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Universidade de Vigo
Vigo (Pontevedra) 36310, Spain

J. M. Taboada and L. Landesa
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Abstract—An innovative preconditioner has been developed in this
work. It significantly improves the convergence of the iterative solvers
applied to electromagnetic radiation problems by a renormalization of
the matrix equation. The preconditioner balances the disparities in
terms of magnitude and units caused by the strong self-coupling of the
antennas, the non-uniformity of the meshes and also by the coexistence
of wire and surface basis functions. It can be easily integrated
into different electromagnetic solvers with a negligible impact on the
computational cost on account of its simple implementation.

1. INTRODUCTION

At the present time, the analysis of electromagnetic radiation and
scattering problems represents an active topic of research. The
Method of Moments (MoM) [1] is a rigorous numerical solution that
is commonly employed to deal with a very wide range of such kind of
problems. To expand the induced current density on the composite
conducting surface-wire structures, the Rao-Wilton-Glisson (RWG)
surface basis functions of [2] and its counterparts defined in [3] for
wires and wire-to-surface connections are usually applied.
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30 Araújo et al.

Even though the MoM is an effective tool in medium-sized
analysis, it leads to an excessive cost in terms of storage and time
in case of large scale problems. Because of that, many MoM
acceleration strategies based on iterative solutions have emerged to
reduce the computational complexity. Among these acceleration
techniques, it must be pointed out the Fast Multipole Method
(FMM) [4] and its multilevel version, the Multilevel Fast Multipole
Algorithm (MLFMA) [5–8], which are extensively used at present.
Nevertheless, the FMM and, in general, other methods that tackle
the electromagnetic analysis within the framework of iterative schemes
usually meet with difficulties when dealing with radiation problems.
The convergence of the iterative solutions for this kind of problems is
often very slow, essentially due to the localized nature of the excitation
defined over a small portion of the mesh representing the antenna. It is
also caused by the use of non-uniform meshes to accurately model the
details in the neighbourhood of the feed point [9]. The convenience
of applying effective preconditioners for radiation problems is thus
highlighted.

Many research groups have concentrated their efforts on finding
effective preconditioners, specially when the electric field integral
equation (EFIE) is applied [8]. Some of the most common
techniques are those based on the sparse approximate inverse (SAI)
preconditioning [10–12] and the incomplete LU (ILU) factorization
type preconditioning [8, 13, 14]. The former have more natural
parallelism than the latter, which also present well-known instability
problems that sometimes can be overcome by pivoting [15]. Recent
works have proposed the preconditioning of the ordinary equation
with the transpose complex conjugate of the impedance matrix [16],
a multiplicative preconditioner using Calderon identities [17] or
a localized preconditioner in the vicinity of a radiation problem
antenna [9]. The preconditioning scheme presented in this work acts
on three main issues that are responsible for the bad convergence
of radiation problems: i) it moderates the strong dominance of the
self-coupling of wire or surface antennas; ii) it weights the impedance
matrix and the current and voltage vectors to normalize the respective
units of wire and surface elements; iii) it moderates the disparities
of the impedance matrix values due to the disparate mesh size. These
actuations lead to a better guided iterative solution, allowing the FMM
to provide accurate predictions for very sensitive radiation parameters
such as the input impedance or the mutual couplings, usually pursued
when dealing with this kind of problems. Moreover, the simplicity of
this scheme and the fact that it can be applied with independence of
the solver implementation details are also outstanding features.
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The paper is organized as follows: Section 2 reviews the critical
concerns of the radiation problems; the preconditioner formulation
is detailed, and an improved and more realistic approach for the
determination of convergence of the iterative algorithm is provided.
Canonical and practical radiation results are presented in Section 3
and, finally, the conclusions are summarized in Section 4.

2. PRECONDITIONER FORMULATION

As it is detailed in [9], radiation problems give rise to an impedance
matrix ill-conditioned with disparate eigenvalues. This kind of
problems are characterized by non-uniform meshes, non-uniform
excitation vector elements and also non-uniform coupling terms. Due
to these particular features, the attained accuracy when employing
whichever iterative solver in the FMM code is usually worse for
radiation than for scattering solutions. The mutual coupling and other
electromagnetic parameters of interest are especially sensitive to the
bad convergence of the radiation analysis.

