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Abstract—Using cylindrical harmonics and Fourier series, a new
integral equation formulation is derived for perfectly conducting 2D
scattering problems. This new integral equation is based on the
fact that, all of the electric and magnetic field components are zero
inside a perfect electric conductor. The incident and scattered fields
are expressed in the cylindrical coordinate system with respect to a
common origin inside the scatterer, using the addition theorem for
Bessel and Hankel functions. The resulting electric or magnetic field
is set equal to zero for all the points inside the largest cylinder that is
contained in and tangent to the surface of the scatterer. As a result
the field point variables are eliminated from the integral equation and
only the source points are present in this formulation. Therefore the
size of the problem is reduced considerably. A dramatic improvement
in the computation speed is seen compared to the classical method
of moments. TE and TM scattering problems are considered and the
integral equation formulation is derived and solved for both cases.

1. INTRODUCTION

In the past decades we have witnessed great breakthroughs in
developing fast algorithms, improving the speed of the method
of moments (MoM). Iterative solvers [1, 2] reduce the number of
computations from O

(
N3

)
in direct solvers to O

(
N2

)
, in which N

is the number of unknowns. The multilevel matrix decomposition
algorithm [3] (MLMDA) simplifies the matrix vector multiplication,
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by decomposing the MoM matrix into large blocks describing the
interactions between distant parts of the scatterer. The introduction
of the fast multipole method [4–6] (FMM) and its multilevel
counterpart [7–10] has reduced the number of computations to
O (N log (N)). Parallel [11–14] and hybrid [15–17] approaches help
break the computations between different processors and different
methods. Although these algorithms address the problem of speed
in an efficient way , still a fine discretization of the scatterer in the
order of 10 to 20 elements per wavelength is required to obtain a good
accuracy.

Although lots of papers have been published on the ways to speed
up the computations, less focus has been on the nature of the integral
equation itself and the ways to reduce the number of elements. In
this paper a method is proposed to simplify the integral equation
for the problem of scattering by 2D conducting structures. Using
cylindrical harmonics an integral equation is derived in which the
contributions of the field point variables are eliminated and only the
source points are present in the formulation. In this way the size of
the problem is reduced dramatically. Fourier series are used to reduce
the number of unknowns as well. The size of the final matrix is much
smaller compared to the classical MoM. Therefore the computational
difficulties encountered when handling large matrices, are avoided.

2. THEORY

The algorithm proposed in this paper, is based on the fact that all
of the electric and magnetic field components are zero inside a PEC
structure. The incident and scattered fields are expressed in terms
of cylindrical harmonics with respect to a common origin, using the
addition theorem for Hankel functions. Then the total field is set
equal to zero inside the largest cylinder that is contained inside the
structure. As a result a new integral equation is derived in which there
is no contribution of the field variables. This equation is only valid
inside the largest cylinder contained inside the structure. But, since
there are no free currents or charges inside the structure and therefore
no discontinuity in the electric and magnetic fields, the solution to this
equation would be the answer to the problem. The TE and TM modes
are treated differently. First consider the TM mode.

2.1. TM Mode

Consider the program of Fig. 1, where a plane wave is incident on
a PEC structure. Assume the boundary of the PEC structure is
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Figure 1. Scattering by an arbitrary PEC — TM mode.

expressed by ρ′ = f (ϕ′) in the polar coordinate system. For the TM
mode the currents are directed toward the z direction i.e., J = I (ϕ′)az.
The incident and scattered fields can be expressed in the cylindrical
coordinate system by (1)–(3), in which ϕi is the incident angle and
ωµ

4
H

(2)
0

(
β

∣∣ρ− ρ′
∣∣) is the 2D Green function. Equation (2) is the

Fourier series expansion of (1).

Ei = azE
i
z = azE0e

−jk·r = azE0e
−jβρ cos(ϕ−ϕi) (1)

Ei = azE0

∞∑
n=−∞

j−nJn (βρ) ejn(ϕ−ϕi) (2)

Es = az
ωµ

4

∫

C

I
(
ϕ′

)
H

(2)
0

(
β

∣∣ρ− ρ′
∣∣)dl′ (3)

Using the addition theorem for Hankel functions, the 2D Green
function can be expanded in the following form [18]. This series is
convergent only for the values of ρ satisfying the condition ρ ≤ ρ′.

