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Abstract—A novel time-domain integral equation (TDIE) solver for
transient analysis of conducting wires is proposed. It is formulated
using the distribution of induced electric dipoles as unknown function.
The triangular and B-spline functions are employed as the spatial
and temporal basis functions, respectively. By using these basis
functions, the matrix elements are found obtainable via exact closed-
form formulae, which furnish a robust scheme in terms of stability
and accuracy. In addition, to accelerate the matrix filling, a recursive
algorithm is introduced. Numerical validations are provided by a dipole
antenna, a V-shape antenna and a helical antenna.

1. INTRODUCTION

Time domain integral equation (TDIE) method has proven an
appealing alternative to the popular finite-difference time-domain
(FDTD) method for transient analyses [1–4]. The advantages of TDIE
method include solution of fewer unknowns using surface discretization
and elimination of artificial absorbing boundary conditions (ABC)
for open-region problems. The efficiency of TDIE method is also
well recognized due to the marching-on-in-time (MOT) scheme, which
may be further accelerated by fast techniques such as the plane-wave
time-domain (PWTD) algorithm [5] and the adaptive integral method
(AIM) [6]. The underlying drawback that impedes the prevalence of
the TDIE method is the lack of an explicit stability condition like the
Courant condition in FDTD method [7].
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To suppress the late-time instability, many measures have been
attempted, including the filtering or averaging techniques [8, 9], the
implicit schemes [10, 11], the use of Galerkin matching in temporal
domain [12] or marching-on-in-degree (MOD) approach [13], the
varying combination of governing equations [14, 15], the proper choice
of temporal basis functions [16–19], and the accurate evaluation of
matrix elements by analytical integration in part [20–23], etc. Among
these procedures, by our experience, the accurate evaluation of matrix
elements seems to be most dependable in both stability and accuracy.
This urges us to develop exact techniques for calculations of full matrix
elements to promote the TDIE methods.

Conventionally, Galerkin matching is adopted in spatial domain,
while point matching is adopted in temporal domain. Under these
matching ways, the calculations of matrix elements are double integrals
over the source and observation regions, where the double integrals
are actually quadruple integrals for surface-modeling 3D bodies. The
complexity of the double integrals involves the choices of both spatial
and temporal basis functions. The triangular basis functions for
wire structures or RWG basis functions [24] for arbitrarily-shaped
3D bodies are widely employed as the spatial basis functions, while
piecewise-defined polynomials are largely chosen as temporal basis
functions [18, 19]. Exact closed-form formulae for calculations of full
matrix elements that involve RWG bases (suiting surface-modeling 3D
bodies) seem to be impossible. However, analytical calculations of
full matrix elements that involve triangular bases (suiting segment-
modeling wire structures) are very likely and deserve to be explored.
This is the purpose of the present work. It is expected that the
proposed approach based on exact matrix elements would be immune
to instability without sacrifice of accuracy or efficiency, unlike using the
implicit formulation that loses accuracy or using Galerkin matching in
temporal domain that pushes aside the efficient MOT scheme.

The paper is organized as follows. Theory framework is outlined in
Section 2. Section 3 is dedicated to derivation of closed-form formulae
for calculations of matrix elements. Numerical demonstrations are
provided in Section 4. Section 5 contains a few concluding remarks.

2. FORMULATION

Refer to Figure 1 and consider a transient wave incident upon an
arbitrarily-curved conducting wire Γ, which induces a distribution of
electric dipoles P along the wire. The induced currents and charges
on the wire are related to P through I(r′, t′) = ∂P(r′, t′)/∂t′ and
σ(r′, t′) = −∇′ ·P(r′, t′), where ∇′ is to differentiate with respect to the
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Figure 1. Geometry of transient scattering by a thin wire.

length along the wire. The Hertz vector potential and electric scalar
potential generated by the induced sources P are

Π(r, t) =
1

4πε0

∫
Γ

dl′

R

[
P

(
r′, t′

)]
t′=t−R/c

(1)

φ(r, t) =
1

4πε0

∫
Γ

dl′

R

[−∇′ · P (
r′, t′

)]
t′=t−R/c

(2)

where R = |r − r′| is the distance from the source point r′ to the
observation point r. The scattered electric fields can be expressed by
the potentials as:

