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Abstract—Maslov’s method is used to derive the expressions for high
frequency fields around the focal region of a paraboloidal reflector
coated with isotropic and homogeneous chiral medium. The field
expressions thus calculated are solved numerically, and the results are
presented in the paper. Moreover, the dependency of the electric field
on the thickness of the coated chiral medium and its properties is also
studied. The results of this study are presented in the paper, and the
conclusions are drawn accordingly.

1. INTRODUCTION

Asymptotic ray theory (ART), or geometrical optics (GO) is widely
used to analyze RF waves at high frequencies in various mediums
as given in [1–3]. However, these high frequency techniques fail
at caustics. In various applications, such as parabolic reflectors
and other focusing systems, the field strength at these regions is of
practical importance. Hence, an asymptotic method based on Maslov’s
theory is used to study the behavior of field pattern around the focal
regions [4, 5]. Maslov’s method is used by many authors to study the
field behavior of various focusing systems [6–17]. In this method, the
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ray is expressed in hybrid coordinates, chosen from the wave vector
coordinates P = (px, py, pz) and space coordinates R = (x, y, z).
Maslov’s method uses the simplicity of ray theory and the generality
of Fourier transform to avoid the singularity at caustics. In the
present work, our interest is to apply Maslov’s method to find the
field around the focal region of a paraboloidal reflector coated with
isotropic and homogeneous chiral medium. This work is an extension
of the previous work, in which field at the caustic of a two dimensional
coated parabolic reflector was studied [13], to three dimensional case in
which field is calculated at the focus of a paraboloidal reflector coated
with an isotropic and homogeneous chiral medium. Chiral medium
is microscopically continuous medium composed of chiral objects,
uniformly distributed and randomly oriented [19]. A chiral object is a
three dimensional body that cannot be brought into congruence with
its mirror image through translation or rotation e.g., helix, animal
hands, Aspartame, three dimensional tetrahedron etc. The behavior
of electromagnetic waves in chiral medium has been analyzed by many
authors [19–25].

In Section 2, the general expressions for fields in free space
are developed using GO and Maslov’s method. In Section 3, the
reflection coefficient of plane waves from a chiral slab backed by perfect
electric conductor is discussed. In Section 4, expressions for field
around the focal region of a paraboloidal reflector coated with chiral
medium are calculated. In Section 5, plots of field around the focal
region for various values of geometric and chiral parameters are given.
Concluding remarks are given in Section 6.

2. GEOMETRICAL OPTICS AND MASLOV’S METHOD
IN FREE SPACE

The GO and Maslov’s method have been used to analyze many
focusing systems [6, 12, 13], but here it is applied to a paraboloidal
reflector coated with chiral medium. Consider a three dimensional
wave equation (∇2 + k2

0

)
u(r) = 0 (1)

where, r = (x, y, z), ∇2 = ∂2/∂2
x + ∂2/∂2

y + ∂2/∂2
z and k0 = ω

√
ε0µ0 is

wavenumber of the medium. Solution of Eq. (1) may be assumed in
the form of Luneberg-Kline series as

u(r) =
∞∑

m=0

Em(r)
(jk0)m

exp(−jk0s) (2)



Progress In Electromagnetics Research, PIER 94, 2009 353

Assuming large values of k0, in the above series, the higher order terms
can be neglected and only the first term is retained. By putting Eq. (2)
in Eq. (1) and equating the coefficients of k2

0, the eikonal equation is
obtained as given by [18]

(∇s(r))2 − 1 = 0 (3)

similarly by equating the coefficients of k0, the transport equation is
obtained

2∇E · ∇s + E∇2s = 0 (4)

in the above equation only E0 has been retained and is denoted with
E. Wave vector is define as p = ∇s and Hamiltonian H(r,p) =
(p · p − 1)/2. So the eikonal equation becomes H(r,p) = 0. eikonal
equation can be solved by the method of characteristic as follows

dx

dt
= px,

dy

dt
= py,

dz

dt
= pz,

dpx

dt
= 0,

dpy

dt
= 0,

dpz

dt
= 0 (5)

where, t is the parameter along the ray. The solution of Eq. (5) is

x=ξ + pxt, y=η + pyt, z=ζ + pzt, px =px0 , py =py0 , pz =pz0 (6)

where, (ξ, η, ζ) and (px0, py0, pz0) are the initial values of (x, y, z) and
(px, py, pz) respectively. The phase function is given by

s = s0 +
∫ t

0
dt = s0 + t. (7)

