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ITY DETERMINATION OF PARTIALLY FILLED THIN
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Abstract—A microwave method has been proposed for accurate
complex permittivity measurement of thin dielectric materials partially
filling the waveguide. The method employs propagation constant
measurements at two locations of the sample inside its holder. It
increases the accuracy of permittivity measurements of similar methods
in the literature since it utilizes the measurements of the distances
between the inner waveguide walls and sample lateral surfaces instead
of directly measuring the sample thickness. It has been validated
by comparing the measured complex permittivity of a thin Plexiglas
sample by the proposed method with that of the method in the
literature.

1. INTRODUCTION

Microwave engineering requires precise knowledge of electromagnetic
properties of materials at microwave frequencies since microwave
communications are playing more and more important roles in military,
industrial, and civilian life [1–3]. Various microwave techniques have
been proposed to determine these properties of material under test [1–
20]. These methods can be divided into two groups as a) resonant
and b) nonresonant methods [1]. Resonant methods have much
better accuracy and sensitivity than nonresonant methods [1] and
are generally applied to characterization of low-loss materials. On
the other hand, nonresonant methods have relatively higher accuracy
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over a broad frequency band and necessitate less sample preparation
compared to resonant methods. Additionally, they allow the frequency-
domain or time-domain analysis, or both.

Electrical characterization of thin materials is needed for several
reasons. For instance, the dielectric constant of vegetation has a direct
effect on radar backscatter measured by airborne and space-borne
microwave sensors. A good understanding of the dielectric properties
of vegetation leaves is vital for extraction of useful information
from the remotely sensed data for earth resources monitoring and
management [17]. Also, in the field of electronics, it has been a lasting
key issue to evaluate the relative complex permittivity (εr) of thin
dielectric materials such as high-density packaging (HDP) [18].

Permittivity measurements of thin materials can be performed
by using non-destructive methods such as open-ended waveguide and
coaxial methods [4]. In order to accurately measure the εr for these
methods, samples with larger apertures should be prepared. Besides,
the sample must be sufficiently thick so that the interaction of the
electromagnetic field with the non-contacting boundaries or sample
holder is negligible [15]. Furthermore, any bad contact present between
the waveguide or coaxial aperture and the sample surface may degrade
the accuracy of measurements [20]. Finally, for open-ended waveguides
and coaxial probes with a lift-off distance, thin samples may sag and
thus alter the theoretical computations [21].

The transmission-reflection nonresonant methods are the most
commonly used methods due to their simplicity and broadband
frequency coverage [1, 6–20]. When applying these methods for
measurements of thin materials, various approaches have been
proposed. Although some of these methods are attractive in
determining accurate permittivity, they require that the sample be
precisely fitted into the waveguide aperture [6–13, 17–19]. In some
instances, the presence of air gaps between sample surfaces and inner
waveguide walls may procedure higher order modes or decrease the
accuracy and performance of the proposed technique [14–16]. A
promising solution to this problem is to partially fill the sample
inside the waveguide aperture. Recently, different techniques have
been proposed for permittivity determination using this approach [14–
16, 19]. While the methods in [14, 15, 19] are suitable for thin and
moderately thin solid materials, that in [16] especially designed for
the εr measurement of liquid materials sandwiched by two plugs.
In [14, 15, 19], it is assumed that the sample is located at the center
of the longer section of the waveguide aperture to simplify the
expressions. However, any shift from the center of the longer section
of the waveguide may decrease the accuracy and performance of
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measurements since these methods depend on the assumption that the
sample is located at the center of the waveguide. In addition, these
methods require precise knowledge on the length of the sample for
accurate measurements. The accuracy may lower for thin samples since
the accuracy of thickness measurements of these samples significantly
decreases with a decrease in their lengths. Therefore, any method
which eliminates the dependency of sample length on εr measurements
will be helpful in partially loaded waveguides. In this research paper,
we propose a simple and feasible technique to circumvent the need for
sample thickness information in εr measurement of thin samples in
partially filled waveguides.

