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Abstract—The Fourier series expansion method is a useful tool to
approach the problems of discontinuities in optical waveguides, and it
applies to analyze the Floquet-modes of photonic crystal waveguides.
This paper shows that the Floquet-mode calculation with large
truncation order is limited and explains the reason. Furthermore, two
techniques of the formulation are presented to relieve this limitation.
One of them is a use of the symmetric properties of the Floquet-modes,
and another is a use of the Rayleigh quotients to improve accuracy of
eigenvalue calculation. They are validated by numerical experiments.

1. INTRODUCTION

Photonic crystals are periodic structures that are designed to reject
the propagation of electromagnetic waves at certain wavelength range.
Local collapses of the periodicity provide significant advantages for
field confinement, wave guiding, and directing radiation and have
received attentions of researchers. Especially, defects introduced
into the photonic crystals compose optical devices such as cavities,
waveguides, splitter, coupler, etc. and they constitute photonic crystal
circuits. The optical propagation along the photonic crystal circuits
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has been simulated using various numerical methods such as the
beam propagation method [1], the finite difference time domain
method [2], and the plane wave expansion method [3]. These
methods require adequate treatments of terminating conditions for
optical waves at the output ends of the circuits. However, the
structure of photonic crystal waveguide is nonuniform along the
optical propagation, and the Floquet-mode analysis is necessary to
decompose the fields in input/output waveguides into the forward and
the backward propagating components. The Floquet-modes are the
eigenmodes of a periodic structure.

The present paper considers the Floquet-modes propagating in
a photonic crystal waveguides schematically shown in Fig. 1. The
photonic crystal consists of rectangular cylinders located parallel in
rectangular lattice characterized by the periods dx and dz in the x-
and z-directions, respectively. Each cylinder has common dimensions
ax and az along the x- and z-directions, and infinitely long in the y-
direction. The waveguide is formed by a straight line defect in the
photonic crystal, and the structure is uniform in the y-direction. The
cylinder and the surrounding media are linear and isotropic, and the
permeability of free space is assumed. The permittivity of rectangular
cylinders is denoted by εc and that of the surrounding medium is
denoted by εs. Throughout the paper, we consider only time-harmonic
TE-polarized fields assuming a time-dependence in e−iωt and the
electric field is parallel to the cylinders. Then the fields are represented
by complex vectors depending only on the space variables x and z.

x

zo
dz az

ax

dx

Figure 1. Two-dimensional photonic crystal waveguide formed by
rectangular cylinders.
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Since the structure is periodic in the z-direction, the generalized
Fourier series is usually introduced to expand the electromagnetic
fields [4, 5]. Maxwell’s equations and the constitutive relations yield a
coupled ordinary differential equation set in terms of the generalized
Fourier coefficients. Then the dispersion equation for guided modes
was derived based on the scattering-matrix propagation algorithm.
The derived dispersion equation is written by a complex function with
a complex argument and the zeros give the propagation constants of
the eigen modes. Müller’s method is usually used to find the zeros, but
it is not so easy to give an adequate initial value to obtain a desired
zero.

The present paper deals with the Fourier series expansion method
to calculate the Floquet-modes propagating in the photonic crystal
waveguides. The method was originally developed to analyze the
discontinuities in dielectric waveguides [6–8]. Miyamoto et al. [9]
proposed a formulation of grating waveguides based on the Fourier
series expansion method, and the Floquet-modes were obtained by the
eigenvalue calculation of the transfer matrix for one periodicity cell.
Their formulation was applied to Floquet-mode analysis of photonic
crystal waveguides [10, 11], and provided sufficiently accurate results
in many applications. Recently, we found there is a limitation of the
truncation order when increasing the accuracy. This paper presents the
origin of this limitation and shows some techniques to relieve it. These
techniques make us possible to obtain results that are more accurate.

2. OUTLINE OF THE FORMULATION

The aim of this section is to make clear the formulation that we
used to calculate the Floquet-modes of photonic crystal waveguides.
We introduce artificial boundaries at x = 0 and x = w, which are
supposed to be sufficiently far from the defects (see Fig. 2(a)). The
original electromagnetic fields in 0 < x < w are then approximated
by periodic functions with the period w and expressed in the Fourier
series expansion. For example, the y-component of electric field is
approximately expressed as

Ey(x, z) =
N∑

n=−N

Ey, n(z) einkwx (1)

where N denotes the truncation order and kw = 2π/w. The Fourier
coefficients {Ey, n(z)}N

n=−N are functions of z, and the field profile can
be derived by calculating the z-dependence of the coefficients. The
structure under consideration is periodic in the z-direction and the
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Figure 2. Analysis regions, (a) introduction of artificial boundaries
with periodicity condition, (b) periodicity cell for analysis, and (c)
segments uniform in the z-direction.