H
(2)
0

(
β

∣∣ρ− ρ′
∣∣) =

∞∑
n=−∞

Jn (βρ) H(2)
n

(
βρ′

)
ejn(ϕ−ϕ′) ρ ≤ ρ′ (4)

Using (4) the total electric field for all the points (ρ, ϕ) inside the
cylinder shown in Fig. 1 is expressed by:

Et = Ei + Es =
∞∑

n=−∞

(
E0j

−ne−jnϕi

−ωµ

4

2π∫

0

I
(
ϕ′

)
H(2)

n

(
βρ′

)
e−jnϕ′

√
ρ′2 +

(
dρ′

dϕ′

)2

dϕ′
)

Jn (βρ) ejnϕ (5)
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This series is valid and convergent for all the points inside the
largest cylinder contained in the PEC structure (see Fig. 1). The total
electric field is zero inside this region for all the values of ρ and ϕ. This
condition is satisfied if and only if the integral equation:

E0j
−ne−jnϕi−ωµ

4

2π∫

0

I
(
ϕ′

)
H(2)

n

(
βρ′

)
e−jnϕ′

√
ρ′2 +

(
dρ′

dϕ′

)2

dϕ′=0

n = −∞, . . . ,∞ (6)

is satisfied, in which the field points contributions are totally
eliminated. Equation (6) makes the total electric field zero inside the
cylinder shown in Fig. 1. But, since there are no free currents inside
the structure and therefore no discontinuity in the electric field, the
solution to this equation is the only solution of the problem.

Equation (6) should be solved for all values of n. The presence
of the term e−jnϕ′ inside the integral helps solving this equation very
effectively using Fourier series. The current I (ϕ′) is periodic with
period 2π and therefore it has a Fourier series of the form:

I
(
ϕ′

)
=

∞∑
m=−∞

cmejmϕ′ (7)

All the other terms inside the integral are expressed by their Fourier
series for each value of n.

√
ρ′2 +

(
dρ′

dϕ′

)2

H(2)
n

(
βρ′

)
=

∞∑

k=−∞
dn,ke

jkϕ′ n = −∞, . . . ,∞ (8)

Substituting (7) and (8) into (6) results in:

2π∫

0

[( ∞∑
m=−∞

cmejmϕ′
)( ∞∑

k=−∞
dn,ke

jkϕ′
)

e−jnϕ′
]

dϕ′ =
4E0

ωµ
j−ne−jnϕi

n = −∞· · ·∞ (9)

and after taking the integration:

2π
∞∑

m=−∞
cmdn,n−m =

4E0

ωµ
j−ne−jnϕi n = −∞, . . . ,∞ (10)

Depending on the behavior of the function ρ′ = f (ϕ′) and the
size of the problem only a few number of terms in (10) are enough for
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solving the problem with a good accuracy. Doing so would result in a
system of 2N + 1 equations with 2N + 1 unknowns (c−N , . . . , cN ):

2π
N∑

m=−N

cmdn,n−m =
4E0

ωµ
j−ne−jnϕi n = −N, . . . , N (11)

By using this technique the size of the problem is reduced
dramatically. The only bottleneck to this method is finding the Fourier
coefficients in (8) in a fast and effective way. Using DFT and FFT these
coefficients can be computed very fast (see Appendix A), resulting in a
very efficient algorithm for finding the currents on a 2D scatterer with
a very good accuracy.

2.2. TE Mode

In this case the incident and scattered fields are expressed by [18]:

Hi = H0e
−jk·raz = H0e

−jβρ cos(ϕ−ϕi)az

= H0

∞∑
n=−∞

j−nJn (βρ) ejn(ϕ−ϕi)az (12)

Hs =
∫

C

jβ

4
H

(2)
1

(
β

∣∣ρ−ρ′∣∣) (−Ix

(
ϕ′

)
sin (ψ)+Iy

(
ϕ′

)
cos (ψ)

)
dl′az (13)

The parameter ψ is the polar angle of the vector ρ − ρ′, ϕi is the
incident angle and Ix (ϕ′), Iy (ϕ′) are the x and y components of the
current on the boundary of the PEC. Using the addition theorem for
Hankel functions [19], the following equations can be derived:

H1

(
β

∣∣ρ− ρ′
∣∣) cos (ψ)

=
1
2

∞∑
n=−∞

Jn (βρ)
(
Hn−1

(
βρ′

)
ejϕ′−Hn+1

(
βρ′

)
e−jϕ′

)
e−jnϕ′ejnϕ (14)

H1

(
β

∣∣ρ− ρ′
∣∣) sin (ψ)

=
1
2j

∞∑
n=−∞

Jn (βρ)
(
Hn−1

(
βρ′

)
ejϕ′+Hn+1

(
βρ′

)
e−jϕ′

)
e−jnϕ′ejnϕ (15)

These equations are convergent for all the values of ρ ≤ ρ′. After
substituting (14) and (15) in (13) the total magnetic field inside the
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cylinder shown in Fig. 1 can be expressed in the form:

Ht =
∞∑

n=−∞


jβ

4

∫

C′

−Ix
1
2j

(
Hn−1

(
βρ′

)
ejϕ′+Hn+1

(
βρ′

)
e−jϕ′

)
e−jnϕ′

+Iy
1
2

(
Hn−1

(
βρ′

)
ejϕ′ −Hn+1

(
βρ′

)
e−jϕ′

)
e−jnϕ′dl′

+H0j
−ne−jnϕi

]
Jn (βρ) ejnϕ (16)