2. THEORETICAL BACKGROUND

The problem under investigation is depicted in Fig. 1. In this
figure, the thin dielectric sample with a length of L partially
filling the waveguide aperture is asymmetrically located into the
waveguide for its permittivity determination. For region II in Fig. 1,
either transverse electric to +z-direction (TEz) modes or transverse
magnetic to z-direction (TMz) modes cannot satisfy the boundary
conditions individually [22]. In this region, field configurations that
are combinations of TEz and TMz modes can be solutions and satisfy
the boundary conditions of such a partially filled waveguide [22, 23].

Figure 1. Complex permittivity determination of a thin sample with
length L asymmetrically partially filling the waveguide aperture.
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In general, in region II, the εr is a function of transverse electric to
x-direction (TEx or longitudinal section electric to x-direction-LSEx)
and transverse magnetic to x-direction (TMx or longitudinal section
magnetic to x-direction-LSMx) modes [22, 24]. Electric and magnetic
field components for each region in Fig. 1 can be found from their
vector potentials (or Hertzian vectors), ~A and ~F , such as [22]

~E(n) = −j

{
ω ~A(n) − 1

ωµ(n)ε(n)
∇

(
∇ · ~A(n)

)}
− 1

ε(n)
∇× ~F (n), (1)

~H(n) = −j

{
ω ~F (n) +

1
ωµ(n)ε(n)

∇
(
∇ · ~F (n)

)}
+

1
µ(n)

∇× ~A(n), (2)

where n =I, II and III, ω is the angular frequency, and ε(n) =
ε′(n) − jε′′(n) and µ(n) = µ′(n) − jµ′′(n) are the complex permittivity and
complex permeability of each region.

In the analysis, we assume that electromagnetic waves propagate
to waveguide region II in −z direction with the dominant mode (TEz

10)
from region I. In addition, we assume that the sample has a flat surface
over y axis at locations of x = L1 and x = L1 + L and its surfaces are
parallel to the left and right inner walls of the waveguide. Since TEz

10
mode has an electric field dependency in solely y direction, only the
LSEx modes will propagate through waveguide region II. For these
modes, we can utilize ~A(II) = 0 and F

(II)
y = F

(II)
z = 0 where the

superscript ‘II’ in parenthesis denotes region II [22]. If we, respectively,
denote F

(II)
x01 , F

(II)
x02 and F

(II)
xd for the x-components of the F (II) of the

left and right air-filled and dielectric-filled portions in region II, the
scalar wave equation (Helmholtz equation) for each portion in region
II is given as

∇2
t F

(II)
xm +

[
γ2 + κ (x) β2

0

]
F (II)

xm = 0, m = 01, 02, d (3)

where

κ (x) =
{

1
εr

0 ≤ x ≤ L1, L1 + L ≤ x ≤ a
L1 ≤ x ≤ L1 + L

}
. (4)

Solutions for F
(II)
xm which satisfies the Helmholtz equation in (3) are in

the form [22]

F
(II)
x01 =C1 sin (βx0x) cos (βy0y) eγz0z, 0 ≤ x ≤ L1 (5)

F
(II)
x02 =C2 sin (βx0 (a− x)) cos (βy0y) eγz0z, L1 + L ≤ x ≤ a (6)

F
(II)
xd =C3 sin(βxd(x−L1−L/2)) cos (βydy) eγzdz, L1≤x≤L1 + L (7)
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where C1, C2 and C3 are complex or real constants; βx0, βxd, βy0 and
βyd are, respectively, the wave numbers of air-filled and dielectric-filled
portions in x and y directions which will be determined by boundary
conditions; and γz0 and γzd are the propagation constants of air-
filled and dielectric-filled portions in z direction. Applying boundary
conditions (the continuation of electric and magnetic fields at air-
dielectric interfaces), we obtain the following eigen equations

βy0 = βyd = nπ/b, γz0 = γzd = γ, (8)

γ2 = β2
xd + β2

y0 − εrβ
2
0 = β2

x0+β2
y0−β2

0 ⇒ β2
xd =β2

x0+(εr−1)β2
0 , (9)

β2
x0 tan (βxdL) + βx0βxd (tan (βx0L1) + tan (βx0L2))
−β2

xd tan (βxdL) tan (βx0L1) tan (βx0L2) = 0 (10)

where n = 0, 1, 2, . . . and β0 is the wave number of electromagnetic
waves propagating in an unbounded free-space region. The expressions
in (8) comes from the fact that boundary conditions are satisfied at
specific x values and are valid for all y and z values at the interfaces.
Furthermore, the derivation of the eigen expression in (10) can be
directly derived from the transverse-resonance method [24, 25].

