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Abstract—We provide here a theoretical description of electromag-
netic scattering by multi-wall carbon nanotubes based on an effective-
boundary condition derived previously using a phenomenological quan-
tum model. We present the basic analytical solution, extending it then
to include the electromagnetic interaction between multiple concentric
tubes in the general multi-wall carbon nanotube case.

1. INTRODUCTION

Carbon nanotubes (CNTs), first reported in [1], are crystal structures
in the form of single (or multiple co-centric) cylindrical tubes with
high aspect ratio. They have been proposed as candidates for
various applications, ranging from enhancement of the mechanical
properties of composites to logical gates in new genre of nano-electronic
devices [2, 3]. The fact that they can function as either metallic or
semiconducting, depending on the geometric structures, has attracted
the attention of many researchers to systematically investigate their
performance under wide range of conditions. Among the most
important classes of interactions that has been in the focus in recent
years is the response of the nanotube to external electromagnetic fields.
The present work is an extension of an electromagnetic scattering
model proposed by the authors for single-wall CNTs [8].

Corresponding author: S. M. Mikki (makkisaid@hotmail.com).



50 Mikki and Kishk

Here, we provide a theoretical description of the electromagnetic
scattering by multi -wall carbon nanotubes based on an effective-
boundary condition derived previously using a phenomenological
quantum model [5, 6]. The analytical solution for the scattering
problem developed by the authors in [8] was compared with
experiments and good results had been obtained. The fundamental
assumption invoked in the present paper is that the inter-layer tube
interaction leads to no significant changes in the quantum model
derived in [5] and [6] for single-wall CNTs. In this case, the quantum
model can be applied to describe the boundary condition on each wall
independently. Our goal in this paper is to derive the electromagnetic
interaction for an arbitrary multi-wall CNT based on this assumption.

Figure 1. Graphene sheet used in forming a CNT. The dots illustrate
the positions of carbon atoms.

2. REVIEW OF THE STRUCTURE OF CARBON
NANOTUBES

Figure 1 illustrates the honeycomb lattice structure of graphene†.
The unit cell is specified by two atoms located at the positions
1/3 (a1 + a2) and 2/3 (a1 + a2), where a1 and a2 are two unit vectors
defining the lattice constants and b0 = |a1| = |a2| = 0.142 nm is the
interatomic distance. The CNT is formed by rolling up this sheet such
that the circumference of the tube coincides with the chiral vector
c = ma1 + na2. Here m and n are two integers that completely
† Graphene is defined as a 2D layer of graphite.
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determine the structure and the properties of the CNT. If only one
layer is used to form the tube, the resulting structure is called single-
wall CNT (SWCNT). Alternatively, if the tube consists of several co-
centric cylinders, we call it multi-wall CNT (MWCNT). CNTs with
the structure (n, 0) are called zig-zag CNT because the pattern created
along the circumference of the tube resembles a zig-zag motion. The
structure (n, n) is called armchair. Tubes that have 0 < n 6= m are
called chiral. The radius of the CNT is given by [2]

b =
|c|
2π

=
b0

2π

√
m2 + mn + n2. (1)

One of the most important features of CNTs is their ability to
manifest in different transport modes depending on the geometry,
which is completely specified by the integers m and n. Armchair CNTs
are always metallic since the resulting energy diagram has no energy
bandgap. Zig-zag tubes can be either metallic or semiconducting
depending on the chirality (i.e., the ratio m/n). If m = 3i, where
i is an integer, then the resulting CNT will be metallic. Otherwise, a
non-zero bandgap will exist and the properties of the structure becomes
closer to semiconductors.

3. THE EFFECTIVE-BOUNDARY CONDITION

In CNTs, the so-called π-electron, which belongs to an unsaturated
orbital orthogonal to the tube surface, is relatively free and can
therefore respond to an external electromagnetic fields [2]. The
interaction of this electron with external electromagnetic field leads to
postulating an effective conductivity function describing the current
induced by the interaction. The idea of the effective-boundary
condition is to replace a microscopic fine crystal structure of matter,
in this case the carbon nanotube atomic lattice arranged in a
cylindrical fashion, by an effective, homogenized surface in which the
behavior of the electromagnetic field on the two sides of the surface
can be described by formulas familiar to conventional macroscopic
electromagnetism, e.g., boundary conditions.

