
Progress In Electromagnetics Research M, Vol. 7, 41–55, 2009

NEAR FIELD OF SLOT RADIATORS

S. S. Kakatkar and K. P. Ray

Society for Applied Microwave Electronics Engineering and Research
(SAMEER)
IIT Campus, Hill Side, Powai, Mumbai-400076, India

Abstract—In this paper, the cosinusoidal slot aperture distribution
is replaced with a two term approximation. Using this two term
approximation, the slot fields are evaluated in closed form and explicit
expressions are given in terms of sine and cosine integrals. The two
term approximation and the near fields derived therefrom agree closely
with the cosinusoidal distribution for slot lengths upto 0.65λ, with
an error of less than 3.3% with respect to the numerical results for
distances Rnearest ≥ 0.05λ from the slot in the near field, where Rnearest

is the distance of the nearest point on the slot from the field point. The
formulation given here is of practical use in estimating mutual coupling
in an array or in estimating radiated emissions for Electromagnetic
Compatibility (EMC) analysis.

1. INTRODUCTION

Slots are commonly used as radiating elements in antennas or antenna
arrays. Mutual coupling between slots needs to be taken into account
for accurately predicting the performance of slotted array antennas. In
Electromagnetic Compatibility (EMC) analysis, radiation from slots
needs to be taken into account for estimating leakage and interference
from apertures used for ventilation, seams, display windows etc. In
Radiated Emissions measurement, fields radiated from an Equipment
Under Test (EUT) are often measured at a distance of 1 m or 3 m,
over a frequency range where the far field criterion may not be fully
satisfied.

The near field of dipoles with piecewise sinusoidal (PWS)
distribution of the form sin[k(l−|z|)], where 2l is the length of the slot
and k is the wavenumber, is well known [1, 2]. The near field for similar
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magnetic current distribution in the slot can be obtained by duality [3].
However, it is known that the aperture electric field or magnetic
current in the slot is closer to the cosinusoidal distribution of the form
cos( π

2lz) [4]. Hence, slots are quite often analysed using the Method of
Moments (MoM) with basis functions of the form sin[pπ

2l (l + z)] for the
aperture magnetic current distribution [5–8]. Although it is known that
the far field for such slots with cosinusoidal aperture distribution can be
readily evaluated [3], closed form expressions for the near field of slots
with cosinusoidal distribution are not available in the literature. Such
closed form or analytic expressions help to provide useful insight into
the behaviour of the slot by highlighting the singularities or zeroes, by
allowing differentiation to provide variation with respect to a particular
parameter or for variational solutions, by permitting integration and so
on. At the same time, slower and expensive numerical techniques with
attendant convergence related issues and the choice of proper method
can be avoided.

In the following, the well known cosinusoidal aperture distribution
of slots has been approximated by a two term approximation to
facilitate the evaluation of near fields in closed form, and the near
fields are evaluated in terms of sine and cosine integrals.

2. FORMULATIONS AND EQUATIONS

The geometry of the slot configuration with the co-ordinate system is
illustrated in Fig. 1.

The slot is assumed to be along the z-axis in the yz plane. The slot
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Figure 1. Geometry of the problem.
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is assumed to be of length 2l and width w. The width w is assumed to
be much less than length, i.e., narrow slot approximation is employed.
As shown in [9], for w/2l < 10, this introduces negligible error in
the coupling amplitude and phase, while for wider slots, accurate
results can be obtained with two transverse integrations along each slot
width. Hence, the slot can be replaced by an equivalent linear magnetic
current source having a field pattern with azimuthal symmetry similar
to a dipole. Thus, the field point can be conveniently located in the
yz plane (φ = π/2), without loss of generality.

In Fig. 1, the centre of the slot is at the origin O(0, 0, 0) and the
observation point P is at (0, y0, z0). P ≡ (y0, π/2, z0) in cylindrical co-
ordinates and P ≡ (R0, π/2 − θ, π/2) in spherical co-ordinates. The
centre to field point distance is R0.

Then the total field at P ,

Ht = Hzz̄ + Hρρ̄ (1)

The magnetic current in the slot M = (Es×n)w = cos(zπ/2l)z̄ [4],
where Es is the slot electric field, n is the outward normal to the
slot surface and z̄ and ρ̄ are unit vectors along z and ρ respectively.
The aperture electric field is assumed to be uniform across the width.
The phase of the electric field is assumed to be uniform over the slot.
For more general aperture distributions represented as a summation of
higher order basis functions Es =

∑N
p=1 sin[pπ

2l (l + z)], e.g., [7, 8], the
following analysis can be easily applied using superposition.

