from parallel wires is given in [8, 9].
In the papers listed above, thin wires or needles were assumed to
be parallel to each other. The effects of randomly oriented wires
upon scattering properties have been analyzed by Dedrick using Stokes
parameters [10].

A little effort has been made to analyze the effects of random errors
in positioning and orientation of needles. In [11], effects of random
errors in positioning are analyzed with reference to frequency selective
surfaces and linear antenna arrays. Manabe [12] has analyzed the
effects of slight irregularity in grid position and grid rotation of wire
grids consisting of conducting and infinitely long wires in millimeter
and sub-millimeter wave regions. The T -matrix approach is used and
mutual coupling effects are incorporated as wires are closely placed.

In this paper, we have taken a volume containing N thin long and
finite length, perfectly conducting needles embedded in a homogeneous
background material. The needle density is taken to be sparse
and needles are arranged in periodic order along three orthogonal
directions. Such an object is defined as an artificial object containing
thin long PEC needles. The effects of random errors in positioning and
orientation of needles upon far zone scattered field are analyzed for this
artificial object. The study of random errors in thin long PEC needles
is important because thin long needles are one of the basic components
of double negative (DNG) material.

In Section 2, electromagnetic scattering from an arbitrarily located
and oriented thin long PEC needle is analyzed. It is extended for N
needles under sparse assumption in Section 3. Effects of random errors
in positioning and orientation of needles are analyzed in Sections 4
and 5 respectively. Finally, conclusions are presented in Section 6.

2. EM SCATTERING FROM A THIN LONG PEC
NEEDLE

Consider an incident plane wave which is propagating in the direction
k̂i and polarized along êi

Ēinc(r̄) = êiEoe
ik̄i·r̄ (1)

where
k̄i = kok̂i = kixx̂ + kiyŷ + kiz ẑ

The time dependance is assumed to be e−iωt and has been suppressed
throughout. Free space propagation constant is ko = ω

√
µoεo with

µo and εo as permeability and permittivity of free space respectively.
When this incident wave impinges upon a PEC scatterer of volume V ′
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in free space, it induces current in it. If induced current distribution
J̄ ind(r̄′) of a scatterer is known then the scattered field is given by,

Ēsc(r̄) = iωµo

∫

V ′
Ḡe(r̄, r̄′) · J̄ ind(r̄′)dV ′ (2)

where r̄′ and r̄ are position vectors for scatterer and observation point
respectively. Ḡe(r̄, r̄′) is a free space dyadic green’s function, i.e.,

Ḡe(r̄, r̄′) =
[
Ī +

∇′∇′
k2

o

] [
eiko|r̄−r̄′|

4π|r̄ − r̄′|

]
(3)

Taking far field assumption, i.e., r À r′, free space dyadic green’s
function can be approximated as [13],

Ḡe(r̄, r̄′) ' (Ī − k̂sk̂s)
eikor

4πr
e−ik̄s·r̄′ (4)

where Ī is a unit dyadic and k̂s is a unit vector along direction of
scattering or observation and k̄s = kok̂s. Thus, the far zone scattered
field from a PEC scatterer with background medium as free space is,

Ēsc(r) = −iωµo
eikor

4πr
k̂s ×

[
k̂s ×

∫

V ′
e−ik̄s·r̄′ J̄ ind(r̄′)

]
dV ′ (5)

The exponential term e−ik̄s·r̄′ can be expanded in a series of −ik̄s · r̄′.
In the far zone, the dominant contribution comes only from the first
term of the series, i.e., induced electric dipole moment. The strengths
of higher order terms, i.e., induced multipole moments fall off faster
than the first term. Retaining first term of series expansion, it is found
that the far zone scattered field in terms of an induced electric dipole
moment p̄ of a scatterer at origin is given in [14], as,

Ēsc(r) = k2
o

eikor

4πεor
k̂s × (p̄× k̂s) (6)

with
p̄ =

i

ω

∫

V ′
J̄ ind(r̄′)dV ′ (7)

