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Abstract—A modified particle swarm optimization (PSO) algorithm
applied to planar array synthesis considering complex weights and
directive element patterns is presented in this paper. The modern
heuristic classical PSO scheme with asynchronous updates of the
swarm and a global topology has been modified by introducing
tournament selection, one of the most effective selection strategies
performing in genetic algorithms the equivalent role to natural
selection, and elitism. The modified PSO proposed combines the
abilities of the classical PSO to explore the search space and the
pressure exerted by the selection operator to speed up convergence.
Regarding the optimization problem, the synthesis of the feeds
for rectangular planar arrays consisting of microstrip patches or
subarrays of microstrip patches is considered. Results comparing
the performance and limitations of classical and modified PSO-based
schemes are included considering both test functions and planar array
complex synthesis to best meet certain far-field radiation pattern
restrictions given in terms of 3D-masks. Finally, representative
synthesis results for sector antennas for worldwide interoperability
for microwave access (WiMAX) applications are also included and
discussed.

1. INTRODUCTION

The PSO algorithm, based on the movement and intelligence of
swarms, has become an attractive alternative to other heuristic
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approaches such as genetic algorithms (GA), simulated annealing (SA)
or ant colony optimization (ACO), and has been successfully applied
in different research areas [1–9]. This work focuses on the analysis of
a modified PSO-based approach proposed by the authors to improve
the performance of classical schemes.

One of the main advantages of PSO over other stochastic
optimization methods such as GA or SA, lies in the ease with which
it can be tuned and implemented, using only a velocity operator
to drive the search throughout the hyperspace [1]. New modified
PSO-based schemes are continuously emerging in the literature in
an attempt to improve the overall performance of classical schemes
in one direction: to speed up convergence preserving diversity and
increasing exploration abilities. Different modified versions of the
classical PSO algorithm can be found applied to array synthesis [10, 11],
patch antenna design [12] or planar multilayered absorbers design [13].
In fact, there are some schemes that mix up heuristic GA and PSO
optimization algorithms [14, 15].

In this work, the PSO approach proposed benefits from some
characteristics of GA, introducing a selection operator to direct and
speed up the search, the tournament selection strategy, along with
elitism, applied to ensure that the best particle within the swarm
is preserved iteratively [2]. The approach proposed does not modify
the core of the PSO at all, but simply introduces two mechanisms
that iteratively imitate natural selection, rewarding the best potential
solutions and increasing the search pressure over the apparently most
promising areas, although this fact leads to a loss in diversity, which
might drive the algorithm to deceptive solutions. The modified
PSO proposed has been tested using standard test functions and the
improvements achieved when compared to classical PSO demonstrate
the usefulness of the hybrid algorithm.

Regarding array synthesis, there are in the literature several PSO
related papers. For instance, phase-only, amplitude-only and complex
synthesis of linear arrays is accomplished by GA and PSO in [16].
In [17], several PSO algorithms have been applied to the design of non-
uniform and thinned arrays. Several modified PSO algorithms can also
be found applied to the pattern synthesis of circular arrays or phased
arrays [10, 11]. Furthermore, classical and hybrid PSO schemes, [18]
and [19] respectively, have also been applied by the authors to linear
array synthesis.

This paper is organized as follows. In Section 2, a theoretical
description of the planar array synthesis problem is included. The
main features of the classical PSO algorithm, as well as the modified
approach proposed, are presented in Section 3. Section 4 includes



Progress In Electromagnetics Research, PIER 93, 2009 147

a wide range of results, comparing in Section 4.1 the performance
of both classical and modified PSO schemes using either well-known
test functions or a canonical planar array synthesis problem; and
summarizing in Section 4.2 representative far-field radiation pattern
synthesis results for sector antennas for WiMAX applications. Finally,
some conclusions are outlined in Section 5.

2. SYNTHESIS OF PLANAR ARRAYS

The far-field radiation pattern of a planar array at an arbitrary
direction (θ, φ) when mutual coupling effects between elements are
neglected, is given by

FF (θ, φ) = EP (θ, φ) ·AF (θ, φ) (1)

in which EP(θ, φ) represents the element pattern and AF (θ, φ) is the
array factor.