The effective-boundary condition is given by [6]

n̂× (
E1 −E2

)
= 0, (2)

n̂× (
H1

z −H2
z

)
= 0, (3)

{
1 + Υ (ω) ∂2

/
∂z2

}
n̂× (

H2
ϕ −H1

ϕ

)
= σcn (ω) (ẑ ·E) ẑ, (4)
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Figure 2. Scattering of the TMz mode by MWCNT.

where the unit normal vector n̂ is directed as shown in Figure 2. The
field components indexed by 1 and 2 refer to the fields in the inside
and outside regions, respectively. Here, Υ (ω) represents the effect of
spatial dispersion in the z -direction and is given by

Υ (ω) = l0/[(ω/c) (1− j/ωτ)], (5)

where, l0 is estimated to be around 10−5 for metallic tubes [6].
The azimuthal current of the CNT is very weak compared to the

axial component and therefore is ignored in the boundary conditions
above. The axial conductivity for armchair CNT is given by [5, 6]

σcn (ω) =
je2ω

π2~ρcn

{
1

ω (ω − jν)

m∑

s=1

∫
dpz

∂Fc

∂pz

∂Ec

∂pz

+ 2
m∑

s=1

∫
dpzEc |Rvc|2 Fc − Fv

~2ω (ω − jν)− 4E2
c

}
, (6)

where ν is the relaxation frequency, which is related to the relaxation
time τ by ν = τ−1. The normalized Planck’s constant is given by
~ ≈ 1.05457× 10−34 J · s and the electron charge e ≈ 1.6022× 10−19 C.
The dispersion relation of CNTs is a well-known function given by

Ec,v (pz, s) = ±γ0

√
1+4 cos

(πs

m

)
cos

(
d√
3
pz

)
+4 cos2

(
d√
3
pz

)
, (7)

where pz is the quasi-momentum in the z -direction, Ec,v is the energy
level in the conduction/valence band, d = 3a0/2~, and the positive
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and negative signs in (7) corresponds to the conduction and valence
bands, respectively. The equilibrium Fermi-Dirac distribution for the
conduction and valance bands can be calculated by

Fc,v =
1

1 + exp (Ec/kBT )
, (8)

where kB = 1.381 × 10−23 J/K is Boltzmann’s constant and T is the
absolute temperature. The matrix element for armchair CNT is given
by

Rvc (pz, s) =
√

3a0γ
2
0

2E2
c

sin
(

d√
3
pz

)
sin

(πs

m

)
. (9)

The integrals in (6) are calculated in the first Brillouin zone. One
possible zone is the integrations limits pz = ±2π~

/√
3a0. The

numerical cost for calculating the quantum conductivity (6) increases
dramatically with large m.

4. GENERAL CONSIDERATIONS

We start from the vector wave equation in homogenous medium

∇×∇×E− k2E = 0, ∇×∇×H− k2H = 0, (10)

where k = ω/c. In cylindrical coordinates, using the vector identity
∇×∇×A = ∇∇ ·A−∇2A, Equation (10) becomes

∇2E + k2E = 0, ∇2H + k2H = 0, (11)

where we have used the fact that ∇ · E = ∇ · H = 0 in source-free
region. In cylindrical coordinates, only the z -components satisfy the
scalar Helmholtz equations

(∇2 + k2
)
Ez = 0,

(∇2 + k2
)
Hz = 0. (12)

The general solution of Equation (3) is given by
(

Ez

Hz

)
=

[
AnJn (kρρ) + BnH(2)

n (kρρ)
]
Fn (z) , (13)

where kρ =
√

k2 − k2
z and An and Bn are some constant vectors. Here

we have
Fn (z) = e−jkzz−jnϕ. (14)
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The transverse fields are found by [10]

Et =
1
k2

ρ

[−jkz∇tEz + jωµẑ ×∇tHz] (15)

and
Ht =

1
k2

ρ

[−jkz∇tHz + jωεẑ ×∇tEz] , (16)

where the transverse dell operator is given by

∇t = ρ̂
∂

∂ρ
+ ϕ̂

1
ρ

∂

∂ϕ
= ρ̂

∂

∂ρ
− ϕ̂

jn

ρ
. (17)

5. CANONICAL SOLUTION FOR SINGLE-WALL
CARBON NANOTUBES

We provide first the kernel of our solution, which consists of two
canonical cases, the standing and outgoing wave of a SWCNT. Once
we know how the nanotube behaves in these two cases, the response
to arbitrary source excitation can be determined by using the Fourier
integral theorem.