Floquet theorem asserts that the analysis region for calculating the
wave propagation can be reduced to a periodicity cell. In this paper,
the periodicity cell is taken to be the region 0 < z < dz as shown in
Fig. 2(b). Furthermore, the periodicity cell is decomposed into three
segments as shown in Fig. 2(c). We denote the region (dz − az)/2 <
z < (dz + az)/2 as segment c and the regions 0 < z < (dz − az)/2 and
(dz +az)/2 < z < dz as segments s. Also, the permittivity distribution
of segment c is denoted by ε(c)(x).

Let, for example, ey(z) be the (2N + 1) × 1 column matrix
generated by the Fourier coefficients of Ey(x, z). Then, from Maxwell’s
curl equations, the coefficients of TE-polarized fields in the segment c
are expressed as follows:(

ey(z)
hx(z)

)
= Q(c)

(
a(c, +)(z)
a(c,−)(z)

)
(2)

with

Q(c) =

(
P(c) P(c)

− 1
ωμ0

P(c)Z(c) 1
ωμ0

P(c)Z(c)

)
(3)

P(c) =
(
p(c)

1 . . . p(c)
2N+1

)
(4)(

Z(c)
)

n, m
= δn, mγ(c)

n . (5)
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γ
(c)
n

2
and p(c)

n denote respectively the nth-eigenvalues and the
associated eigenvectors of the matrix C(c) = ω2 μ0 [[ε(c)]] − X2, where
(n,m)-entries of the square matrices [[ε(c)]] and X are given by

(
[[ε(c)]]

)
n, m

=
1
w

∫ w

0
ε(c)(x)e−i(n−m)kwx dx (6)

(X)n, m = δn, mnkw. (7)

Two column matrices a(c, +)(z) and a(c,−)(z) give the amplitudes of
eigenmodes propagating in the +z- and −z-directions, respectively,
and the relation between the modal amplitudes at z = z′ and z = z′′
is given as (

a(c, +)(z′)
a(c,−)(z′)

)
= U(c)(z′ − z′′)

(
a(c, +)(z′′)
a(c,−)(z′′)

)
(8)

with

U(c)(z) =
(
V(c)(z) 0

0 V(c)(−z)

)
(9)(

V(c)(z)
)

n, m
= δn, meiγ

(c)
n z (10)

where z′, z′′ are both in the segment c. The permittivity inside
the segments s is a constant value εs. We obtain the relations in
the same form with Eqs. (2) and (8) in these segments but replace
the superscript (c) by (s) to indicate the matrices defined in the
segments s. The coefficient matrix Q(s) is defined by replacing P(c)

by the identity matrix and Z(c) by the diagonal matrix generated with
γ

(s)
n =

√
ω2εsμ0 − n2kw

2.
The fields in segments c and s are matched at the boundaries z =

(dz ±az)/2 by the boundary conditions, which are given by continuing
the coefficients column matrices ey(z) and hx(z) at the boundaries.
Then, the relations between the modal amplitudes a(s,±)(0) and
a(s,±)(dz) are derived as(

a(s, +)(dz)
a(s,−)(dz)

)
= F

(
a(s, +)(0)
a(s,−)(0)

)
(11)

where the transfer matrix of the periodicity cell F is given by

F = U(s)
(

dz−az
2

)
Q(s)−1

Q(c)U(c)(az)Q(c)−1
Q(s)U(s)

(
dz−az

2

)
. (12)
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Let βn and rn be, respectively, the nth-eigenvalues and the associated
eigenvectors of the transfer matrix F. Then, we define a column matrix
b(z) by

b(z) = R−1

(
a(s, +)(z)
a(s,−)(z)

)
(13)

with

R = (r1 . . . r4N+2) . (14)

The nth-component of b(z) is denoted by bn(z), and Eqs. (11) and (13)
yield a relation:

bn(dz) = βnbn(0). (15)

This means that {bn(0)} gives the amplitudes of the Floquet-modes
propagating in the photonic crystal waveguide at z = 0, and the
propagation constants are calculated by

ηn = −i
Ln(βn)

dz
, (16)

where Ln denotes the principal natural logarithm function. Also, the
Fourier coefficients of the modal profile functions corresponding to the
nth-Floquet-modes are given by(

ey(0)
hx(0)

)
= Q(s)rn. (17)

The propagation direction of each Floquet-mode can be judged as
follows:

• if |βn| < 1, the corresponding mode is the evanescent one
propagating in the +z-direction.

• if |βn| > 1, the corresponding mode is the evanescent one
propagating in the −z-direction.