Let us consider a planar array consisting of M ×N elements lying
on the xy plane, parallel to the axes and uniformly spaced a distance
dx and dy on the x and y axes, respectively. Then, the array factor is
given by

AF (θ, φ) =
M−1∑

m=0

N−1∑

n=0

amn · ej(m.kx·dx+n·ky ·dy+αmn) (2)

in which amn and αmn represent the amplitude and phase of the
excitation currents for each element within the array, and kx and ky

are the x and y components of the wavenumber vector.
Regarding the EP(θ,φ), rectangular microstrip patches have been

considered. The radiated far-fields of this structure are given by
expressions (3) and (4), calculated considering the simplified equivalent
magnetic currents model [20], that resonance occurs in the y direction,
as well as a negligible thickness, h.

Eθ = j ·A · sin(φ) · sinc
(

kx · a
2 · π

)
· cos

(
ky · b

2

)
(3)

Eφ = j ·A · cos(θ) · cos(φ) · sinc
(

kx · a
2 · π

)
· cos

(
ky · b

2

)
(4)

In (3)–(4), a, b and h represent the length, width and dielectric
thickness, of the microstrip patches; and A is given by (5), in which
E0 is an amplitude constant.

A =
E0 · a · h · 4 · e−j·k·r

λ · r (5)
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The radiated co-polar and cross-polar far-field components of each
element are calculated according to the first definition of Ludwig [21],
considering that planar arrays in this work will be designed to
provide horizontal polarization along the y-axis. Consequently,
considering complex synthesis (neither progressive phase nor separable
excitations), the aim is to optimize the couples (amn, αmn), so that the
co-polar and cross-polar far-field radiation components of the planar
array, FF cp(θ, φ) and FFxp(θ, φ), satisfy the required specifications
given in terms of upper and lower co-polar masks (UM and LM ), and a
cross-polar mask (CM ), described by the limits imposed at P discrete
angular directions (θp, φp). Thus, for the PSO algorithm, the vector C
in (6) contains the parameters to be optimized and the fitness function
to be minimized and used to weigh up the accuracy of any solution C, is
given in (7). Basically, F in (7) consists of the errors associated with
both FF cp(θ, φ) and FFxp(θ, φ) components, considering that far-
fields along with the masks are normalized in amplitude and expressed
in dB.

C = (a11, α11, . . . , amn, αmn, . . . , aMN , αMN ) (6)

F =
P∑

p=1

min(|FFcp(dB)| − |UM(db)|, 0)

+
P∑

p=1

min(|LM(db)| − |FFcp(dB)|, 0)

+
P∑

p=1

min(|FFxp(dB)| − |CM(dB)|, 0) (7)

In PSO, for high-dimensional problems, the size of the swarm
required may increase in such a way that the number of fitness
evaluations rises up dramatically and thus, the computational cost.
For large arrays, this problem can be reduced using an array consisting
of subarrays. In this case, let us suppose a planar array consisting of
M × N subarrays uniformly spaced dx and dy on the x and y axes,
respectively; as shown in Fig. 1. Each subarray consists of Q × R
microstrip patches uniformly spaced dq and dr on both directions. The
array factor of the new arrangement is given by

AF (θ, φ) =
M−1∑

m=0

N−1∑

n=0

amn




Q−1∑

q=0

R−1∑

r=0

bqr · ej(q·kx·dq+r·ky ·dr+βqr)




·ej(m·kx·dx+n·ky ·dy+αmn) = AF (θ, φ)|M×N ·AF (θ, φ)|Q×R (8)
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in which bqr and βqr represent the amplitude and phase of the
excitation currents for each element within the subarray, and amn and
αmn represent complex excitation for each element within the array.
Now, the vector C in (6) is modified in (9) by introducing the couples
(bqr, βqr), identical for any of the subarrays, as well as the complex
feeds for the M ×N subarrays.

C = (b11, β11, . . . , bqr, βqr, . . . , bQR, βQR, a11, α11,

. . . , amn, αmn, . . . , aMN , αMN ) (9)

The use of subarrays makes it possible to reduce significantly
the number of unknowns and the computational cost. For example,
in case subarrays are not considered, a planar array consisting of
M × N = 20 × 20 elements would require an 800-dimensions vector
to be solved in (6) (400 couples (amn, αmn)), whereas if an array
consisting of M × N = 10 × 10 subarrays is considered, with each
subarray consisting of Q × R = 2 × 2 microstrip patches, then the
vector C in (9) would be 208-dimensions in length (100 couples (amn,
αmn) for the array and 4 couples (bqr, βqr) for the subarray).