In order to calculate the scattered field from a scatterer, it is necessary
to first calculate the induced dipole moment. Here a scatterer is
taken to be a perfectly conducting (PEC) needle with length l and
radius a. Its length is taken to be greater than free space wavelength
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(l > λo). For thin wire approximation, it is assumed that a ¿ λo where
transverse and circumferential variation of current can be neglected
with respect to axial current on the needle. The end effects can be
ignored for thin wire because for large radii there exist additional
charge accumulation on the end caps of the wire and would tend to
increase the polarizability [15]. Therefore, for thick needles higher
order moments can not be neglected. If a needle is aligned along z-
axis with its center at origin, then the induced current density J̄ ind(r̄′)
can be modelled as in [16],

J̄ ind(r̄′) = êzI
indδ(x′)δ(y′)

[
cos(koz

′)− cos(kol/2)
1− cos(kol/2)

]
(8)

where δ(.) is a dirac delta function. The induced current in a short
circuited antenna by an incident wave is given by [17] as,

Iind =
1
Vt

∫

V ′
Ēinc(r̄′) · J̄t(r̄′)dV ′ (9)

where J̄t(r̄′) is the current density in the transmitting regime along a
thin wire excited by a point voltage source Vt at its center and can be
written using [18],

J̄t(r̄′) = êzItδ(x′)δ(y′)
[
sin[ko{l/2− |z′|}]

sin(kol/2)

]
(10)

and It is constant terminal current amplitude measured in amperes. If
a needle is displaced from an origin to a point whose position vector is
r̄j and orientation of thin needle is characterized by a unit vector êj ,
then the induced current from Eq. (9) is,

Iind
j =

Yin(ω)(êi · êj)eik̄i·r̄jEo

sin(kol/2)

∫ l/2

−l/2
eikihh sin[ko{l/2− |h|}]dh

=
2koYin(ω)(êi · êj)eik̄i·r̄jEo

(k2
o − k2

ih)

[
cos(kihl/2)− cos(kol/2)

sin(kol/2)

]
(11)

where Yin(ω) = It/Vt is the input admittance of a needle and is
discussed in Section 3. The factor kih = k̄i · êj is the component of k̄i

along êj and h is a dummy coordinate of integration along the axial
direction of a needle. Thus, the induced electric dipole moment of a
perfectly conducting thin long needle oriented along a unit vector êj

and having position vector r̄j can be computed by using Eqs. (8)–(11)
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in Eq. (7) and is given by,

p̄j = êj(êi · êj)
i

ω

2Yin(ω)eik̄i·r̄jEo

(k2
o − k2

ih)

[
2 sin(kol/2)− kol cos(kol/2)

1− cos(kol/2)

]

[
cos(kihl/2)− cos(kol/2)

sin(kol/2)

]
(12)

The scattered field due to an induced diploe moment at origin is given
by Eq. (6). As a needle is displaced from origin to a position vector
r̄j then an associated phase factor e−ik̄s·r̄j is multiplied with the given
scattered field at origin. Likewise, the induced dipole moment given
by Eq. (12) is used in Eq. (6) instead of p̄. Thus, the scattered electric
field due to a thin needle at position r̄j can be written in general form
as,

Ēsc
j (r) = F̄j(k̂i, k̂s)

Eoe
ikor

r
(13)

with

F̄j(k̂i, k̂s) =
iωµoYin(ω)eik̄d·r̄j

2π(1− cos(kol/2))

[
cos(kihl/2)− cos(kol/2)

(k2
o − k2

ih)

]

[
2− kol

tan(kol/2)

] [
k̂s ×

(
êj(êi · êj)× k̂s

)]
(14)

and k̄d = k̄i − k̄s is the vectorial change in wave vector during the
scattering. Using Maxwell’s equation, the scattered magnetic field in
the far zone is,

H̄sc(r) =
1

iωµo
∇× Ēsc(r)

=
Eoe

ikor

r

[
ikoYin(ω)eik̄d·r̄j

2π(1− cos(kol/2))

{
cos(kihl/2)− cos(kol/2)

(k2
o − k2

ih)

}

{
2− kol

tan(kol/2)

} {
k̂s × êj(êi · êj)

}]
(15)

3. EM SCATTERING FROM A COLLECTION OF PEC
NEEDLES

Consider a volume V which encloses N conducting needles having
random positions and orientations. The volume under consideration
is assumed to be sparse where multiple scattering is negligible i.e.,
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separation between needles approaches to a wavelength or greater than
it [19]. Taking incident wave to be a TEM wave i.e., êi ·k̂i = 0. If êi and
k̂i are characterized by the angles θi and φi in spherical coordinates,
then