• if |βn| = 1, the corresponding mode is the guided one. The modal
power carried in the z-direction is calculated by −w

2 �(ey(0) ·
hx(0)∗) where ey(0) and hx(0) are obtained by Eq. (17). If
the modal power is positive (negative), the corresponding mode
propagates in the +z (−z)-direction.
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3. LIMITATION ON NUMERICAL CALCULATION

Here, we show some results of a numerical experiment. The parameters
of the photonic crystal are chosen as εs = ε0, εc = 12.25ε0, dx =
dz = 0.67λ0, and ax = az =

√
0.41dx. The rectangular cylinders are

situated with the center at x = (m − 1/2) dx for positive integer m
though one layer of cylinder array is removed at x = 5.5dx to form the
waveguide structure, and w = 11dx is used for the periodic boundary
condition. The numerical results are obtained by double precision
computation, and the eigenvalues and eigenvectors of F are computed
using the routine DEVCCG from IMSL Library, which is a commonly
used routine. Figure 3 shows the normalized propagation constants of
the guided Floquet-modes calculated by the present formulation as a
function of the truncation order N . The photonic crystal waveguide
with these parameters supports two guided modes, and Jia and
Yasumoto [5] have calculated their normalized propagation constants
ηn/kd with kd = 2π/dz as 0.415946 for the even-mode and 0.219867 for
the odd-mode, though they did not mention the propagation direction.
The obtained results converge to the values given in Ref. [5] though the
value 0.415946 should be the normalized propagation constant of the
even-mode propagating in the −z-direction. The results with N = 68
are ±0.4165, ±0.2127, and thought to be in a good agreement with the
reference values.

It is worth noting that computation with truncation order N = 50
may be sufficiently accurate to characterize the photonic crystal devices
of several wavelength dimension [10]. However, we are here interested
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Figure 3. Convergence of the normalized propagation constants of
the guided modes.
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(a)

(b)

Figure 4. Distribution of the eigenvalues {βn} in the complex-plane,
(a) whole view and (b) close view near the origin.

in the results that are more accurate. It is observed that the values
in Fig. 3 are plotted for the truncation order N ≤ 68 only. When N
is larger than 68, we cannot find the guided modes and the number
of Floquet-modes propagating in the +z-direction is not equal to that
propagating in the −z-direction. This means that a precise calculation
is impossible due to the limitation of truncation order. To consider
the origin of difficulty, the obtained eigenvalues of the transfer matrix
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Figure 5. Distribution of the normalized propagation constants
{ηn/kd} in the complex-plane.

F for N = 60 are plotted on the complex-plane in Fig. 4. The dots
and the crosses denote the eigenvalues correspond to the Floquet-mode
propagating in the +z- and the −z-directions, respectively. Fig. 4(b) is
a close view near the origin and the dashed curve denotes a circle with
a unit radius. The values on the dashed curve correspond to the guided
modes, and those corresponding to the forward and the backward
propagating modes are respectively distributed inside and outside the
circle. A whole view is given in Fig. 4(a) and shows that the spectral
radius of F (maximum absolute value of βn) is about 2.2 × 1014. This
implies that the double precision computation leads to roundoff errors
in the order of 10−2 and the obtained eigenvalues with |βn| � 10−2

may not be accurate. To show more clearly, we plot the calculated
propagation constants {ηn} on the complex-plane in Fig. 5. If η is
a propagation constant of Floquet mode, −η is also the propagation
constant because of the structural symmetry. The distribution of {ηn}
should be therefore point symmetric to the origin. However, it is clearly
observed in Fig. 5 that the distribution of calculated values is not
point symmetric. The eigenvalues with |βn| < 10−2 correspond to the
propagation constants with �(ηn)/kd > 0.73 and the roundoff error is
unnegligible in this region. The spectral radius of F becomes larger
with the increase of the truncation order N , and the computation
with N > 68 lead to significant errors for the guided modes and the
evanescent modes with large �(ηn).
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4. NUMERICAL TECHNIQUES TO IMPROVE
ACCURACY

4.1. Use of the Symmetry Properties

As mentioned in Section 3, the distribution of the propagation
constants {ηn} should be point symmetric to the origin due to the
structural symmetry. However, it is clearly observed in Fig. 5 that
the symmetry is broken by the roundoff error, which is unnegligible
for the propagation constants with large �(ηn). This means that the
calculated evanescent modes propagating in the −z-direction are more
accurate than ones propagating in the +z-direction. The order of F is
4N + 2, and the eigenvalues {βn} and the eigenvectors {rn} are here
supposed to be arranged in such a way that {βn}2N+1

n=1 and {rn}2N+1
n=1

correspond to the Floquet-modes propagating in the +z-direction and
{βn}4N+2

n=2N+2 and {rn}4N+2
n=2N+2 correspond to ones propagating in the

−z-direction. Also, let R1 and R2 be (2N + 1) × (2N + 1) square
matrices defined by(