Applying Gauss’s theorem to a paraxial ray tube, the solution of Eq. (4)
is given by [18]

u(r) = E(r0)J−1/2 exp(−jko(s0 + t)) (8)

where, E(r0) is the initial value of the field amplitude and J =
D(t)/D(0) is the Jacobian for transformation from ray coordinates
(ξ, η, ζ) to Cartesian coordinate (x, y, z). As the GO solution is not
valid at the focal point (J = 0), so Maslov’s method is used to find
the field around the caustic region of a focussing system as analyzed
by [6–20]. The equation which is valid around the focal point of a
paraboloidal reflector is given as [6]

u(r) =
ko

2π

∫ ∞

−∞

∫ ∞

−∞
E(r0)

[
D(t)
D(0)

∂(px, py)
∂(x, y)

]− 1
2

exp(−jko(s0 + t

−x(px, py, z)px − y(px, py, z)py + xpx + ypy))dpxdpy (9)
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The expression D(t)
D(0)

∂(px,py)
∂(x,y) can simply calculated as,

D(t)
D(0)

∂(px, py)
∂(x, y)

=
1

D(0)
∂(px, py, z)
∂(ξ, η, ζ)

. (10)

3. REFLECTION OF PLANE WAVES FROM A CHIRAL
SLAB BACKED BY PERFECT ELECTRIC
CONDUCTOR

In this paper, we want to find the reflected field around the focal region
of a paraboloidal reflector coated with chiral medium. To achieve
this the reflection of plane waves from a chiral slab backed by perfect
electric conducting (PEC) plane is discussed as in [13, 19]. As shown
in Figure 1 the region z ≤ 0 is occupied by free space. The constitutive
relations in this medium are given as

D = ε0E, B = µ0H

where, D and B are electric and magnetic flux densities respectively,
E and H are the electric and magnetic fields represented, ε0 is the
permittivity and µ0 is the permeability of the free space. The perfect
electric conductor (PEC) is placed at z = d as shown in the Figure 1.
Region 0 ≤ z ≤ d is occupied by the chiral medium defined by Drude-
Born-Fadorov (DBF) constitutive relations [19] as follows

D = ε(E + β∇×E), B = µ(H + β∇×H)

where, ε is the permittivity and µ is the and permeability of the coated
chiral medium. β is the chirality parameter of this medium. The

x

E

z

r

d

Chiral

medium

PEC
Ei

α

α

Figure 1. Reflection of plane waves from chiral slab backed by PEC
plane.
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incident electric field (Ei) and the reflected electric field (Er) makes
an angle α with the normal to the surface and can be expressed as

Ei =
{

A⊥ay + A‖

(
−k0z

k0
ax +

k0x

k0
az

)}
exp(jk0zz + jk0xx) (11)

and the reflected field as

Er =
{

B⊥ay + B‖

(
k0z

k0
ax +

k0x

k0
az

)}
exp(−jk0zz + jk0xx) (12)

where, A⊥, B⊥ and A‖, B‖ are the perpendicular and parallel
components w.r.t the plane of incident respectively. k0 = ω

√
ε0µ0,

k0z = k0 cosα and k0x = k0 sinα. Field in the chiral layer can
conveniently be written in terms of Beltrami fields as

E = QL − jηQR (13)

H = QR − jQL/η (14)

where

QR = A1

{
ay + j

(
k1z

k1
ax +

k0x

k1
az

)}
exp(−jk1zz + jk0xx)

+B1

{
ay + j

(
−k1z

k1
ax +

k0x

k1
az

)}
exp(jk1zz + jk0xx) (15)

QL = A2

{
ay + j

(
k2z

k2
ax +

k0x

k2
az

)}
exp(−jk2zz + jk0xx)

+B2

{
ay + j

(
−k2z

k2
ax +

k0x

k2
az

)}
exp(jk2zz + jk0xx) (16)

In the above relationships k = ω
√

εµ, η0 =
√

µ0/ε0, η =
√

µ/ε,

k1 = 1/(1− kβ), k2 = 1/(1 + kβ), k2
1z + k2

0x = k2
1 and k2

2z + k2
0x = k2

2.
To find the expressions for reflection coefficient we apply boundary
conditions at z = 0 which yields the following equations

[
B⊥
B‖

]
= [r]