êi = cosφi cos θix̂ + sin φi cos θiŷ − sin θiẑ (16)

k̂i = cosφi sin θix̂ + sin φi sin θiŷ + cos θiẑ (17)

In general, this volume scatters wave in all directions but k̂s has been
taken as a direction of far-zone scattered field. It can be expressed in
spherical angles θs and φs as,

k̂s = cosφs sin θsx̂ + sinφs sin θsŷ + cos θsẑ (18)

The randomness in positioning of a jth needle can be described by
a random vector ˜̄rj and its random orientation ˜̂ej = cos φ̃j sin θ̃j x̂ +
sin φ̃j sin θ̃j ŷ + cos θ̃j ẑ by random variables (θ̃j , φ̃j). As random
orientation of a needle has no effect upon its random position. So,
we can take them as independent. Likewise, it is assumed that θ̃j

and φ̃j are independent of each other. Thus, joint probability density
function becomes p(˜̄rj , θ̃j , φ̃j) = p(˜̄rj)p(θ̃j)p(φ̃j). It is further assumed
that random variables θ̃j and φ̃j are identically distributed, i.e., θ̃j = θ̃,
φ̃j = φ̃ and ˜̂ej = ˜̂e. The random position vector of a jth needle can be
taken as a sum of jth mean vector m̄j and a random error vector ˜̄nj

i.e., ˜̄rj = m̄j + ˜̄nj . The components of random error vector nxj , nyj and
nzj are taken to be independent and identically distributed along three
orthogonal directions, i.e., ˜̄nj = ˜̄n. The mean vector m̄j is periodic in
x, y and z directions with periods dx, dy and dz respectively. By
taking ensemble average over random orientations (θ̃j , φ̃j) and random
positions ˜̄rj of a jth needle, the ensemble averaged scattered field from
a collection of N PEC needles can be written as,

〈
Ēsc(r)

〉
=

N∑

j=1

〈
F̄j(k̂i, k̂s)

〉 Eoe
ikor

r
(19)

The angular bracket 〈 〉 show ensemble average. After some
manipulation, it can shown that the ensemble averaged scattered field
is, 〈

Ēsc(r)
〉

=
Eoe

ikor

r

[
iα1S

{
k̂s ×

(
F̄ × k̂s

)}]
(20)
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with

α1 =
ηoYin(ω)

2πko

[
2− kol

tan(kol/2)

]
(21)

S = NΦnx(kdx)Φny(kdy)Φnz(kdz)

exp
[

i

2

{
kdx(Nx+1)dx+kdy(Ny+1)dy+kdz(Nz+1)dz

}]

sin c(kdxNxdx/2π) sin c(kdyNydy/2π) sin c(kdzNzdz/2π)
sin c(kdxdx/2π) sin c(kdydy/2π) sin c(kdzdz/2π)

(22)

F̄ =
〈˜̂e(êi · ˜̂e)Ψ(θi, φi, θ̃, φ̃, l/λo)

〉

=
∫

φ̃

∫

θ̃
RΨ(θi, φi, θ̃, φ̃, l/λo)p(θ̃)p(φ̃)dθ̃dφ̃ · êi

=
〈
RΨ(θi, φi, θ̃, φ̃, l/λo)

〉
· êi (23)

and

Ψ(θi, φi, θ̃, φ̃, l/λo) =

[
cos(k̃ihl/2)− cos(kol/2)

(1− cos(kol/2))(1− k̃2
ih/k2

o)

]
(24)

R =




sin2 θ̃ cos2 φ̃ sin2 θ̃ sin φ̃ cos φ̃ sin θ̃ cos θ̃ cos φ̃

sin2 θ̃ sin φ̃ cos φ̃ sin2 θ̃ sin2 φ̃ sin θ̃ cos θ̃ sin φ̃

sin θ̃ cos θ̃ cos φ̃ sin θ̃ cos θ̃ sin φ̃ cos2 θ̃


 (25)

where Φnx(kdx), Φny(kdy) and Φnz(kdz) are characteristic functions of
random errors nx, ny and nz respectively with k̄d = ko(k̂i − k̂s) =
kdxx̂+kdyŷ +kdz ẑ. The total number of PEC needles is N = NxNyNz

and ηo is the intrinsic impedance of free space. The factor k̃ih =
k̄i · ˜̂e = ko[cosφi sin θi cos φ̃ sin θ̃ + sin φi sin θi sin φ̃ sin θ̃ + cos θi cos θ̃]
is dependent upon incident wave spherical angles (θi, φi) and random
variables (θ̃, φ̃). It can be observed from Eq. (20) that the ensemble
averaged scattered field is mainly dependent upon three factors α1, S
and F̄ .