R1

R2

)
= (r2N+2 . . . r4N+2) . (18)

Then, when the error is negligible for the guided modes, more accurate
results are obtained by replacing {βn}2N+1

n=1 and {rn}2N+1
n=1 in the

Figure 6. Distribution of the normalized propagation constants
{ηn/kd} in the complex-plane.
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following ways:

ηn = −ηn+2N+1 (19)

(r1 . . . r2N+1) =
(
R2

R1

)
, (20)

where n in Eq. (19) is an integer 1 ≤ n ≤ 2N + 1 and Eq. (20) is
presented in [9]. Figure 6 shows the normalized propagation constants
of the Floquet-modes that are computed for N = 60, and the constants
corresponding to the Floquet-modes propagating in the +z-direction
are obtained by Eqs. (19) and (20). As the result, if we calculate
accurately the Floquet-modes corresponding to the values located in
the lower half-plane, the other Floquet-modes are obtained by the
symmetry property.

4.2. Use of the Rayleigh Quotients

We cannot avoid the roundoff errors in a finite precision computation,
and the technique presented in the previous subsection is effective
only when the error is negligible for the guided modes. Consequently,
accurate computation with the truncation order N > 68 is still difficult.
This subsection provides a technique to relieve this limitation.

As mentioned before, we use the routine DEVCCG from IMSL
library to compute the eigenvalues and the associated eigenvectors of
the transfer matrix F. DEVCCG transforms a complex matrix to an
upper Hessenberg matrix and use the QR algorithm to compute all of
the eigenvalues and eigenvectors. Of course, the obtained eigenvalues
and eigenvectors involve numerical errors, and there is a possibility
that some more accurate values of eigenvalues are calculated by the
Rayleigh quotients [12]. Since rn denotes an obtained eigenvector of
F, the corresponding eigenvalue βn is approximately given by

βn =
rn ·Frn

rn · rn
. (21)

Figure 7 shows the calculated values of normalized propagation
constants {ηn/kd} for the truncation order N = 75. The results in
Fig. 7(a) are from the eigenvalues obtained with the direct use of
DEVCCG, and ones in Fig. 7(b) are from the eigenvalues obtained
by Eq. (21). The spectral radius of F for N = 75 reaches to 1.5×1018,
and DEVCCG may yield the eigenvalues βn with the roundoff errors
in the order of 102. This eigenvalues |βn| < 102 correspond to the
normalized propagation constants with �(ηn)/kd > −0.73 and, as
shown in Fig. 7(a), the guided modes are no longer distinguished from
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(a)

(b)

Figure 7. Distribution of the normalized propagation constants
{ηn/kd} in the complex-plane. The eigenvalue computation is
performed for N = 75 with the use of (a) the routine DEVCCG from
IMSL library and (b) the Rayleigh quotients.

the evanescent ones. On the other hand, four guided modes are clearly
distinguished in Fig. 7(b) though the values corresponding to the
evanescent modes propagating in the +z-direction still have significant
errors. The normalized propagation constants corresponding to the
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guided modes given in Fig. 7(b) are ±0.4162 for the even-modes and
±0.2156 for the odd-modes, and they are surely in better agreement
with the referred values than ones calculated with N = 68. The values
located in the lower half-plane of Fig. 7(b) are sufficiently accurate, and
the technique presented in the previous subsection should be available.

5. CONCLUSION

The Fourier series expansion method has been known as a powerful tool
to analyze dielectric waveguide devices. We have dealt with an analysis
of the Floquet-modes propagating in a photonic crystal waveguide,
which are obtained from the eigenvalues of the transfer matrix for
one periodicity cell. This approach provides sufficiently accurate
results in many applications though this paper showed a limitation
for highly accurate computation. The limitation comes from the
eigenvalue calculation of the transfer matrix. Accurate computations
with large truncation order should include evanescent modes with
large attenuation constants, and the roundoff errors in finite precision
computation limit the accuracy of calculated eigenvalues. This paper
presented two techniques to relieve this limitation. When the Floquet-
modes propagating in the −z-direction can be accurately calculated,
ones propagating in the +z-direction, which always include larger
numerical errors, can be accurately obtained with the use of the
symmetry property. In addition, the Rayleigh quotients, which are
calculated from the obtained eigenvectors, improve the accuracy of the
eigenvalues. Unfortunately, the validities of these techniques are still
limited, but they make us possible to perform analyses that are more
accurate. This paper concentrates TE-polarized fields propagating in a
two-dimensional photonic crystal waveguide consisting of rectangular
cylinders, but the same difficulty exists in the analyses of TM-polarized
fields or other photonic crystal waveguides.
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