Then, following the procedure in [1, 9],

Hz =
∫ l

−l

M

jηk

(
∂2

∂z2
+ k2

)
Gdz′ (2)

Hρ = Hy =
∫ l

−l

M

jηk

∂2G

∂z∂y
dz′ (3)

Eφ = −Ex =
∫ l

−l
M

∂G

∂y
dz′ (4)

where k = 2π/λ, λ is the free space wavelength, η = 120π is the free
space impedance, G = G(R) = e−jkR

2πR is the Green’s function for a slot
in an infinite conducting ground plane and R =

√
(z − z′)2 + ρ2.

Integrating Equation (2) by parts and recalling that M(±l) = 0,
we get

Hz =
1

jηk

{[ π

2l
sin

( π

2l
z
)
G

]l

−l
+

∫ l

−l

[
k2−

( π

2l

)2
]
cos

( π

2l
z
)e−jkR

2πR
dz′

}
(5)
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Equation (5) cannot be evaluated in closed form. The same is true
of Equation (3) or Equation (4).

At the same time, it is well known that dipole impedance
with certain approximations for current can be evaluated in closed
form [10, 11]. Here, we propose a two term approximation after [10]
for the magnetic current (or slot electric field). This leads to closed
form expressions for the slot near field as shown next.

2.1. Two Term Approximation for Aperture Distribution

A two term approximation similar to that used in [10] is used for slot
magnetic current distribution

M(z′)=cos
( π

2l
z′

)
≈a1

{
sin

[
k(l−|z′|)]+a0k(l−|z′|)cos[k(l−|z′|)]} (6)

However, whereas the constant in [10] is evaluated from a
variational analysis subject to the condition of variation in impedance
Zi becoming a minimum, here we approximate the current to a
cosinusoid and the constants a1, a0 are evaluated subject to

M(0) = 1 and
∂M

∂z′
|z′=0 = 0

Then,

a0 =
1

kl tan(kl) − 1
(7)

a1 =
1

sin(kl) + a0kl cos(kl)
(8)

The slot aperture distribution using this approximation is
illustrated in Fig. 2 for slot length 2l = 0.3λ and 2l = 0.75λ along
with the cosinusoidal case. It can be seen that the two distributions
are very close to each other. As the practical slot lengths are usually
between 0.3λ to 0.65λ [9], mostly slot lengths around these values are
taken for illustration purpose in the figures, as being representative
of one below and one above λ/2. The fields for Equation (6) can be
evaluated in closed form as shown next.

2.2. Near Field of Slots with Two Term Approximation

Using the two term approximation Equation (6) for slot magnetic
current distribution M in Equation (2) and observing that ∂

∂z = − ∂
∂z′ ,
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Figure 2. Aperture distribution for cosinusoidal, piecewise sinusoidal
and two term approximation with, (a) slot length 2l = 0.3λ, (b) slot
length 2l = 0.75λ.

∂2

∂z2 = ∂2

∂z′2

Hz =
1

jηk

{
−

[
∂M

∂z′
G

]l

−l

+
∫ l

−l

(
k2 +

∂2

∂z′2

)
M · Gdz′

}
(9)
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This can be shown to be

Hz =
1

jηk

{
−

[
∂M

∂z′
(
G− − G+

)]l

0

+
(−2a1a0k

2
)
I

}
(10)

where G± = G(
√

(z ± z′)2 + y2) and

I =
∫ l

0
sin[k(l − z′)] · (G− + G+)dz′ (11)

=
1
2π

1′∑
p=−1

1′∑
q=−1

ejkq(z0p+l)

2j
{E1[kt]}l

0 (12)

z′′ = z′+pz0, r =
√

z′′2 + y2
0, t = r+qz′′ and E1(u) = Ci(|u|)−jSi(u),

where Ci(u) and Si(u) are, respectively, the cosine and sine integrals
defined in [12]. The primed symbol

∑′
i indicates that the variable i

does not take the value i = 0. Then,

Hz =
1

jηk

{
−

[
∂M

∂z′
(
G− − G+

)]l

0

− 2a1a0k
2

2π

1′∑
p=−1

1′∑
q=−1

ejkq(z0p+l)

2j
[E1(kt)]l0

⎫⎬
⎭ (13)

Similarly, from Equation (3),

Hρ = Hy =
−1
jηk

∂

∂y

∫ l

0

1′∑
p=−1

M
∂

∂z′
G(r)dz′ (14)

Integrating by parts and since M(±l) = 0

Hρ =
1

2πjηk

∂

∂y

∫ l

0

1′∑
p=−1

∂M

∂z′
G(r)dz′ (15)

Hρ =
1

2πjηk

1′∑
p=−1

1′∑
q=−1

(−p)
[
acC

′ + bcC
′
z

]
(16)

where

C ′ =
∂

∂y

∫ l

0
ejk(z0p+l)e−jk(z′+z0p).

e−jkr

r
dz′ (17)