5.1. Standing Wave Problem

Consider Figure 3(a) where we assume that a standing wave is incident
on the SWCNT. The fields in region 2 (outer region) consists of the

(a) (b)

Figure 3. Scattering of incident waves by SWCNT (a) standing wave,
(b) outgoing wave.
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direct wave plus scattered part. The total field is given by
(

E2z

H2z

)
= Jn (kρρ) Fn (z) a2 + H(2)

n (kρρ) Fn (z) R̄21 · a2, (18)

The fields in region 1 (inner region) are given by
(

E1z

H1z

)
= Jn (kρρ) Fn (z) T̄21 · a2, (19)

where R̄21 and T̄21 are the reflection and transmission matrices,
respectively. Applying (18) and (19) into (15) and (16), we find

(
H2ϕ

E2ϕ

)
= J̄n (kρρ) · a2Fn (z) + H̄(2)

n (kρρ) · R̄21 · a2Fn (z) (20)

and (
H1ϕ

E1ϕ

)
= J̄n (kρρ) · T̄21 · a2Fn (z) , (21)

where

J̄n (kρρ) =
1

k2
ρρ

( −jωεkρρJ ′n (kρρ) −nkzJn (kρρ)
−nkzJn (kρρ) jωµkρρJ ′n (kρρ)

)
(22)

and

H̄n (kρρ) =
1

k2
ρρ

( −jωεkρρH ′
n (kρρ) −nkzHn (kρρ)

−nkzHn (kρρ) jωµkρρH ′
n (kρρ)

)
. (23)

Applying the boundary conditions (2) and (4), we find

Jn (kρρcn) Fn (z) a2 + H(2)
n (kρρcn)Fn (z) R̄21 · a2

= Jn (kρρcn) Fn (z) T̄21 · a2 (24)

and
(
1−Υ(ω) k2

z

)
Fn (z) J̄n (kρρcn) · a2

+H̄(2)
n (kρρcn) · R̄21 · a2 −J̄n (kρρcn) · T̄21 · a2

}

=
(

σcn 0
0 0

)
· Jn (kρρcn) Fn (z) T̄21 · a2, (25)

where we have used the fact that ∂2
/
∂z2 = −k2

z . Since a2 is arbitrary
nonzero vector, the two vector equations above can be reduced to the



56 Mikki and Kishk

following system of matrix equations
(
−H

(2)
n (kρρcn) Ī Jn (kρρcn) Ī

−H̄(2)
n (kρρcn) J̄n (kρρcn) + Jn(kρρcn)

1−Υ(ω)k2
z
Ω̄ (ω)

)

×
(

R̄21

T̄21

)
=

(
Jn (kρρcn) Ī
J̄n (kρρcn)

)
, (26)

where

Ω̄ (ω) =
(

σcn (ω) 0
0 0

)
. (27)

The solution of these matrix equations is
(

R̄21

T̄21

)
= D̄−1

(
J̄n (kρρcn) + Jn(kρρcn)

1−Υ(ω)k2
z
Ω̄ (ω) −Jn (kρρcn) Ī

H̄(2)
n (kρρcn) −H

(2)
n (kρρcn) Ī

)

×
(

Jn (kρρcn) Ī
J̄n (kρρcn)

)
, (28)

where

D̄−1 =
{

Jn (kρρcn) H̄(2)
n (kρρcn)−H(2)

n (kρρcn) J̄n (kρρcn)

−Jn (kρρcn) H
(2)
n (kρρcn)

1−Υ(ω) k2
z

Ω̄ (ω)

}−1

. (29)