Considering a general radiation problem, the presence of a strong
dominance of the antenna self-coupling terms is easily detectable from
the observation of the impedance matrix. Under these conditions,
large values will define the search directions of an iterative solver
such as GMRES [18]. This occurs for both wire or surface antennas,
but further conclusions can be extracted when wire antennas are
present. In those cases, it may be observed that the wire self-coupling
dominance is emphasized as the frequency increases, which suggests the
existence of a mesh-size dependence on the impedance matrix elements
corresponding to the surface basis functions. That dependence is given
by the surface basis common edge length of the RWG surface basis
function, and it has been reported in [19] to account for the antenna
impedance in small thin strip antennas. An alternative reading may
be obtained by focusing the size dependence as a coupling imbalance
between wire and surface subdomains. This evidence is the foundation
of our preconditioner formulation. The developed preconditioner
performs a units harmonization that provides a better balanced system,
which in turn leads to an improved convergence of the iterative solver.
The details of the formulation are described next.

2.1. Preconditioned Matrix System

The composite surface-wire structure is defined in terms of surface and
wire basis functions. The normalization of the involved units starts
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Figure 1. RWG surface basis function. The arrow represents de
current flow direction (from triangle T+

n to triangle T−n ).

with the following matrix definition:

L = diag(l1, l2, . . . , ln, . . . , lN ), (1)

where N is the total number of unknowns. ln is the common edge
length of the n-th RWG surface basis function, as illustrated in
Figure 1, or ln = 1 if it is a wire basis function. L is a diagonal
matrix with non-zero determinant (ln 6= 0, ∀n), and consequently non
singular, being LL−1 = L−1L = I, where I is the identity matrix.
Then, the original matrix system of the form ZI = V may be modified
as:

LL−1ZL−1LI = V, (2)

L−1ZL−1LI = L−1V. (3)

By defining the following expressions:

Veq = L−1V; Ieq = LI; Zeq = L−1ZL−1, (4)

an equivalent matrix equation can be straightforwardly identified, as
expressed below:

ZeqIeq = Veq. (5)

In the equivalent system, the original impedance matrix Z is
left and right preconditioned, and current and voltage coefficients are
conveniently weighted to obtain an equation with normalized units.
To be more precise, the new system is expressed in the impedance,
current and voltage standard units, i.e., Ohms, Amperes and Volts,
respectively, while in the original one these units are combined
with Ohms ·m2, Amperes/m and Volts ·m due to the surface basis
formulation and the method implementation. By correcting the units
and magnitudes disparities in the preconditioned system, the GMRES
is properly driven and the convergence issue associated to radiation
problems is overcome in a simple, low-cost and effective manner. The
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preconditioner numerical complexity is O(N) with a very low leading
constant, and it can be easily parallelized. Besides, the impedance
matrix symmetry obtained when using the EFIE and the Galerkin’s
testing procedure is maintained with this preconditioner, which may
imply some implementation advantages.

2.2. Weighted System Residue

The residue norm is usually employed as a convergence measure of the
iterative solution. For the original system it can be found as follows:

ro =
‖V− ZI‖
‖V‖ , (6)

which will be referred as original residue.
A standardization procedure must be also applied to the

calculation of this residue norm. The coupling magnitude imbalance
and the units disparity due to the combination of wire and surface
subdomains make the norm calculation meaningless, because it will be
dominated by the wire elements, regardless of the surface contributions.
To overcome this issue, a more realistic residue with the units
normalized to Volts must be defined. It can be evaluated as follows:

rw =

∥∥L−1 (V− ZI)
∥∥

‖L−1V‖ . (7)

This residue calculation (hereinafter, weighted residue) defines the
iterative solver convergence rate properly for the original system, thus
allowing a consistent comparison between the alternative solutions.

3. NUMERICAL RESULTS

In this section, different numerical examples have been included in
order to demonstrate the improvements derived from the utilization of
the proposed preconditioner. The EFIE formulation has been adopted
in the FMM code and a restarted GMRES solver has been used in
this work (although the proposed preconditioner is general, and it
could be applied to any other surface integral equation formulation
or iterative method.) A group size of 1λ and 16 multipole terms have
been considered in all the examples. The delta-gap model has been
applied to obtain the excitations of the antenna sources.

The first tested geometry consists on a hollow cylinder of 12 160
surface unknowns and a λ/2-length dipole pair modeled employing
10 wire basis functions. The cylinder dimensions and the position
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Figure 2. Real (up) and Imaginary (down) parts of Y12. Prediction
for the cylinder and the dipole pair of both non-preconditioned and
preconditioned FMM with regard to MoM reference.

of dipoles are indicated in Figure 2. The frequency of the analysis
is 30 GHz and the results have been obtained after 50 iterations of
the GMRES (restart 25). The estimation of the mutual admittance
Y12 provided by a reference MoM code and both non-preconditioned
and preconditioned FMM approaches is shown in Figure 2. The
MoM solution has been obtained by factorizing and solving the matrix
system. Looking at the representation of Y12, it is clear that the
non-preconditioned FMM prediction comes up slowly to the reference
value without reaching it even after the allowed number of iterations.
Instead, a better agreement with the reference result is achieved in
only a few iterations with the preconditioned FMM method.