In regions I and III, the LSEx modes emerging from the region II
will become evanescent modes and will die out drastically in a short
distance away from the region II with no energy being carried out. It is
important to note that this attenuation is not due to any energy losses;
it simply results from the fact that the boundary conditions cannot be
satisfied by any LSEx modes in regions I and III [26]. Therefore, the
normal mode of propagation in regions I and III will be similar to that
of TEz

10.

3. THE METHOD

3.1. Mathematical Analysis

We will utilize propagation constant, γ, measurements at two locations
of the sample inside the waveguide aperture to derive expressions
for thickness-independent complex permittivity measurements of thin
dielectric samples. From (10), for symmetric position of the sample
into the waveguide, we have

βx0 cot (βx0(a− L)/2) = βxd tan (βxdL/2) (11)
βxd tan (βx0(a− L)/2) + βx0 tan (βxdL/2) = 0 (12)

where (11) and (12) correspond to symmetric and asymmetric modes
which result in a short circuit and an open circuit at x = a/2,
respectively.
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For thin samples, one can assume that only the dominant mode in
region II (LSEx

mn = LSEx
10) will propagate. The frequency bandwidth

for the dominant mode will be limited by the appearance of the first
higher order mode LSEx

20. The dependency of this bandwidth over
sample thickness is analyzed in [27] and it was shown that, for a relative
width of L/a < 0.25, the bandwidth in the partially filled waveguide
as in Fig. 1 significantly increases. Therefore, we can assume that, for
thin samples with lower dielectric permittivity values, only the LSEx

10
mode will propagate along z axis and the effects of higher order modes
can be eliminated. As a result, we will only focus on symmetric modes.

For thin samples, we can assume that βxdL ¿ 1. This
circumstance reduces (11) to [15]

βx0 cot (βx0(a− L)/2) ∼= β2
xdL/2 =

(
β2

x0 + (εr − 1)β2
0

)
L/2. (13)

It is clear from (13) that εr is a function of L. In this paper, in order to
obtain εr with no information on L, together with (13), we utilize (10).
For thin samples, the expression in (10) reduces to
(
β2

xd tan (βx0L1)tan(βx0L2)−β2
x0

)
L ∼= βx0 (tan (βx0L1)+tan (βx0L2)) .

(14)
Then, substituting L in (14) into (13), we obtain a metric function for
εr extraction with no L dependence as

cot

(
βx0

2

(
a− βx0 (tan (βx0L1) + tan (βx0L2))(

β2
xd tan (βx0L1) tan (βx0L2)− β2

x0

)
))

(
β2

xd tan (βx0L1) tan (βx0L2)− β2
x0

)

∼=
(
β2

x0 + (εr − 1)β2
0

)
(tan (βx0L1) + tan (βx0L2))

/
2. (15)

It is important to point out that the advantage of the proposed method
is that it increases the accuracy of εr measurement of the method in [17]
since it needs the information on L1 and L2 instead of L. It is for sure
that the accuracy of thickness measurement of a material drastically
decreases with a decrease in its length.

3.2. Numerical Analysis

It is instructive to analyze the effect of sample shifting on the
cutoff frequency and the propagation constant of the partially filled
waveguide structure in Fig. 1. Use of perturbational techniques shows
that the cutoff frequency for the structure in region II in Fig. 1
is between those of completely filled with the dielectric slab and of
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completely filled with air [22]. The cutoff frequency of a completely
filled waveguide section with LSEx

mn modes can be found by

fc
TEx

mn =
c

2π
√

εg

√(mπ

a

)2
+

(nπ

b

)2
, m=1, 2, 3, . . . n = 0, 1, 2, . . . (16)

where εg is the relative complex permittivity of the section completely
filling the structure. Considering (16) and the information given above,
we draw the dependency of cutoff frequencies over sample shift from
the central of the guide (x = a/2) in Fig. 2. In the analysis, we use the
following test parameters: εr = 2.56, L = 1 mm, a = 22.86mm and
b = 10.16mm.

Figure 2. Dependency of cutoff frequencies, which are determined by
the zero ordinate, over sample shift from the center (x = a/2).