Using the Wronskian identity [11], it is possible to simplify (29) as

D̄−1 =

( −1
2ωε/(πk2

ρρcn)+Aσcn
0

0 −πk2
ρρcn

/
2ωµ

)
, (30)

where

A =
Jn (kρρcn) H

(2)
n (kρρcn)

1−Υ(ω) k2
z

. (31)

The final solution for the reflection and transmission matrices becomes

R̄21 =
[Jn (kρρcn)]

2

1−Υ(ω) k2
z

( −σcn

2ωε/(πk2
ρρcn)+Aσcn

0

0 0

)
(32)

and

T̄21 =
( 2ωε

2ωε+πk2
ρρcnAσcn

0
0 1

)
. (33)
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We conclude from the final matrices in (32) and (33) that a pure
TE mode will pass unaffected through the CNT, which is obvious from
the boundary condition (2)–(4). Moreover, we notice also that the
off-diagonal terms in the reflection and transmission matrices are zero,
indicating that there is no coupling between the TM and TE modes in
this structure. Also, we observe that no derivatives of the Bessel and
Hankel functions appear in the final solution.

5.2. Outgoing Wave Case

Here, we assume that the nth harmonic of the incident field in Region
1 has the following outgoing wave form (see Figure 3(b))

(
E1z

H1z

)
= H(2)

n (kρρ) Fn (z)a1. (34)

This wave can be generated by a source located inside the SWCNT.
The total field consists of both the outgoing and reflected standing
waves

(
E1z

H1z

)
= Jn (kρρ) Fn (z) R̄12 · a1 + H(2)

n (kρρ) Fn (z)a1. (35)

The field transmitted to Region 2 is pure outgoing waveform
(

E2z

H2z

)
= H(2)

n (kρρ) Fn (z) T̄12 · a1. (36)

By applying the same procedure of the standing wave case, it is possible
to arrive to the following reflection and transmission matrices

R̄12 =

[
H

(2)
n (kρρcn)

]2

1−Υ(ω) k2
z

(
σcn

2ωε/(πk2
ρρcn)−Aσcn

0

0 0

)
(37)

and

T̄12 =
( 2ωε

2ωε−πk2
ρρcnAσcn

0
0 1

)
. (38)

6. CANONICAL SOLUTION FOR MULTI-WALL
CARBON NANOTUBES

We proceed now to the general problem of MWCNTs, each
consisting co-centric walls (cylindrical shells) of SWCNT treated as
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a homogenized surface using the effective-boundary condition (2)–(4).
Each wall can assume an independent chirality. The total structure
of the MWCNT will be described then by the sequence {(mi, ni)}N

i=1,
where N is the number of walls.

6.1. Standing Wave Problem

Let us assume that a standing wave is incident on the MWCNT. The
general structure of the field is both standing and reflected outgoing
waves (

Eiz

Hiz

)
=

[
H(2)

n (kρρ) ˜̄Ri,i−1 + Jn (kρρ) Ī
]
· ai, (39)

where ˜̄Ri,i−1 is the generalized reflection matrix seen by the incident
standing wave at the interface between media i and i−1. Here ai is the
transmission coefficient of the field in the ith medium. The field in the
inner most layer is pure standing wave because the Hankel function is
singular at the origin. That is, we set

˜̄R1,0 = 0. (40)

Matching the fields generating the standing wave component in the
(i− 1) th medium, we get

ai−1 = T̄i,i−1 · ai + R̄i−1,i · ˜̄Ri−1,i−2 · ai. (41)

Similarly, matching the fields generating the outgoing wave component
in the ith medium, we obtain

˜̄Ri,i−1 · ai = R̄i,i−1 · ai + T̄i−1,i · ˜̄Ri−1,i−2 · ai. (42)

Solving Equations (41) and (42) simultaneously, we get the following
general recursive relations

˜̄Ri,i−1 = R̄i,i−1 + T̄i−1,i · ˜̄Ri−1,i−2 ·
(
Ī− R̄i−1,i · ˜̄Ri−1,i−2

)−1
· T̄i,i−1

(43)
and

ai−1 =
(
Ī− R̄i−1,i · ˜̄Ri−1,i−2

)−1
· T̄i,i−1 · ai. (44)