[
A⊥
A‖

]
+ [T ]

[
A1

A2

]

[
B1

B2

]
= [R]

[
A1

A2

]
+ [t]

[
A⊥
A‖

]
(17)
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where, [r] , [T ] , [R] and [t] are 2 × 2 matrices. Elements of the
matrices, which are Fresnel coefficients, are given as

r11 = − [
(η2

0 − η2)(ξ1 + ξ2) + 2η0η (ξ1ξ2 − 1)
]
/D

r22 =
[(

η2
0 − η2

)
(ξ1 + ξ2)− 2η0η (ξ1ξ2 − 1)

]
/D

r12 = 2jη0η (ξ1 − ξ2) /D

r21 = −r12

t11 = 2η (ηξ2 + η0) /D

t22 = −2 (η0ξ1 + η) /D

t12 = −2jη (η0ξ2 + η) /D

t21 = 2jη (ηξ1 + η0) /D

R11 =
[(

η2
0 + η2

)
(ξ1 − ξ2) + 2η0η (ξ1ξ2 − 1)

]
/D

R22 =
[− (

η2
0 − η2

)
(ξ1 − ξ2) + 2η0η (ξ1ξ2 − 1)

]
/D

R12 = −2jηξ2

(
η2
0 − η2

)
/D

R21 = 2jξ1

(
η2
0 − η2

)
/ηD

T11 = 4η0ξ1 (ηξ2 + η0) /D

T22 = −4ηη0ξ2 (ηξ1 + η0) /D

T12 = −4jηη0ξ2 (ηξ1 + η0) /D

T21 = 4jη0ξ1 (η0ξ2 + η) /D

where

D =
(
η2
0 − η2

)
(ξ1 + ξ2) + 2η0η (ξ1ξ2 + 1)

ξ1 = secα

√
1−

(
k0

k1

)2

sin2 α

ξ2 = secα

√
1−

(
k0

k2

)2

sin2 α

Applying boundary conditions at z = d yields the following equations
[
A1 exp (−jk1zd)
A2 exp (−jk2zd)

]
=

1
k2k1z + k1k2z

[
k2k1z − k1k2z 2jηk1k2z

−2j k2k1z
η k1k2z − k2k1z

]

×
[
B1 exp (jk1zd)
B2 exp (jk2zd)

]
(18)

or [
B1

B2

]
= [∆] [R2] [∆]

[
A1

A2

]
(19)
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where

[∆] =
[
exp (−jk1zd) 0

0 exp (−jk2zd)

]
(20)

and

[R2] =
[
R211 R212

R221 R222

]
(21)

where

R211 =

√
1−

(
k0
k1

)2
sin2 α−

√
1−

(
k0
k2

)2
sin2 α

√
1−

(
k0
k1

)2
sin2 α +

√
1−

(
k0
k2

)2
sin2 α

R212 =
2jη

√
1−

(
k0
k2

)2
sin2 α

√
1−

(
k0
k1

)2
sin2 α +

√
1−

(
k0
k2

)2
sin2 α

R221 =
−2j

√
1−

(
k0
k1

)2
sin2 α

η√
1−

(
k0
k1

)2
sin2 α +

√
1−

(
k0
k2

)2
sin2 α

R222 =

√
1−

(
k0
k2

)2
sin2 α−

√
1−

(
k0
k1

)2
sin2 α

√
1−

(
k0
k1

)2
sin2 α +

√
1−

(
k0
k2

)2
sin2 α

From Eq. (17) and Eq. (19), we have
[
B⊥
B‖

]
=

(
[r] + [T ] ([∆] [R2] [∆]− [R])−1 [t]

)[
A⊥
A‖

]
(22)

Using these reflection coefficients, the initial amplitude and initial
phase are calculated for paraboloidal reflector coated with chiral
medium in the next section.