Therefore the total magnetic field inside this cylinder is zero if and
only if:

2π∫

0

(IxF x
n + IyF

y
n ) e−jnϕ′dϕ′ =

4j

β
H0j

−ne−jnϕi (17)

F x
n = − 1

2j

(
Hn−1 (βρ′) ejϕ′ + Hn+1 (βρ′) e−jϕ′

)√
ρ′2 +

(
dρ′
dϕ′

)2
(18)

F y
n = 1

2

(
Hn−1 (βρ′) ejϕ′ −Hn+1 (βρ′) e−jϕ′

)√
ρ′2 +

(
dρ′
dϕ′

)2
(19)

Using the unit tangent to the surface of the PEC at a point (ρ′, ϕ′),

ac =
∂ρ′
∂ϕ′a

′
ρ + ρ′a′ϕ√

ρ′2 +
(

∂ρ′
∂ϕ′

)2
=

(
∂ρ′
∂ϕ′ cos (ϕ′)− ρ′ sin (ϕ′)

)
√

ρ′2 +
(

∂ρ′
∂ϕ′

)2
ax

+

(
∂ρ′
∂ϕ′ sin (ϕ′) + ρ′ cos (ϕ′)

)
√

ρ′2 +
(

∂ρ′
∂ϕ′

)2
ay (20)

the currents Ix (ϕ′), Iy (ϕ′) can be expressed in terms of the complex
current Ic (ϕ′) on the surface of the PEC at a point (ρ′, ϕ′) by:

Ix = Ic

(
∂ρ′

∂ϕ′
cos

(
ϕ′

)− ρ′ sin
(
ϕ′

))
/

√
ρ′2 +

(
∂ρ′

∂ϕ′

)2

(21)

Iy = Ic

(
∂ρ′

∂ϕ′
sin

(
ϕ′

)
+ ρ′ cos

(
ϕ′

))
/

√
ρ′2 +

(
∂ρ′

∂ϕ′

)2

(22)
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Substituting (21) and (22) in (17) leads to:

2π∫

0

Ic

(
ϕ′

)
Gn

(
ϕ′

)
e−jnϕ′dϕ′ =

4j

β
H0j

−ne−jnϕi (23)

Gn = 1
2Hn−1 (βρ′)

(
ρ′ + j ∂ρ′

∂ϕ′

)
+ 1

2Hn+1 (βρ′)
(
−ρ′ + j ∂ρ′

∂ϕ′

)
(24)

Which can be solved very effectively using the method discussed

in the previous section. Assuming Ic =
∞∑

m=−∞
cmejmϕ′ and Gn =

∞∑
m=−∞

dn,mejmϕ′ the final results are:

2π
N∑

m=−N

cmdn,n−m =
4j

β
H0j

−ne−jnϕi =
4j

βη
E0j

−ne−jnϕi

n = −N, . . . , N (25)

3. NUMERICAL EXAMPLE

In this part the accuracy and the speed of the algorithm proposed in
this paper is examined. First consider the problem of TMz scattering
by an elliptical cylinder shown in Fig. 2, with dimensions a = 4λ,
b = 8λ. The incident angle is assumed to be ϕi = −45◦. The
currents on the surface of the scatterer are calculated using the method
introduced in this paper, using 40 harmonics. The result is compared to
the exact solution obtained using MoM in Fig. 2. About 400 elements
are required in the MoM to reach this level of accuracy. Using the
method proposed here, only 45 harmonics are required to solve the
problem with the same accuracy.

To compare the error introduced in this method for different
number of harmonics, the normalized error is calculated using the
relation:

error = 2π

∫ 2π
0 |I (ϕ)− Iexact (ϕ)|2 dϕ∫ 2π

0 |Iexact (ϕ)|2 dϕ
(26)

and is plotted in Fig. 3 for the problem of Fig. 2.
The number of harmonics to be chosen depends on the size of the

scatterer and the required error. For very small errors this number
is much less compared to the MoM. Also the final system of linear
Equations (11), (25) has a better behavior compared to the MoM,
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Figure 2. TMz scattering by
an elliptical cylinder. Normalized
currents on the surface of the
scatterer are calculated using 40
harmonics and compared to the
MoM with 400 elements.

Figure 3. The error with respect
to the number of harmonics for
the problem of Fig. 2.

Figure 4. TE scattering by a square metallic structure, compared to
the MoM.

when conventional methods such is Gauss elimination is used to solve
it, and is less prone to divergence due to round off and truncation
errors.