The first factor α1 can be taken as a shape factor because it is
dependent upon the shape of the needle, i.e., length l and radius a of
the needle. The input impedance of an infinitesimal small PEC needle
(l ¿ λo) is capacitive [20]. For a thin long PEC needle (i.e., l > λo), its
input impedance can have inductance as well. This is due to a reason
that by increasing its length beyond λo, we are incorporating its higher
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multipole moments. In the far zone, only electric and magnetic dipole
moments will contribute for a localized source [14]. As there exist no
magnetic dipole moment for a thin long PEC needle so only electric
dipole moment will contribute. Thus, for the scattered field from the
volume containing N PEC needles in the far zone, only electric dipole
moments of all needles will give dominant contributions. For a long
thin perfectly conducting needle, its input admittance given by [20],

Yin(ω) =
[

Rm

sin2(kol/2)
− i

Xm

sin2(kol/2)

]−1

(26)

where Rm and Xm are the real and imaginary parts of the input
impedance referred to at the current maximum and are given by,

Rm =
ηo

2π

[
C+ln(kol)−Ci(kol)+

1
2

sin(kol)
{

Si(2kol)−2Si(kol)
}

+
1
2

cos(kol)
{

C + ln(kol/2) + Ci(2kol)− 2Ci(kol)
}]

(27)

Xm =
ηo

4π

[
2Si(kol) + cos(kol){2Si(kol)− Si(2kol)}

− sin(kol)
{

2Ci(kol)− Ci(2kol)− Ci

(
2koa

2

l

)}]
(28)

where Ci(.) and Si(.) are the cosine and sine integrals respectively.
Likewise, C = 0.5772 is Euler’s constant.

The second factor is needle positioning error factor and described
by a scaler value S. It completely specifies the effects of random errors
in positioning of needles. If there exist no errors in position coordinates
and all needles are present at their mean positions then characteristic
functions correspond to unity. In this case, |S|2 correspond to a factor
which is well known as a structure factor and given by Jackson [14, p-
462]. It is further observed that for scattering in forward direction
k̄d = 0 and S equals N , no matter how randomly needles are placed
in volume V . Therefore errors in location alone of the needles do not
effect the ensemble averaged scattered field in forward direction.

The third factor is a needle orientation error factor, i.e., F̄ . It
is a vector and completely specify the effects of random errors in
orientations of needles. As a simple case, if all needles are aligned along
z-axis with no errors in orientations of needles and incident wave is also
polarized along z-axis, then F̄ corresponds to ẑ with |F̄ | = 1. Likewise,
similar effects are observed for needles and incident polarization aligned
along x and y-axes respectively. In order to analyze the scattering
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characteristics of a volume containing PEC needles, it is desired to
find the ensemble average radar cross section. It can be calculated
using the well known definition i.e.,

σav = lim
r→∞ 4πr2

∣∣〈Ēsc
〉∣∣2

∣∣Ēinc
∣∣2 (29)

where
〈
Ēsc

〉
and Ēinc are the far field ensemble averaged scattered and

incident electric field intensities, respectively. Thus, using Eq. (1) and
Eqs. (20)–(23) in Eq. (29) and after some simplification, the normalized
averaged radar cross section σav/σn from a collection of N needles can
be written as,

σav

σn
=

∣∣Φnx(kdx)Φny(kdy)Φnz(kdz)
∣∣2∣∣F ∣∣2

(
sin γ

sin θs

)2

=
∣∣L∣∣2∣∣O∣∣2 (30)

where σn is a RCS of N PEC needles enclosed by volume V with all
needles aligned along some reference direction and are present at their
mean positions i.e., no error in orientation and positioning. It can be
written as,

σn= 4πN2
∣∣α1

∣∣2
∣∣∣∣
sinc

(
kdxNxdx/2π

)
sinc

(
kdyNydy/2π

)
sinc

(
kdzNzdz/2π

)

sinc
(
kdxdx/2π

)
sinc

(
kdydy/2π

)
sinc

(
kdzdz/2π

)
∣∣∣∣
2

· sin2 θs (31)