Equations (43) and (44), together with the initial condition (40), are
enough to determine the reflection and transmitted fields every where.
Notice we assume that the incident field vector aN is known.
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6.2. Outgoing Wave Case

A procedure identical to the standing wave case above can be used
to derive the recursive relations for the outgoing wave case. The final
results are

˜̄Ri,i+1 = R̄i,i+1 + T̄i+1,i · ˜̄Ri+1,i+2 ·
(
Ī− R̄i+1,i · ˜̄Ri+1,i+2

)−1
· T̄i,i+1

(45)
and

ai+1 =
(
Ī− R̄i+1,i · ˜̄Ri+1,i+2

)−1
· T̄i,i+1 · ai, (46)

where obviously we have the following initial condition

˜̄RN,N+1 = 0. (47)

7. SCATTERING OF PLANE WAVES

The general theory presented in the previous sections can be used to
construct the response of the CNT to any kind of source excitation. We
demonstrate in this section the case when the source lies in the infinity.
Therefore, the electromagnetic field impinging on the CNT takes the
simple form of plane wave. Assume that this wave is polarized such
that the electric field Ei and the wave vector ki are contained in the
ρ̂− ẑ plane, as shown in Figure 2. The electric field can be written as

Ei = (ρ̂ cos θi + ẑ sin θi) e−jkρ·ρ−jkzz. (48)

where
kρ = k0 sin θi (49)

and
kz = −k0 cos θi. (50)

Here θi and φi are the angles of incidence. We may then write

kρ · ρ = k0ρ sin θi cos (ϕ− ϕi) . (51)

Applying the following well-known cylindrical series expansion
identity [11]

e−jr cos ϕ =
∞∑

n=−∞
j−nJn (r) e−jnϕ, (52)

we write the z -component of the electric field as

Ei
z = sin θie

−jkzz
∞∑

n=−∞
j−nJn (kρρ) e−jn(ϕ−ϕi). (53)
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The TEz mode can be treated similarly. The general form of the
incident field is written compactly as

(
Ei

z

H i
z

)
=

∞∑
n=−∞

Jn (kρρ) Fn (z)aN , (54)

where
Fn (z) = j−ne−jn(ϕ−ϕi)e−jkzz. (55)

Here, an denotes the (known) excitation vector amplitude of the
combined TEz + TMz mode. Thus, the response of the CNT to the
plane wave incidence is nothing but the superposition of all of the
harmonics generated in the canonical solution of the standing wave
case.

8. VERIFICATION OF THE MODEL AND RESULTS

8.1. Self-consistency Verification

We have constructed a generalized code for the electromagnetic scat-
tering of multi-layer cylindrical structures. It is expected intuitively
that the structure described by the boundary conditions (2)–(4) will
approach that of a thin dielectric shell, like the one shown in Figure 4.
For the sake of numerical comparison, the surface impedance of the di-
electric shell must be converted into a function of the axial conductivity
used in the quantum model of the SWCNT. This can be accomplished
easily using the relation

Zs =
1

jω (εcn − ε0) t
=

1
σcn

, (56)

where Zs is the surface impedance, t is the thickness of the dielectric
shell, and εcn is a hypothetical dielectric constant for the SWCNT.

Figure 5 illustrates the comparison described above. The
agreement is very good for t = 0.0001λ. It is readily observed
that when the thickness of the dielectric shell increases, discrepancies
between the exact and the approximate model show up, as expected.
This comparison provides a good self-consistency check on the
analytical solution of the boundary conditions (2)–(4). Notice that the
same recursive algorithm used to calculate the generalized reflection
matrix was employed for both the conventional dielectric multilayered
problem and the new boundary condition of the MWCNT. Therefore,
the consistency of the results serves as a double check on both the
multi-layer algorithm and the SWCNT problem.
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Figure 4. A thin dielectric shell emulates the ideal “zero-thickness”
SWCNT with the boundary condition (2)–(4).

Figure 5. Comparison between the scattering cross section of a
SWCNT using the exact solution developed in this paper and the
approximation using the thin dielectric shell of Figure 4. The thickness
of the shell is t = 0.0001λ. Here, φi = 0, θi = 90◦. The shell and
the SWCNT are assumed to have a hypothetical dielectric constant of
εcn = 100 + j10.