It is seen from Fig. 2 that cutoff frequencies are not much affected
by the sample shift from the center (x = a/2). Furthermore, it is noted
that the cutoff frequency of the partially filled waveguide in Fig. 1 is
near the one of empty waveguide section with the same propagation
mode. This is because the sample is very thin.

In addition to evaluating the effect of sample shift on cutoff
frequency, it is also important to monitor the impact of sample
shift on propagation constant, γ. This analysis is important since
it can demonstrate the sensitivity of the proposed method which
depends on propagation constant measurements of the sample at two
different locations. Fig. 3 demonstrates the dependency of propagation
constants over sample shift from the center (x = a/2) for the same test
parameters used in drawing Fig. 2.

It is seen from Fig. 3 that larger sample shifting from the center
results in separated propagation constant values, which in turn increase
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Figure 3. Dependency of propagation constant values, which are
determined by the zero ordinate, over sample shift from the center
(x = a/2).

Figure 4. Measurement set-up.

the accuracy and performance of εr measurement by our proposed
method.

4. MEASUREMENT SET-UP

A general purpose waveguide measurement set-up is used for validation
of the proposed method, as shown in Fig. 4. A HP8720C VNA
is connected as a source and measurement equipment. It has a
1Hz frequency resolution (with option 001) and 8 ppm (parts per
million) frequency accuracy. The waveguide sections have a width
of 22.86∓ 5%mm (fc

∼= 6.555 GHz). Two coax-to-waveguide adapters
are used to connect the waveguide system to ports 1 and 2 of the VNA
through flexible cables.

In Section 2, we assumed a single-mode transmission (LSEx
10)

in region II in Fig. 1. This condition for empty and sample-filled
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sections of the waveguide may not be consisted for samples with high
permittivity values. In this case, higher-order modes may appear.
Using two extra waveguide sections with lengths greater than 2λ0 (λ0

is the free-space wavelength) between the sample holder and coaxial-
to-waveguide adapters will eliminate not only higher-order modes such
as LSEx

20 in region II in Fig. 1 but also these evanescent modes in
regions I and III in Fig. 1. This is because evanescent modes in regions
I and III in Fig. 1 will die out drastically in a short distance away from
region II and real measurements are performed at waveguide adapters.
We use extra waveguide sections to eliminate any higher-order mode
as shown in Fig. 4.

Measurements of propagation constants and then εr of samples
are carried out as follows. First, forward and reverse transmission and
reflection complex S-parameters are measured. Then, measurements
are transformed from the calibration planes to measurement planes as
shown in Fig. 4. Next, propagation constant is determined by

S11=Sm
11e

j2βz0l1 , S22 = Sm
22e

j2βz0l2 , (17)

S21=Sm
21e

jβz0(l1+l2), S12 = Sm
12e

jβz0(l1+l2), (18)

Sav
r =(S11+S22)/2, Sav

t = (S21+S12)/2, βz0 =
√

(ω/c)2−(π/a)2. (19)

V1=Sav
t + Sav

r , V2 = Sav
t − Sav

r , K = (1− V1V2)/(V1 − V2), (20)

Γ=K ±
√

K2 − 1, T = (V1 − Γ)/(1− V1Γ), γ = −ln (T )/l0. (21)

where Sm
11, Sm

21, Sm
22 and Sm

12 are, respectively, the forward and
reverse reflection and transmission S-parameters; Sav

r and Sav
t are the

averaged-out reflection and transmission S-parameters; l1, l2, and l0
are, respectively, the distances between sample and terminals of the cell
and the width of the sample in Fig. 4; βz0 is the phase constant (TEz

10
mode) for the region between sample end surfaces and calibration
planes; Γ and T are the first reflection and transmission coefficients
of the sample.

Finally, utilizing the expressions in (17)–(21) and (15), the εr

of a sample can be inversed. It should be pointed out that the
derived expressions are not valid either for non-uniform cells [28, 29] or
anisotropic materials [30].