4. GEOMETRIC OPTICS FIELD FOR THE
PARABOLOIDAL REFLECTED COATED WITH
CHIRAL MEDIUM

Consider the reflection of a plane wave traveling along positive z-axis,
incident on a paraboloidal reflector as shown in Figure 2. The equation
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Figure 2. Paraboloidal reflector with chiral layer define by ζ = g(ξ, η).

of the surface of the paraboloidal reflector is given by

ζ = f(ξ, η) = f − ρ2

4f
= f − ξ2 + η2

4f

where, (ξ, η, ζ) are the Cartesian coordinates of the point on the
paraboloidal reflector, f is the focal length of the paraboloidal reflector
and ρ2 = ξ2 +η2. The incident wave traveling along z-axis is expressed
as

Ei = ax exp(−jkoz) (23)

this wave makes an angle α with unit surface normal

an = sin α cos γax + sinα sin γay + cos αaz (24)

where, α and γ are given as

sinα =
ρ√

ρ2 + 4f2
, cosα =

2f√
ρ2 + 4f2

, tan γ =
η

ξ
(25)

The wave reflected from the reflector coated with chiral medium is
given by

Er = Ero exp{jko(x sin 2α cos γ + y sin 2α sin γ + z cos 2α)} (26)

The initial value of reflected wave may be obtained by Snell’s law of
reflection as

Er = −Ei + 2(Ei · an)an (27)
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and its rectangular components can be represented as

Exo = B⊥ sin2 γ −B‖ cos2 γ cos 2α (28)
Eyo = − cos γ sin γ(B‖ cos 2α + B⊥) (29)
Ezo = B‖ sin 2α cos γ (30)

The reflected wave vector is found using the relation pr = pi − 2(pi ·
an)an, which is derived from Snell’s law, and is given as

pr = −2 sin 2α cos γax − 2 sin 2α sin γay − cos 2αaz (31)

The Jacobian of transformation from the Cartesian to the ray
coordinates is given by J(t) = D(t)/D(0), where

D(t) =
∂(x, y, z)
∂(ξ, η, t)

=

∣∣∣∣∣∣∣

1 + ∂px

∂ξ t
∂py

∂ξ t ∂ς
∂ξ + ∂pz

∂ξ t
∂px

∂η t 1 + ∂py

∂η t ∂ς
∂η + ∂pz

∂η t

px py pz

∣∣∣∣∣∣∣
(32)

D(t) = Ut2 + V t + W (33)

J(t) =
U

W
t2 +

V

W
t + 1 (34)

solving the above determinant we get the values of

U = −cos4 α

f2
, V = 2

cos2 α

f
, W = −1

thus Jacobian (J(t)) becomes

J(t) =
cos4 α

f2
− 2

cos2 α

f
+ 1 =

(
cos2 α

f
t− 1

)2

(35)

The phase function s can be written as

s = ζ + t (36)

The GO field is given by

Er(r) = Ero

(
cos2 α

f
t− 1

)−1

exp{−jko(ζ + t)} (37)
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The GO field can also be written in their rectangular components as
follows

Erx(r) =
(
B⊥ sin2 γ −B‖ cos2 γ cos 2α

)(
cos2 α

f
t− 1

)−1

× exp{−jko(ζ + t)} (38)

Ery(r) = − cos γ sin γ
(
B‖ cos 2α + B⊥

) (
cos2 α

f
t− 1

)−1

× exp{−jko(ζ + t)} (39)

Erz(r) = B‖ sin 2α cos γ

(
cos2 α

f
t− 1

)−1

× exp{−jko(ζ + t)}(40)

The focal point equation is obtained by putting the Jacobian equal to
zero, the following equation is obtained

f = t cos2 α (41)

At the point satisfying Eq. (41), the GO field becomes infinite. So to
find finite field around this point, we use Maslov’s method. To evaluate
field by Eq. (9), for which Eq. (10) is calculated, as follows

J(t)
∂(px, py)
∂(x, y)

=
1

D(0)

∣∣∣∣∣∣∣

∂px

∂ξ
∂py

∂ξ 0
∂px

∂η
∂py

∂η 0
0 0 ∂z

∂t

∣∣∣∣∣∣∣
=

cos4 α cos2 2α

f2
(42)

the phase function in Eq. (9) can be calculated as

s(px, py) = ζ +
z − ζ

pz
− (ξ + pxt)px − (η + pyt)py + xpx + ypy

by putting ζ = f cos 2α/ cos2 α, η = 2f tanα sin γ and ξ =
2f tanα cos γ the phase function for these rays are

s(px, py) = 2f − x sin 2α cos γ − y sin 2α sin γ − z cos 2α (43)

by putting Eq. (42) and (43) in Eq. (9), the field expression which is
valid around the focal point of the paraboloidal reflector coated with
chiral medium is given by

Er(r) =
k0

2π

∫ ∞

−∞

∫ ∞

−∞
Ero

(
cos4 α cos2 2α

f2

)−1
2

exp{−jko(2f

−x sin 2α cos γ − y sin 2α sin γ − z cos 2α)}dpxdpy (44)