Both original and weighted residues of Equations (6) and (7),
respectively, are plotted in Figure 3. This figure clearly illustrates the
chaotic behavior of the original residue in contrast to the smooth curves
of the weighted one. In addition, it can be observed that the weighted
residue performance is directly correlated with the ability of the
proposed preconditioner to provide an improved guide to the iterative
solver, unlike the original residue. This lack of correlation between the
original residue and the accuracy of the final result becomes clearer
looking at Figures 2 and 3. From the original residue representation
of Figure 3, we may think that a better result is being obtained with
the non-preconditioned equation for the first 10 iterations. However,
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Figure 3. Original (up) and weighted (down) residues of both non-
preconditioned and preconditioned FMM for the cylinder and the
dipole pair.

Figure 4. Real (up) and Imaginary (down) parts of Y12. Prediction for
the corner reflector and the monopole pair of both non-preconditioned
and preconditioned FMM with regard to MoM reference.
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looking at Figure 2, it is clear that this is a false perception: the mutual
coupling prediction is more accurate using the preconditioned equation.
In contrast, the weighted residue of Figure 3 shows a highly correlated
behavior with the actual situation reflected by the mutual admittance
result. Herein, the weighted residue is a more eligible candidate to
predict the convergence of the iterative resolution of the system.

In order to give insight on the preconditioner behavior, a PEC
trihedral corner reflector with three mutually perpendicular triangular
sides has been considered next. Two λ/4 wire monopoles have been
placed over the geometry base as shown in Figure 4. The frequency
of the simulation and the GMRES parameters are the same as in the
preceding example. The total number of unknowns is made up of 18 336
surface basis functions, 4 wire basis and 2 junction basis. While in the
previous analysis the cylinder reduces the mutual coupling between
the antennas, in this example the presence of the trihedral structure
reinforces it. Under these conditions, the preconditioned FMM method
is still providing a better prediction of the mutual admittance. As it
can be observed in Figure 4, the result of the preconditioned technique
shows better concordance with the reference data. Its solution becomes
stable after a few iterations, unlike the non-preconditioned approach,
where visible fluctuations around the reference value can be noticed.
According to this result and the residues shown in Figure 5, it becomes
clear again that the weighted residue is a more advantageous indication
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Figure 5. Original (up) and weighted (down) residues of both non-
preconditioned and preconditioned FMM for the corner reflector and
the monopole pair.
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Figure 6. Original (up) and weighted (down) residues of both non-
preconditioned and preconditioned FMM for the truck cab.

Figure 7. Current density over the truck cab surface obtained with
the preconditioned method.

of both the convergence rate and the accuracy of the result. The
validity of the proposed procedure for problems involving wire, surface
and also junction basis functions is confirmed with this example.

Finally, the analysis at 9 GHz of a truck cab with more than two
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million unknowns is presented (2 285 398 surface basis, 4 wire basis
and 1 junction basis). A monopole antenna placed on the cab roof
has been considered as the radiating element. It is a more realistic
example that involves surface, wire and junction basis functions. 100
extern iterations of the GMRES and a restart parameter of 100 have
been considered in this simulation. As it is shown in Figure 6, the
use of the preconditioner entails a significant improvement of the
convergence rate. The surface current density pattern obtained with
the preconditioned FMM method is represented in Figure 7.

4. CONCLUSIONS

It has been presented in this work a preconditioner that stands
out for its simple implementation and its ability to overcome the
limitations usually attributed to the FMM in radiation problems. The
preconditioner reserves the impedance matrix symmetry given by the
EFIE formulation and it has a negligible impact on the global cost,
despite of the method employed to obtain the solution. In fact, it
has an O(N) numerical complexity and it could be straightforwardly
parallelized. The proposed preconditioning technique is not supported
only by empirical observations. It is based on the existing units
imbalance associated to the coexistence of wire and surface basis
functions, and also on the coupling magnitude disparities, related
to the non-uniformity of the meshes and the excitation of radiation
problems.

The results corresponding to challenging radiation problems have
shown that the preconditioned method provides faster convergence
and better agreement with references than the non-preconditioned
one. Moreover, the proposed weighted residue has demonstrated to
be a well-suited measure for the convergence rate, correlated with
the accuracy of the solution. Then, the full process represents an
effective tool to obtain an improved convergence in the FMM analysis
of radiation problems.
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