C ′
z =

∂

∂y

∫ l

0
ejk(z0p+l)(z′ + pz0 − pz0)e−jk(z′+z0p) e

−jkr

r
dz′ (18)



Progress In Electromagnetics Research M, Vol. 7, 2009 47

and ac = [−ka1(1 + a0) − j(a1a0k
2l q)]/2 and bc = jqa1a0k

2/2. In the
above, z′ has been written as z′ + pz0 − pz0 for the ease of further
analysis. Then,

C ′ =
[
qejkq(z0p+l) y0

r

e−jkt

t

]l

z′=0

(19)

Using ([13], Equation (18)), it can be shown that,

C
′
z = I1 − pz0C

′ (20)

I1 = ejkq(z0p+l)y0

{
e−jkt

r
+ jkE1(kt)

}l

z′=0

(21)

Hρ can be written in a compact form suitable for programming as

Hρ =
1

2πjηk

1′∑
p=−1

1′∑
q=−1

(−p)
[
(ac − bcpz0) C ′ + bcI1

]
. (22)

This can also be written in a form similar to dipole fields with
R1 =

√
(z0 + l)2 + y2

0 , R2 =
√

(z0 − l)2 + y2
0 (Fig. 1).

Hρ =
1

j2πηk

{
−ka1(1 + a0)

y0

[
(z0 + l)

e−jkR1

R1
+ (z0 − l)

e−jkR2

R2

−2z0 cos(kl)
e−jkR0

R0

]
+

ja1a0k
2

y0

[
(z0 + l)e−jkR1 + (z0 − l)e−jkR2

−2z0 cos(kl)e−jkR0 + j2lz0sin(kl)
e−jkR0

R0

]

+
a1a0k

3y0

2

1′∑
p=−1

1′∑
q=−1

pqejkq(z0p+l)[E1(kt)]l0

⎫⎬
⎭ (23)

Proceeding as above from Equation (4), it can be shown that

Eφ = −Ex =
1
2π

1′∑
p=−1

1′∑
q=−1

[
(fc − gcpz0)C ′ + gcI1

]
(24)
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where fc = [−jqa1 + a1a0kl]/2 and gc = −a1a0k/2. Or

Eφ =
1
2π

{−ja1

y0

[
e−jkR1 + e−jkR2 − 2 cos(kl)e−jkR0

]
− a1a0k

y0[
R1e

−jkR1+R2e
−jkR2−2R0 cos(kl)e−jkR0 +j2l sin(kl)e−jkR0

]

− ja1a0k
2y0

2

1′∑
p=−1

1′∑
q=−1

ejkq(z0p+l)[E1(kt)]l0

⎫⎬
⎭ (25)

The Hz, Hρ and Eφ components determine the near field of slot
radiators in closed form. By comparing with [1], it can be seen that the
first part of each of the fields Hz (Equation (13)), Hρ (Equation (23))
and Eφ (Equation (25)) is from the dipole distribution sin[k(l − |z|)].

The above fields can be further corrected for the difference in the
two distributions by using a multiplicative constant γ [9], that is a
ratio of the first moment of the two distributions.

γ =
2kl

π{a1(1 − a0)[1 − cos(kl)] + a1a0kl sin(kl)} (26)

The near fields for higher order modes in the slot or for higher
basis functions sin[pπ

2l (l + z)] can be found by superposition.

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
or

re
ct

io
n 

fa
ct

or
 γ

slot length 2l/λ

Figure 3. Correction factor for two term approximation.



Progress In Electromagnetics Research M, Vol. 7, 2009 49

3. NUMERICAL RESULTS

The two term approximation has been plotted in Fig. 2 for 2l = 0.3λ
and 2l = 0.75λ. The PWS and cosinusoidal distributions are also
plotted in the figure. The cosinusoidal distribution and the two term
approximation can be seen to be very close to each other. The PWS
distribution differs significantly from the cosinusoidal, both for slot
lengths lesser than as well as greater than 0.5λ.

The correction factor γ for two term approximation, that is the
ratio of the first moments of the two distributions is plotted in Fig. 3.
The correction factor is almost one for slot lengths shorter than
0.5λ, showing excellent agreement between the approximate and ideal
distributions, while it can be seen to depart from unity rapidly above
0.5λ. The correction required is less than 2% up to a slot length of
0.65λ and less then 5% upto 2l = 0.75λ.