Progress In Electromagnetics Research, PIER 94, 2009 361

Conversion from Cartesian coordinates (px, py) to ray coordinates (ξ, η)
is given as

∂(px, py)
∂(ξ, η)

=
cos4 α cos 2α

f2
(45)

Changing from (ξ, η) to angular coordinates (α, γ) by

∂(ξ, η)
∂(α, γ)

=
4f2 sinα

cos3 α
(46)

and using the polar coordinates (r, θ, φ) instead of Cartesian
coordinates (x, y, z) gives

Er(r) =
j2k0f

π

∫ H

0

∫ 2π

0
Ero tanα exp{−jko(2f

−r sin θ sin 2α cos(φ− γ)− r cos θ cos 2α)}dαdγ (47)

The upper limit of integration with respect to α is culculated as

H = tan−1(D/2f)

where, D is the height of the paraboloidal reflector from horizontal
axis. The integration with respect to γ in Eq. (47) can be performed
by using the integral form of Bessel function as given by

1
2πjn

∫ 2π

0
exp(ja cos(γ − φ)) exp(jnγ)dγ = Jn(a)

where Jn is Bessel function of nth order. The rectangular components
of reflected wave is given by

Erx(r) = jkof

∫ H

0
2 tanα

{
J0(k0r sin θ sin 2α)(B⊥ −B‖ cos 2α)

−J2(kor sin θ sin 2α) cos 2φ(B⊥ + B‖ cos 2α)
}

× exp{−jko(2f + r cos θ cos 2α)}dα (48)

Ery(r) = −jkof

∫ H

0
2 tanα sin 2φ(B⊥+B‖ cos 2α)J2(kor sin θ sin 2α)

× exp{−jko(2f + r cos θ cos 2α)}dα (49)

Erz(r) = kof

∫ H

0
8 sin2 α cosφB‖J1(kor sin θ sin 2α)

× exp{−jko(2f + r cos θ cos 2α)}dα (50)
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5. RESULTS AND DISCUSSION

To study the field behavior around the focal region Eq. (47) was solved
numerically. In all the simulations ko = 1, f = 100, H = π/4 and
µ = µo were used. The effect of thickness of chiral layer d, chirality
parameter β and the relative permittivity ε on the focal region field,
simulations were carried out by varying these parameters.
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Figure 3. Plot for |Er(r)| along z-axis, with the dielectric layer of
varying thickness d.
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Figure 4. Plot for |Er(r)| along z-axis, with the dielectric layer of
varying thickness d. The impedance of chiral medium is equal to that
of free space.
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Figure 5. Plot for |Er(r)| along z-axis, showing the effect of chirality
parameter β. The impedance of chiral medium is equal to that of free
space.
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Figure 6. Plot for |Er(r)| along z-axis, showing the effect of relative
permittivity of dielectric layer.

Figure 3 shows the effect of increase in the value of d keeping β = 0
and ε = 3, in this case the paraboloidal reflector is coated with ordinary
dielectric medium. The plots show that by increasing the thickness of
coated material the field strength around the focal region increases.
Figure 4 shows the effect of increase in the value of d keeping β = 0.5
and ε = 1, as a consequence the impedance of chiral medium becomes
equal to that of free space. As evident from the plots, increase in the
value of d increases the field strength around the focal region. Figure 5
shows the effect of increase in the value of β keeping d = 0.5 and ε = 1.
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Figure 7. Plot for |Er(r)| along z-axis, showing the effect of relative
permittivity of chiral layer.

This figure shows that increase in the value of β also increases the field
strength around the focal region. Figure 6 shows the effect of increase
in the value of ε keeping β = 0 and d = 0.5, and the graph shows
that by increasing the value of ε, we observe an increase in the field
strength around the focal region. Figure 7 shows the effect of changing
the value of ε keeping β = 0.3, d = 0.5, the field strength around the
focal region again shows an increase with the increase in the value of
ε.

6. CONCLUSIONS

The geometrical optics field reflected from a paraboloidal reflector
coated with chiral medium was calculated using Maslov’s method.
The reflected field was analyzed numerically, and the results were
discussed. These results show that with increase in the value of
chirality parameter, thickness of the chiral coated layer and relative
permittivity, the absolute value of the field strength of the paraboloidal
reflector around the focal region increases.
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