5. MEASUREMENT RESULTS

We prepared some thin low-loss materials for validation of the proposed
method and carried out measurements as discussed above. We followed
the procedure discussed in Section 4 to measure the εr of a 2 mm
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long Plexiglas sample. Since the accuracy of thickness-independent ε
measurements by the proposed method depends on how accurately L1

and L2 are measured, we applied a simple procedure for their correct
measurements as follows. We measured L1 and L2 by a micrometer at
more than 10 locations between sample lateral surfaces and waveguide
inner walls. Their averaged-out values are utilized in measurements
of ε of thin materials. These measurements not only evaluate that
each measurement of L1 and L2 at ten different locations is within
the accuracy ranges, but also validate whether the assumption that
the sample has a flat surface over y axis at locations of x = L1 and
x = L1 +L and its surfaces are parallel to the left and right inner walls
of the waveguide in Fig. 1.

To ensure and increase the accuracy of measured propagation
constant at a given asymmetric position of the sample inside its holder,
we first switched the ends of the sample holder and then re-measured
the propagation constant for this connection. Finally, we compared
these constants. This procedure is similar to that used in calibration-
independent measurements [31].

The thru-reflect-line (TRL) calibration technique is utilized before
measurements [32]. We use a waveguide short and the shortest
waveguide spacer (44.38mm) in our lab for reflect and line standards,
respectively. The line has a ±70◦ maximum offset from 90◦ between
9.7GHz and 11.7 GHz. After calibration, we apply time-domain
gating to decrease post reflections, which may arise after the TRL
calibration, and to obtain smoother complex scattering (S-) parameter
measurements.

It is important to discuss on any mode coupling which may happen
at the interface between calibration planes and the extra waveguide
sections in Fig. 4 [33]. This is because the derivations presented in
Sections 2 and 3 do not consider this coupling. To investigate the effect
of this coupling, we measure amplitudes of reflection and transmission
S-parameters for two connections: a) when extra waveguide sections
are connected between the adapters and the sample holder (without
the sample) and b) when the sample holder (without the sample) is
directly connected to the adapters. If there is any mode coupling at
the interface between the calibration planes and the extra waveguide
sections, then it is expected that measured amplitudes of reflection and
transmission S-parameters moderately change for the two connections.
For example, Fig. 5 demonstrates the dependency of the amplitudes of
S21 over X-band for these two measurement configurations.

It is seen from Fig. 5 that the measured amplitudes of S21 for
these connections are approximately the same between 9.7GHz and
11.7GHz. This clearly verifies that the mode coupling, if any, is
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Figure 5. Measured S21 over 9.7–11.7GHz for measuring any mode
coupling from two measurement configurations.

Figure 6. Measured εr of a 2 mm long Plexiglas sample positioned
longitudinally into the waveguide structure in Fig. 1 by the proposed
method and by the one in [15].

negligible and the derivations given in Sections 2 and 3 can safely
be applied for εr measurement.

For validation of the proposed method, we arbitrarily located a
2mm long Plexiglas sample into an X-band (8.2–12.4 GHz) waveguide
aperture with a = 22.86mm. We then measured L1 and L2 as
L1 = 8.8 ∓ 0.04mm and L2 = 12.06 ∓ 0.04mm by following the
aforementioned procedure. For comparison of the accuracy of the
proposed method, we also measured its εr by the method in [15]. The
results are plotted in Fig. 6.

It is seen from Fig. 6 that the extracted εr by the proposed method
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is in good agreement with that by the method in [15]. In addition, it is
seen from Fig. 6 that our proposed method determines a εr which
is very close to the reference data (εr = 2.59 − j0.0174) available
in the literature [34]. It is because our proposed method utilizes
measurements of L1 and L2 in Fig. 1 instead of direct measurement of
L.

It is noted that the maximum and minimum lengths of the sample
that the proposed method can be applied depend on how much βxdL
is smaller than one. It should be pointed out that, assuming that the
length uncertainty is kept constant, the accuracy of measurements by
the proposed method increases for samples with higher permittivity
values since the relative measurement error in εr decreases.

6. CONCLUSION

A microwave method has been proposed for accurate measurement of
complex permittivity of thin materials partially filling the waveguide
aperture. The proposed method utilizes scattering parameter
measurements at two locations of the sample (the one at the center
and the other one far away from the center) inside its holder. We
have derived a useful expression for accurate εr inversion of these
materials and validated the proposed method by εr measurements of
a thin Plexiglas sample at X-band.
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