The relative error in near H-field magnitude (
√|Hz|2 + |Hρ|2)

obtained using numerical integration of Equations (2), (3) and that
obtained analytically from Section 2.2 is plotted in Fig. 4 over 0◦ ≤
θ ≤ 90◦ for 2l = 0.3λ and 2l = 0.65λ with reference to the numerically
evaluated field magnitude at R0 = 0.65λ and R0 = 13λ, i.e., at one
and 20 slot lengths respectively. The correction factor is taken into
account while plotting the above. The numerical results are evaluated
by dividing the slot into cells and employing three point gaussian
quadratue over each cell. It is seen that the error remains less than 1%
over the entire angular range 0◦ ≤ θ ≤ 90◦, for slot length 2l ≤ 0.65λ
at distance R0 ≥ 2l. The error increases for slot length 2l > 0.5λ where
the approximate aperture distribution differs more significantly from
the cosinusoidal one. The error is more for wider angles as compared
to θ = 0◦. For wider angles (e.g., θ = 90◦), the error can be seen to
increase with distance in the near field, but remains constant in the
far field (around 0.6% for θ = 90◦) as seen from Fig. 5.

The error calculated for PWS [9] and two term approximations is
shown in Fig. 6 for 2l = 0.3λ and 2l = 0.65λ at a distance of 2l and 40l
respectively. It can be seen that the two term approximation results
agree better with the numerically computed fields from cosinusoidal
distribution.

To explore the error in the near field, the field is calculated at
ρ = 0.05λ parallel to the slot (0 ≤ z ≤ l ) for slot length up to 0.65λ.
The error in both, H field and E field is shown in Fig. 7(a). The error
is seen to remain less than 3.3% for magnetic field and less than 1.6%
for electric field from the figure. Thus, in general, with this two term
approximation and the above formulation, the error in calculated field
is less than 3.3% with respect to the assumed cosinusoidal one for slot
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length up to 0.65λ at all distances Rnearest ≥ 0.05λ, where Rnearest is
the distance of the nearest point on the slot from the field point P . The
variation in error with position along the slot for calculated magnetic
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field parallel to the slot length for slot length 2l = 0.3λ and 2l = 0.65λ
is shown in Fig. 7(b). The maximum error in the magnetic field is seen
to occur on the centreline, z/l = 0, for 2l < λ/2 and gradually shifts
towards the ends for slot length 2l > λ/2. The near electric field is,
in general, approximated better than the magnetic field. The error in
magnetic field for 7(a) is calculated with z/l = 0 for 2l ≤ 1 and with
z/l = 0.28 for 2l > λ/2. The error in electric field is maximum around
z/l = 0.9 for 2l > λ/2.

For EMC measurements as per, say, MIL-STD-461F [14], the
electric field is measured from an equipment under test (EUT) at a
distance of 1m from 10 kHz to 1 GHz or more, for RE102 test. The error
in electric field radiated from a 20 cm slot in an EUT (corresponding
to 2l/λ from 6.67× 10−6 to 0.667) at a distance of 1m (corresponding
to R0/λ from 3.33 × 10−5 to 3.33) calculated from the two term
approximation with respect to the assumed cosinusoidal one is shown
in Fig. 8. Such a slot could be for display or ventilation or due to
improper bonding of seams etc. The error is quite less and acceptable
as seen from Fig. 8.

The error calculated from far field analysis [3] assuming
cosinusoidal distribution is compared with that from the near field
analysis (no far field approximation) assuming two term approximation
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for the aperture field, in Fig. 9. The error from two term approximation
with exact fields for this distribution as derived above, is seen to be
lesser than that for far field analysis, both, for slot length 2l = 0.3λ
and for 2l = 0.65λ.
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3.1. Discussion of Results

From the foregoing analysis, it can be seen that the two term
approximation for the cosinusoidal aperture distribution gives
practically useable results for near fields derived in closed form. The
error in E field is found to be lesser than that in H field. The
error calculated from this method is better than that from other
approximations in use, either for the aperture field like the piecewise
sinusoidal approximation [9] or for the the fields derived, like the far
field approximation. Hence, the above formulation provides a fast
and accurate closed form solution to the near fields of slot radiators
with cosinusoidal distribution up to a slot length of 2l ≤ 0.65λ. The
approximation is particularly seen to be very good for slot length
2l ≤ 0.5λ. For longer slots at distances closer than 0.05λ, the error
increases rapidly to about 3.3% for 2l = 0.65λ and for still longer slots,
the above approximation along with the fields derived from it can no
longer be used satisfactorily.

4. CONCLUSION

The two term approximation developed for approximating the aperture
distribution of slots is seen to agree closely with the cosinusoidal one for
slot lengths 2l ≤ 0.65λ. The near fields for this two term approximation
were derived in closed form in terms of sine and cosine integrals and are
seen to agree with less than 3.3% error for slot lengths 2l ≤ 0.65λ at
distance Rnearest ≥ 0.05λ, where Rnearest is the distance of the nearest
point on the slot from the field point. As the practical slot lengths
are mostly in this range, the above formulation should be of use in
estimating the near fields of slots in closed form for mutual coupling
or in estimating radiated emissions for EMC analysis.
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