The factor γ is an angle between an averaged vector F̄ and a unit
vector along direction of scattering k̂s. It is obvious from Eq. (30) that
the normalized averaged RCS is a product of two factors, i.e., L =
Φnx(kdx)Φny(kdy)Φnz(kdz) and O = |F̄ |(sin γ/ sin θs). The factor L is
a representative of positioning errors in needles and dependent upon
vectorial change in wave vector during scattering k̄i − k̄s, wavelength
λo and positioning error variances σ2

q with q = x, y, z. The dependency
of L upon wavelength shows frequency dispersion. It is independent
of the length l of a needle. Likewise, orientational errors in needles is
described by O and dependent upon incident wave vector k̄i, incident
polarization êi, direction of scattering k̂s, l/λo and orientational error
variances σ2

R with R = θ̃, φ̃. The dependency of orientational errors
O upon wavelength and incident wave vector leads to frequency and
spatial dispersion respectively.
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4. EFFECTS OF RANDOM ERRORS IN POSITIONING
OF NEEDLES

The effects of random errors in positioning of needles are characterized
by the characteristic functions Φnx(kdx), Φny(kdy) and Φnz(kdz). In
order to fulfill sparse condition, it is required that variances σ2

q ¿ dq

where q = x, y, z showing that random errors in x, y and z-directions
of a needle are very small. Two types of pdfs associated with random
errors in positioning of needles are assumed, i.e., uniform and normal.
It is desired to analyze the effects of maximum possible errors in
positioning of needles without violating sparse condition. It is well
known [21] that for a random error ñq with given variance σ2

q , the
maximum entropy, i.e., maximum error occurs if ñq is gaussian or
normally distributed. Likewise, if maximum value of ñq is given then
maximum entropy can obtained if ñq is uniformly distributed. That is
the reason why uniform and normal pdfs are assumed here. Mean
values of random errors in positioning of needles can be taken as
systematic errors. Such type of errors can easily be removed and
without loss of generality, their pdfs can be assumed to have zero
means. Moreover this mean value effects only the phase of the averaged
scattered field and does not effect the radar cross section.

To analyze the effects of random errors in positioning of needles
upon the averaged radar cross section (RCS) σav/σn from a collection
of N needles, it is assumed that there exist no error in orientations
of needles i.e., ˜̂ej = ẑ. Also length l of each needle is 0.8 m and the
operating wavelength is taken to be λo=0.3m. In this case, |F̄ |2 sin2 γ
becomes sin2 θs and averaged radar cross section (RCS) σav/σn is,

σav

σn
= |L|2 (32)

Likewise, it is further assumed that incident wave unit vector k̂i lies in
the xy-plane and incident polarization êi is aligned along z-direction,
i.e., êi = ẑ and k̂i = − cosφix̂− sinφiŷ.

As a first case, it is assumed that random errors in positioning
of a needle along x, y and z directions are normally distributed with
means mq = 0 and variances σ2

q , q = x, y, z. Then, the factor L is,

L = exp[−(k2
dxσ2

x + k2
dyσ

2
y + k2

dzσ
2
z)/2] (33)

The effects of random errors in positioning of needles upon
normalized average RCS assuming gaussian distribution is shown in
Figure 1. It is observed that when k̄i is parallel to k̄s then RCS remains
unaffected regardless of any value of σ2

q with q = x, y, z. In backward
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direction, effects of positioning errors are dominant. As positioning
error is increased along three orthogonal directions, the normalized
averaged RCS decreases for all values of θs instead of forward direction
where θs = −π/2.

In the second case, random errors in x, y and z directions are taken
to be uniformly distributed between ζq and −ζq with means mq = 0
and variances ζ2

q /3, q = x, y, z. Then, L is given by,

L =

[
sin(

√
3kdxσx)√

3kdxσx

][
sin(

√
3kdyσy)√

3kdyσy

][
sin(

√
3kdzσz)√

3kdzσz

]
(34)

The effects of random errors in positioning of needles upon normalized
average RCS assuming uniform distribution is shown in Figure 2.
Similar effects are observed as for normal distribution but in backward
direction, error effects are more dominant. Effects of positioning errors
are analyzed for error variances upto σ2

x = σ2
y = σ2

z = 0.015λ where
sparse condition is satisfied.