8.2. Scattering Results

In [8], the authors compared the basic solution, obtained using the
boundary condition above with Rayleigh scattering data available
for SWCNTs, with known crystal structure. Good agreement
with empirical data was obtained, giving us confidence that the
effective-boundary condition (2)–(4) does capture the physics of
carbon nanotubes, at least as long we are concerned with far-field
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measurement. Combining this with the verification of the canonical
solution of the boundary condition in Sec. 8.1, we proceed now to
produce a set of theoretical results for the general case of multi-wall
carbon nanotubes.

The effective-boundary conditions in [6] is based on two
phenomenological parameters, the overlap energy γ and the relaxation
time ν. We assume here that all the tubes have the same values of
γ = 3.0 eV and ν = 0.015 ps, which lie in the expected range at this
frequency band and close to the values used in our comparison with
the experimental data [8].

The spacing between co-centric tubes in ropes formed typically
through self-organization processes was observed to be around around
0.34 nm, which is close to the inter-layer graphene distance around
0.33 nm [3]. From (1), the spacing between two co-centric zigzag
nanotubes, say (n1, 0) and (n2, 0), is given by (b0/2)π|n1 − n2|. Using
the established value for interatomic distance b0 = 0.246 nm, we
readily see that the observed spacing between successive tubes can
not be obtained with zigzag structures, but can be easily achieved in
armchair tubes (5n, 5n) with arbitrary positive integer n. Therefore,
in the remaining parts of this paper, we focus on geometrical models
of MWCNTs in which all walls are co-centric armchair tubes with very
high aspect ratio.

Figure 6 shows the field scattered by a (10, 10)–(15, 15)–(20, 20)
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Figure 6. Scattering of the TMz mode by MWCNT with structure
(10,10)–(15,15)–(20,20). Here γ = 3 eV and ν = 0.015 ps and the effect
of spatial dispersion is ignored by setting Υ (ω) = 0. The scattered field
is observed at normal incidence with z = 0 and φ = 0. Energy is related
to frequency by the relation E = hf , where h is Planck constant.
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MWCNT under normal incidence (θi = 90◦). In this case, the inner
and the outer radii are given by 0.678 nm and 1.356 nm, respectively.
The multiple resonances in the MWCNT are due to the interband
transitions of the individual tubes. To see this, the scattering results
due to SWCNT (15, 15) and (20, 20) are included for comparison. We
restrict ourselves here to the energy band shown there for the sake of
comparison). All the responses are normalized to the maximum peak
calculated in the MWCNT case. The results demonstrate then the
effect of the interaction between the walls through the mechanism of
electromagnetic scattering and transmission, which has been included
in the generalized reflection matrix ˜̄Ri,i+1.

The impact of the angle of incidence on the scattering spectrum of
the same MWCNT is shown in Figure 7. The results are normalized to
the maximum amplitude of the field in the case of normal incidence. As
expected, the intrinsic resonance structure exhibited by the nanotube
is unaffected by the elevation plane observation, but the power received
is drastically reduced when θ approaches zero (grazing angle.)

In Figure 8, we report the bistatic scattering cross section of
a double-wall CNT with an inner and outer radii of 26.18 nm and
27.12 nm, respectively. The excitation frequency lies in the ultraviolet
band with successive energy levels given by 3.0, 5.0, 8, and 20 eV,
corresponding to outer-radius-to-wavelength ratios of 0.065, 0.1097,
0.175 and 0.4374, respectively. For these particular ratios, the modal
series expansions converges after few terms. For larger ratios, more
terms should be added to insure accurate results. A general rule of
thumb is to approximate the number of terms by the larger integer

1 1.5 2 2.5 3 3.3
0

0.2

0.4

0.6

0.8

1

Energy (eV)