3. PARTICLE SWARM OPTIMIZATION

The PSO algorithm imitates in a computational fashion the
coordinated and unpredictable movement of the particles within a
swarm [1]. From a computational point of view, each particle’s position
corresponds to a potential solution to the optimization problem at
hand in a D-dimensional search space, i.e., vectors C in (6) or (9).
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Figure 1. Planar array consisting of M × N subarrays uniformly
spaced dx and dy on the x and y axes, respectively. Each subarray
consists of Q × R microstrip patches uniformly spaced dq and dr on
each direction.
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The following subsections include a general overview of the classical
real-valued PSO scheme considered [1, 22], along with a description of
the elitist selection-based approach proposed.

3.1. Classical PSO

In PSO, a swarm consisting of K particles randomly initialized
traverses the hyperspace iteratively towards more promising regions
according to a velocity operator. Any particle k becomes a potential
solution to the optimization problem at hand, and is represented
by its current position in the D-dimensional search space, Xk =
(xk,1, . . . , xk,D). From iteration i to i + 1, each particle moves from
Xi

k to a new position Xi+1
k with a velocity V i+1

k = (vi+1
k,1 , . . . , vi+1

k,D) as
given by:

V i+1
k = wV i

k + c1r1

(
pbest −Xi

k

)
+ c2r2

(
gbest −Xi

k

)
(10)

Xi+1
k = Xi

k + V i+1
k ·∆t (11)

in which, w is the inertial weight, c1 and c2 are the cognitive and
social acceleration constants, pbest and gbest represent the memory of
the particle and the whole swarm, respectively; r1 and r2 are two
independent random numbers, U [0, 1], and ∆t in (11) represents the
time step between two consecutive movements [1, 3, 22].

The spatial movement and velocity of particles is iteratively
delimited across any dimension d, by the intervals xd ∈ [xd,min, xd,max]
and vd ∈ [−Vmax, Vmax], respectively. The limits xd,min and xd,max

are related to the dynamic range of the variables to be optimized, and
can be controlled by introducing a limiting wall, [3]. The maximum
velocity allowed for particles on each dimension, Vmax, is usually set
equal to or half the dynamic range, Vmax,d = xd,max − xd,min or
Vmax,d = 0.5 · (xd,max − xd,min), respectively; and plays an important
role in the final PSO performance [3, 22].

Several classical PSO schemes can be considered depending on
how and when particles move and cooperate among themselves, i.e.,
depending on the application of the update rules given in (10)–(11).
Among the classical PSO schemes, the one with asynchronous updates
of the swarm and a global topology has been considered in this
work as a reference, as it has proven to be the most efficient one in
computational terms [18, 19, 22].

3.2. The Modified PSO

The modified PSO algorithm proposed introduces into the classical
PSO flowchart [22] two mechanisms usually used in GA: a selection
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operator, tournament selection (TS), and elitism [3]. In GA, TS
increases the pressure over the search space, preserving iteratively one
or more copies of the fittest individuals, which are the only ones that
iteratively survive and take part in the reproduction cycle [2]. The
greater the size of the subpopulation that competes in each tournament
is, the higher the search pressure and convergence speed. However,
subpopulations of TS = 2 individuals are often chosen, because if the
subpopulation is too high, too many worse individuals can be lost,
making diversity vanish and driving iteratively the algorithm to a
deceptive local solution. In fact, TS itself promotes better solutions
in such a way that high values of Vmax must be chosen in PSO to
overcome premature convergence.

The improvements achieved by introducing TS into the classical
PSO have already been demonstrated by the authors in [19, 23].
Nevertheless, in this work elitism is also introduced. When TS is
applied, it may happen that the best particle is not selected at random
to compete in any tournament and lost. That means that the swarm
may lose its global history, slowing down the search. Elitism forces the
best particle to propagate iteratively even if the TS fails to choose it.
The steps of the modified algorithm are summarized as follows:
i) Initialize the swarm: K particles with random positions and

velocities, Xk and Vk. Evaluate their fitness, Fk, and set pbest,k

and gbest

ii) Until maximum number of iterations is reached
ii.1) Repeat for all particles

ii.1.1) Update velocity and position, V i+1
k and Xi+1

k
ii.1.3) Evaluate fitness, Fk = f(Xk)
ii.1.4) Update personal best?, pbest,k = Xk

ii.1.5) Update global best, gbest?
ii.2) Next particle
ii.3) TS: Apply K tournaments to build the new swarm
ii.4) Elitism: Copy gbest to the new swarm if lost when applying

TS
iii) Next iteration
iv) Solution: current gbest

v) END

4. RESULTS

Results comparing classical and modified PSO schemes along with
representative synthesis results for sector antennas for WiMAX
applications are presented in the following subsections.