For non smooth structures and objects with edges, the derivative
∂ρ′
∂ϕ′ appearing in the formulation is discontinuous. In this case the
average of the left and right derivatives at the edge can be used. Using
just the left derivative or just the right derivative instead, would also
lead to the same results. This is shown in Fig. 4 for the problem of
TE scattering by a metallic cylinder with square cross section. The
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incident angle is assumed to be ϕi = 0. The current on the surface of
the scatterer is derived using 20 harmonics and compared to the MoM
with 120 elements.

The method proposed here provides a good way for reducing the
number of variables for scattering by large structures. This method is
more appropriate for structures with a good aspect ratio. For these
structures only the first few terms of the Fourier series is sufficient to
solve the problem with a good accuracy. However for objects with a
poor aspect ratio the number of harmonics needs to be increased. This
method provides another advantage for medium and large problems
with a good aspect ratio. In these cases a small number of harmonics
are sufficient for a good accuracy and therefore the problem can be
solved using direct matrix solvers. For example for an object with
a maximum size of 20λ and with a good aspect ratio, less than 100
harmonics are required. In this case using direct matrix solvers, the
whole procedure takes less than a few seconds. However for the classic
MoM, the number of elements would be in the order of 1000 and
iterative matrix solvers should be used. In this case using MoM takes
much longer, at least in the order of several minutes.

4. CONCLUSIONS

A new integral equation was derived for 2 dimensional scattering
problems, in which the field point variables were eliminated, using
cylindrical harmonics. Since only the source point variables are present
in this formulation it can be solved faster. A method was proposed to
solve the integral equation using the Fourier series, resulting in the
reduction of the number of unknowns as well. The system of equations
derived in this paper is smaller compared to MoM and shows a better
behavior with conventional matrix solvers.

APPENDIX A.

The Fourier series coefficients of a periodic function f (x) of period 2π
are normally calculated by (A2). For most functions this integration is
taken numerically. Due to the oscillatory nature of the term e−jnx, the
integration process may be computationally very inefficient, even with
efficient integration algorithms such as Gauss-Quadrature. Therefore
a lot of samples would be required to perform the integration with a
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satisfactory accuracy.

f (x) =
∞∑

n=−∞
cnejnx (A1)

cn =
1
2π

∫ 2π

0
f (x) e−jnxdx (A2)

However, If it is assumed that the function f (x) can be approximated
with the desired accuracy by its first N Fourier harmonics in (A3), these
coefficients can be calculated very effectively using Discreet Fourier
Transform (DFT).

f (x) =
N∑

n=−N

cnejnx (A3)

Each function f (x) defined by (A3) is a member of the vector space
V2N+1 spanned by the set of vectors:

V2N+1 = span
{
e−jnx, n = 0,±1, . . . ,±N

}
(A4)

First we introduce the Dirichlet Kernel δN (x) defined by:

δN (x) =
1
2π

N∑

n=−N

ejnx =
1
2π

sin
((

N + 1
2

)
x
)

sin
(

x
2

) (A5)

The set of the functions

gk (x) =
2π

2N + 1
δN (x− xk) k = 0, . . . , 2N, xk =

2π

2N + 1
k (A6)

form an orthogonal basis, and therefore they span the space V2N+1 as
well. i.e., every function in this vector space can be expressed uniquely
by a series of the form:

f (x) =
2N∑

k=0

akgk (x) (A7)

These functions have an interesting property which makes them very
appropriate for computational purposes.

gk (xl) = δkl (A8)

δkl =
{

0 k 6= l
1 k = l

(A9)
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δkl is the Dirac delta function. Using (A8) and (A7), ak satisfies:

f (xk) = ak (A10)

Therefore each function f (x) in V2N+1 can be expressed uniquely by
only 2N + 1 samples using the Dirichlet Kernel. i.e.,

f (x) =
2π

2N + 1

2N∑

k=0

f (xk) δN (x− xk) (A11)

Substituting the Dirichlet Kernel by its Fourier series leads to:

f (x) =
1

2N + 1

2N∑

k=0

f (xk)
N∑

n=−N

ejn(x−xk)

=
1

2N + 1

N∑

n=−N

(
2N∑

k=0

f (xk) e−jnxk

)
ejnx =

N∑

n=−N

cnejnx (A12)

cn =
1

2N + 1

2N∑

k=0

f (xk) e−jnxk

=
1

2N + 1

2N∑

k=0

f (xk) wnk
2N+1 n = −N · · ·N (A13)

w2N+1 = e−j 2π
2N+1 (A14)

Equation (A13) is the DFT of the periodic function f (x) sampled at
the points xk = 2π

2N+1k, k = 0, . . . , 2N .
When 2N + 1 = PQ, where P and Q are positive integers,

the computations can be speed up even more using the Fast Fourier
Transform (FFT) [20].

Equation (A13) provides a computationally effective way for
calculating the Fourier coefficients of functions using only 2N + 1
samples, avoiding numerical integration.
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