= 90o

= 45o

= 15o

θ

θ

θ

 |
E

s|

Figure 7. Scattering of the TMz mode by the same MWCNT in
Figure 6. The scattered field is observed at three elevation angles of
incidence with z = 0 and φi = 0.
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near to kb + 5.
It is noticed that at the shortest wavelength in this example,

namely λ = 60 nm, which corresponds to the energy level 20 eV,
the ratio of the operating wavelength to the interatomic spacing
b0 = 0.246 nm is given by b0/λ = 0.0023, which is still relatively
small, justifying the use of the effective-boundary condition in (2)–
(4). To demonstrate this, in Figure 9, the spatial dispersion effect,
which is included in the factor Υ (ω) in (4), is taken into consideration
and the scattering cross section is compared with the corresponding
results for θi = 45◦ and E = 20 eV (b/λ = 0.4374). As expected,
the spatial dispersion effect is still insignificant even in the vacuum
ultraviolet regime. However, this conclusion is relevant only to the
type of data we are interested with in this paper, which refers mainly
to fields measured by macroscopic devices that inherently wash out
higher-order Floquet modes, which arise from the nonlocal structure
of the CNT crystal lattice [9].

Our derivations show that the inclusion of spatial dispersion
amounts to introducing a θi-dependent factor, namely k2

z , into the
scattered fields expressions as can be easily seen from (5) and (31).
For normal incidence, we find from (50) that kz = 0, which means that
the spatial dispersion effect, as revealed by Equation (31), will not
manifist itself in the field results. For this reason, the scattering cross
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section data in Figure 9 were obtained at oblique incidence. Indeed, as
shown also in the same figure, the scattering cross section calculated
for the normal incidence case b/λ = 0.4374 in Figure 8 is different from
the one calculated in for θi = 45◦.

Finally, in Figure 10, we study the effect of the outer radius
on the scattering cross section of five-wall CNT and a single-wall
CNT with the same outer radius, both calculated at the observation
location φ = 0 and z = 0. The incident field is oblique plane
wave given by φi = 0 and θi = 45◦. The operating energy range
is from 1 eV to 30 eV with a fixed MWCNT geometry given by
(380, 380)− (385, 385)− (390, 390)− (395, 395)− (400, 400). We notice
that varying the structure of MWCNT in order to vary the outer radius,
while fixing the operating wavelength of the illuminating light, is not a
reliable way to see the effect of the radius on the scattering field. This is
because for each CNT radius, there corresponds a geometrical structure
specified by the integer pair (n,m). The peculiarity of nanotubes lies
in the fact that the geometrical structure varies directly the electronic
structure, and hence the electromagnetic response, as can be seen
immediately by inspecting the results summarized in Sec. 3.

Since MWCNTs are very small structure, their scattering cross
sections are naturally small. However, as our comparison in Figure 10
clearly indicates, the scattered power can be significantly enhanced by
increasing the number of walls. Notice that Figure 10 also shows that
in this particular frequency band the resonance structure is dominated
mainly by the outer nanotube (380, 380).
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Figure 10. Bistatic scattering cross sections of the TMz mode of the
five-wall CNT (380, 380)–(385, 385)–(390, 390)–(395, 395)–(400, 400).
The scattered field is computed at z = 0 and φ = 0, for an incident
field with φi = 0, and θi = 45◦, under variable operating wavelength
λ of the illuminating light. The single-wall CNT in the figure has the
same outer layer of the five-wall CNT.



66 Mikki and Kishk

For far-field measurements (e.g., the Rayleigh scattering data
included in our comparison with the theoretical model based on the
effective-boundary condition (2)–(4) in [8]), we expect that the general
model of this paper should provide an insight on the interaction with
the electromagnetic field as long as the nanotubes have 1) very high
aspect ratio and that 2) the effect of the mutual interaction between
the inner walls on the quantum conductivity is ignored. For near-field
interactions, however, more careful interpretation of the theoretical
model based on the effective-boundary condition may be needed.

9. CONCLUSION

A general algorithm to calculate the scattered fields by arbitrary
multi-wall carbon nanotubes was developed starting from an effective-
boundary condition. The model takes into consideration the
electromagnetic interaction between the walls but ignores any quantum
effect of such interactions on the conductivity of each tube. The
results of our theoretical model can serve as a basis for the analysis of
scattering data collected by macroscopic probes in the far-field zone.
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