152 Lanza, Pérez, and Basterrechea

4.1. Comparison of the PSO Schemes

The well-known Griewank, Rastrigin, Rosenbrock and Sphere
test functions summarized in Table 1, with a zero-value global
minimum [24], have been used as the test bed to compare the
performance of both classical PSO with asynchronous updates of
the swarm and a global topology (PSO hereinafter) and the same
scheme modified by introducing TS and elitism (mPSO). For any
of the functions and optimization algorithms, 100 independent runs
have been considered to take into account the stochastic nature of
the optimizers and carry out the analysis. The results obtained have
been appropriately averaged to compare PSO and mPSO schemes,
considering parameters such as the success rate (SR), representing the
percentage of runs that converge to a valid solution, i.e., those runs
for which the value of the function f(x) reaches the specified value to
reach (VTR), f(x) < VTR, with a maximum of 300000 fitness function
calls allowed; and the average number of fitness function evaluations
required to reach the VTR, NFavg , computed considering only the
successful runs. Finally, the following parameters have been considered
for both PSO and mPSO algorithms based on previous experience [22]:
w = 0.729, c1 = c2 = 1.49445, Vmax, d = xd,max − xd,min, reflecting
wall [3], and a swarm with K = 2D = 60 particles.

Table 1. Test functions used to compare the PSO algorithms. For the
D-dimensional functions, considering D = 30 dimensions, a parameter
range and a value to reach, PR and VTR respectively, have been
defined.

Function Parameters

Griewank
f(x) = 1 + 1

4000

D∑
d=1

x2
d −

D∏
d=1

cos
(

xd√
d

)

PR: xd ∈ [−400, 400], VTR= 0.1

Rastrigin
f(x) =

D∑
d=1

[x2
d − 10 · cos(2πxd) + 10]

PR: xd ∈ [−5.12, 5.12], VTR= 90

Rosenbrock
f(x) =

D−1∑
d=1

[100 · (xd+1 − x2
d)

2 + (xd − 1)2]

PR: xd ∈ [−2.048, 2.048], VTR= 15

Sphere
f(x) =

D∑
d=1

x2
d

PR: xd ∈ [−100, 100], VTR= 1 · e−6
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Table 2. Comparison of the PSO schemes. Results for the test
functions considering 100 independent runs.

PSO mPSO

SR (%) NFavg SR (%) NFavg

Griewank

Rastrigin

Sphere

Rosenbrock

100

99

93

100

14817.60

9152.73

170272.90

27043.21

96

88

100

100

7895.10

4422.95

36511.20

14889.10

For the test bed described in Table 1, results comparing PSO
and mPSO are summarized in Table 2. According to the NFavg

parameter, which is directly related to the overall computational cost
(approximately 99% of the CPU time is spent on fitness evaluations
and the 1% remaining on basic PSO operations), it can be inferred
from Table 2 that the mPSO scheme outperforms the PSO for any
of the test functions considered, reducing the computational cost by
up to 46.7%, 51.6%, 78.6% and 44.9% for the Griewank, Rastrigin,
Rosenbrock and Sphere test functions, respectively. However, with
regard to the SR parameter, both PSO and mPSO behave similarly,
although for a high-complexity multimodal function such as Rastrigin,
the mPSO failed in 12% of the runs, getting trapped in a local minimum
in the surroundings of the global solution. This is the only limitation
of the mPSO approach, as the pressure of TS and elitism together may
drive the swarm to deceptive solutions with a slightly higher probability
than the PSO.

Finally, let us suppose a canonical planar array synthesis problem
to complete the comparison, considering: 1) a planar array with
M × N = 8 × 8 microstrip patches and 2) a planar array consisting
of M × N = 4 × 4 elements, in which each element is a subarray
of Q × R = 2 × 2 microstrip patches. In the end, the number of
radiating elements is the same in 1) and 2), but the feed network
as well as the number of unknowns are quite different in both cases.
Both problems can be formulated as a convex programming problem
and solved more efficiently [25], but it also represents an appropriate
example to compare both PSO and mPSO in a statistical way.