Figure 1. Effects of random errors in positioning of needles upon
normalized averaged RCS using gaussian or normal distribution.

5. EFFECTS OF RANDOM ERRORS IN
ORIENTATIONS OF NEEDLES

The effects of random errors in orientation of a needle can be
characterized by ensemble averaged vector F̄ . In previous section,



160 Awan and Rizvi

Figure 2. Effects of random errors in positioning of needles upon
normalized averaged RCS using uniform distribution.

no error in orientation is assumed i.e., all needles are aligned along z-
axis. Likewise, needles may also be aligned along either x or y-axis and
these two cases can also be considered as aligned cases with no error
in orientation. If needles are not exactly aligned then random errors in
orientation are completely specified by random variables θ̃ and φ̃ and
their associated pdfs. In order to simplify the analysis, it is assumed
that all needles have no error in positioning, i.e., all needles are at their
mean positions. The normalized averaged radar cross section from a
collection of N needles is,

σav

σn
= |O|2 = |F̄ |2

(
sin γ

sin θs

)2

(35)

This result is general and can be applied for all types of random errors
in orientations of needles in a given volume for any incident plane wave
having arbitrary incidence and polarization. This result can also be
used to analyze the effects of random errors for planer finite length
sparse wire grids of PEC needles. Depending upon random error
variables θ̃ and φ̃, three cases can be considered for the planer finite
length sparse wire grids.

Case 1: Consider all needles in the xy-plane i.e., θ̃ = π/2. In
this case, the needle orientation error vector F̄ is only described by a
random variable φ̃ and its associated pdf and the factor k̃ih simplifies



Progress In Electromagnetics Research M, Vol. 7, 2009 161

to,
k̃ih = ko

[
cosφi sin θi cos φ̃ + sin φi sin θi sin φ̃

]
(36)

This result can further be reduced to two special cases of no error in
orientations of needles. The first case can be considered with φ̃ = 0
showing that ˜̂e = x̂ and all needles are aligned along +ve x-axis.
Likewise, for second case, φ̃ = π/2, i.e., ˜̂e = ŷ and all needles are
aligned along +ve y-axis.

Case 2: In this case, all needles lie in the xz-plane. The effects
of random errors in orientations are described by a random variable θ̃

and its pdf. The factor k̃ih becomes,

k̃ih = ko

[
cosφi sin θi sin θ̃ + cos θi cos θ̃

]
(37)

Case 3: All needles are in the yz-plane then effects of random
errors in orientations are only dependent upon a random variable θ̃

and k̃ih becomes,

k̃ih = ko

[
sinφi sin θi sin θ̃ + cos θi cos θ̃

]
(38)

A special case of it can be considered with θ̃ = 0 and φ̃ = π/2,
i.e., ˜̂e = ẑ, where all needles are aligned along +ve z-axis having no
error in orientations. To analyze the effects of errors in orientation
of needles, incident E-field is taken to be aligned along z-axis and
orientation of needles are described by θ̃ and φ̃. Random variables
θ̃ and φ̃ are taken to be uniformly distributed with means 0 and
π/2 respectively. Integrals given by Eq. (23) are difficult to compute
analytically. They are solved numerically using sample mean of the
generated sample space for a particular fixed value of l/λo ≈ 2.667.
This length is assumed due to the reason that a finite length but long
needle can have a length in the range of 2λo to 3λo where λo is the
free space wavelength. The normalized averaged RCS with no error in
orientation is compared with error in orientation of needles in Figure 3.
It is observed that as error in orientation of needles increases, the
normalized averaged RCS reduces. Thus, the above analysis can be
used to analyze the effects of random errors in orientations of perfectly
conducting needles enclosed by a particular volume and planer sparse
wire grids of finite length.
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Figure 3. Effects of random errors in orientations of needles upon
normalized averaged RCS.

6. CONCLUSIONS

The effects of random errors in orientations and positioning of needles
upon normalized average RCS is analyzed using sparse assumption. It
is observed that in forward direction scattering, normalized average
RCS is independent of positioning errors and in backward direction
scattering it plays significant rule, i.e., increasing error causes reduction
in normalized average RCS. Likewise, reduction in normalized averaged
RCS is observed with increased random errors in orientations of
needles.
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