According to the geometry provided in Fig. 1, the dimensions
of the antennas 1) and 2) are similar, given in terms of the free-space
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wavelength, λ, as follows: 1) dx = 0.47λ, dy = 0.55275λ, a = 0.25λ, b =
0.32275λ, and 2) dx = 0.94λ, dy = 1.1055λ, dq = 0.47λ, dr = 0.553λ,
a = 0.25λ, b = 0.32275λ; considering a CuClad 250 GX substrate with
a permittivity of εr = 2.4 and a thickness of h = 0.01167λ. The far-
field radiation pattern to fulfill is given in terms of 3D-masks defined
in the intervals θ ∈ [−90, 90] and φ ∈ [0, 180] degrees. Fig. 2 shows
a detail of the masks for a constant φ-cut. Moreover, the following
parameters have been considered for both PSO and mPSO: w = 0.729,
c1 = c2 = 1.49445, Vmax, d = 0.5 · (xd, max − xd, min), reflecting wall and
a size of the swarm of K = D/2, i.e., 64 and 20 particles for 1) and
2), respectively, as vector C in (6) and (9) is 128 and 40-dimensions in
length, respectively.

Furthermore, the dynamic range in vector C for the complex
weights to be optimized, are for both configurations: 1) amn ∈ [0, 1]
and αmn ∈ [0, 360], and 2) bqr ∈ [0, 1] and βqr ∈ [0, 360]. Then,
for both antennas 1) and 2), the aim is to optimize the 128 and 40-
dimensions vector C, respectively; in order to satisfy the requirements
of the 3D-masks proposed, minimizing the residual error given in (7).

As an example, Fig. 2 shows for both kinds of planar arrays the far-
field results for the 0 degrees φ-cut, obtained with the mPSO algorithm
for a single run, showing a good agreement in both cases.

In order to complete the analysis, statistical results comparing
both PSO and mPSO schemes for the planar arrays described in 1) and
2), are shown in Table 3. In this case, the results of 25 independent
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Table 3. Comparison of the PSO schemes. Results for a planar array
when averaging 25 independent runs.

PSO mPSO

SR (%) SR (%)NFavg

100 100

NFavg

No subarrays
M×N=8×8

Array with subarrays
M×N=4×4 and Q×R=2×2 100 96

22917.12

10219.20

12910.08

11707.50

runs have been properly averaged, considering that a run converges to
a valid solution only if F < 5.0 in (7), with a maximum of 50000 fitness
function calls allowed. Results in Table 3, as well as the evolution of
the averaged fitness value shown in Fig. 3 and drawn considering only
successful runs, demonstrate for case 1) (antenna with no subarrays),
the computational superiority of the mPSO over the PSO. In fact,
the reduction in the NFavg parameter is significant, close to a 44%.
However, for case 2) (antenna with subarrays), the mPSO behaves
slightly worse than the PSO. The reason is that in this case the mPSO
works with such a small population (K = 20 particles) that the TS
and elitism altogether reduce the exploration abilities of the swarm,
making the search more difficult; i.e., from the beginning the swarm is
driven by one or more copies of the same particles, reducing diversity
and slowing down the convergence.

Finally, if the evolutions of PSO and mPSO shown in Fig. 3 for
cases 1) and 2) are compared, it can be concluded that the antenna
with subarrays, case 2), exhibits a far slower convergence with both
algorithms. Obviously, the requirements of the masks are the same, but
in case 2) there are very few excitations or variables to fit the far-field
diagram of the planar array and besides, the size of the swarm for the
PSO-based schemes is far smaller, reducing the exploration abilities of
the algorithms.

4.2. Sector Antennas for WiMAX

Focusing on the mPSO scheme, the optimization algorithm has also
been applied to more realistic and complex synthesis problems. Let
us consider a planar array to be used as a 60 degrees sector antenna
for WiMAX applications at 3.5 GHz, providing horizontal polarization.
The required beam is shaped both in azimuth and elevation, and the 3D
radiation pattern is specified as the product of sectored and cosecant
squared patterns [26]. Even though problems defined by separable
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masks can be solved more efficiently using other methods like the
one described in [27] (which does not consider crosspolar masks), this
problem has got enough complexity to check the performance of the
global optimization algorithm proposed.

Regarding the planar array, two possibilities are considered again
according to the geometry shown in Fig. 4(a): 1) a planar array with
M ×N = 16× 16 microstrip patches and 2) a planar array consisting
of M ×N = 8× 8 subarrays of Q×R = 2× 2 microstrip patches each.
Moreover, the dimensions in cm of the antennas 1) and 2), are as
follows: 1) dx = 3.428571, dy = 4.052131, a = 2.142857, b = 2.766417,
and 2) dx = 6.857143, dy = 8.104262, dq = 3.428571, dr = 4.052131,
a = 2.142857, b = 2.766417; considering again the CuClad 250 GX
substrate with εr = 2.4 and h = 1 mm.

(b) (c)

(a)

z

y

x

Figure 4. 3D far-field radiation pattern obtained for a 60-degrees
sector antenna. (a) Geometry of the planar array. (b) Results for a
planar array consisting of M × N = 16 × 16 microstrip patches. (c)
Results for a planar array consisting of M ×N = 8× 8 subarrays with
Q×R = 2× 2 microstrip patches each one.
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The following parameters have been considered for the mPSO:
w = 0.729, c1 = c2 = 1.49445, Vmax, d = 0.5·(xd, max−xd, min), reflecting
wall and a size of the swarm of K = D/2, i.e., 256 and 68 particles for
1) and 2), respectively. Furthermore, the dynamic ranges in vector C
for the complex weights to be optimized, are for both configurations: 1)
amn ∈ [0, 1] and αmn ∈ [0, 360], and 2) bqr ∈ [0, 1] and βqr ∈ [0, 360].

Representative results achieved for a single run showing the 3D-
normalized far-field radiation pattern synthesized with the mPSO
for both sector antennas 1) and 2), are presented in Figs. 4(b)–(c).
From the normalized polar representation shown in Figs. 4(b)–(c), the
cosecant squared behavior within the angular limits of the sector can be
inferred. Further details of these accurate results are shown in Fig. 5,
including the elevation and azimuth cuts for both sector antennas,
demonstrating the usefulness of the mPSO approach. From a practical
point of view, the nature of the synthesis would make it necessary to
use electronically controlled amplifiers and phase shifters to implement
the optimized complex feeds.
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Figure 5. Elevation and azimuth cuts of the far-field radiation pattern
for the 60 degrees sector antennas. The cross-polar component is below
the −50 dB floor level considered. (a) Elevation cut, φ = 0 degrees.
(b) Azimuth cut, θ = 6 degrees.

5. CONCLUSION

A modified particle swarm based optimization algorithm that combines
the capacity of the heuristic PSO technique to find a near-optimal
solution in a multimodal and high-dimensional search domain, with
the skill of genetic operators such as tournament selection and elitism
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to speed up the search by filtering iteratively the population and
promoting the survival of the fittest individuals, has been presented
in this work and compared to classical PSO, using several well-known
test functions as benchmark functions, as well as a canonical planar
array synthesis task using complex weights.

The statistical results obtained with the test functions for both
PSO schemes demonstrate that the modified PSO is computationally
more efficient than the classical one, outperforming it. The only
drawback associated with the approach proposed is related to the
pressure exerted by selection and elitism altogether, which may lead
in some cases to a premature convergence due to the lack of diversity
inside the swarm. Similar conclusions have been obtained when both
optimization schemes have been applied to planar array synthesis. In
this case, two different antenna structures have been used, considering
either microstrip patches or subarrays of microstrip patches as the
elements of the planar array. Both architectures have been tested, and
the one using subarrays has proven to be the most efficient one from
the optimizer point of view, as it reduces the unknowns or excitation
currents significantly. However, for antennas with few elements and
in case subarrays are considered, results have demonstrated that the
residual error is higher, i.e., the convergence is slower, because the
small size of the swarm makes the exploration of the search space
more difficult.

Finally, the high-accurate synthesis results of a sector antenna
for WiMAX applications, demonstrate the usefulness of the approach
proposed for more realistic electromagnetic problems.
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23. Pérez, J. R. and J. Basterrechea, “Hybrid particle swarm–
based algorithms and their application to linear array synthesis,”
Progress In Electromagnetics Research, PIER 90, 63–74, 2009.

24. Clerc, M. and J. Kennedy, “The particle swarm-explosion,
stability, and convergence in a multidimensional complex space,”
IEEE Trans. Evolutionary Comp., Vol. 6, No. 1, 58–73, 2002.

25. Isernia, T., P. D. Iorio, and F. Soldovieri, “An effective approach
for the optimal focusing of array fields subject to upper bounds,”
IEEE Trans. Antennas Propagat., Vol. 48, No. 12, 1837–1847,
2000.

26. ETSI EN 302 085 v1.2.3, “Fixed radio systems; point-to-
multipoint antennas; antennas for point-to-multipoint fixed radio
systems in the 3 GHz to 11 GHz band,” European Standard
(Telecommunications Series), 2005.

27. Isernia, T., O. M. Bucci, and N. Fiorentino, “Shaped beam
antenna synthesis problems: Feasibility criteria and new
strategies,” Journal of Electromagnetic Waves and Applications,
Vol. 12, No. 1, 103–138, 1998.