Es = − ∂2Π
∂(ct)2

−∇φ (3)

The boundary conditions on the conducting wire demands:[
Ei + Es

]
tan

= 0 (4)

where [∗]tan means taking the tangential component along the wire.
Suppose that there is neither charge nor current on the wire before

the instant t′ = 0, that is, P(r′, t′) = ∂P(r′, t′)/∂t′ = 0 for t′ ≤ 0.
Expand P(r′, t′) using the triangular functions in spatial domain and
the quadratic B-pline functions in temporal domain:

P(r′, t′) = (4πε0)
∞∑

j=1

N∑
n=1

cn(j)fn
(
r′

)
T

(
t̄′ − j

)
(5)

where t̄′ = t′/Δt with Δt being the time-step size, N is the number of
interior nodes of the segmented wire. The triangular basis functions
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defined on the wire are

fn(r′) =

⎧⎪⎨
⎪⎩

f+
n (r′) =

r′ − rn−1

l+n
, r′ ∈ T+

n

f−n (r′) =
rn+1 − r′

l−n
, r′ ∈ T−

n

(6)

where l+n = |rn − rn−1| and l−n = |rn+1 − rn| are the lengths of the
segments T+

n and T−
n , respectively. The quadratic B-spline function

is [18]:

T
(
t̄′
)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

(
t̄′ + 1

)2
, 0 ≤ t̄′ + 1 < 1

1
2

+ t̄′ − t̄′2, 0 ≤ t̄′ < 1

1
2
− (

t̄′ − 1
)

+
1
2

(
t̄′ − 1

)2
, 0 ≤ t̄′ − 1 < 1

(7)

Substituting (5) into (4) with (1)–(3) in places, and then
testing (4) by fm(r)δ(t̄ − i) (m = 1, 2, . . . , N ; i = 1, 2, 3, . . .), where
t̄ = t/Δt, we obtain

∞∑
j=1

N∑
n=1

Zmn(i − j)cn(j) = bm(i) (8)

with

Zmn(j) =
∫

Tm

∫
Tn

1
R

[
T ′′ (j − R̄

)
(cΔt)2

fm(r) · fn(r′)

+T
(
j − R̄

)
gm(r)gn(r′)

]
dl′dl (9)

bm(i) =
∫

Tm

fm(r) ·Ei(r, iΔt)dl (10)

In (9), R̄ = R/cΔt, gm(r) = −∇ · fm(r) and gn(r′) = −∇′ · fn(r′).
Due to the compactness of the temporal basis function, i.e., −1 ≤
j − R̄ < 2, Zmn(j) would be nonzero only for 0 ≤ j ≤ L, where
L = int(R̄max + 2) and R̄max = Rmax/(cΔt) with Rmax being the
maximum linear dimension of the curved wire. By changing the index
i− j → j, we can rewrite (8) in the form of the conventional marching-
on-in-time (MOT) scheme:

[Z(0)] {c(i)} = {b(i)} −
min(i−1,L)∑

j=1

[Z(j)] {c(i − j)}, i = 1, 2, 3, . . .

(11)
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where [Z(j)] (j = 0, 1, 2, . . . , L) are N ×N interacting matrices, which
are very sparse, while {b(i)} and {c(j)} are N × 1 column vectors.

To fill the system matrices [Z(j)] for 0 ≤ j ≤ L more wisely, we
define four integrals:

Xmn(j) =
1

(cΔt)2

∫
Tm

∫
Tn

fm(r) · fn(r′)
χ

(
j − R̄

)
R

dl′dl (12)⎧⎪⎨
⎪⎩

Y
(0)
mn(j)

Y
(1)
mn(j)

Y
(2)
mn(j)

⎫⎪⎬
⎪⎭ =

∫
Tm

∫
Tn

⎧⎨
⎩

1(
j − R̄

)(
j − R̄

)2

⎫⎬
⎭ gm(r)gn(r′)

χ
(
j − R̄

)
R

dl′dl (13)

where χ
(
j − R̄

)
is the characteristic function that reads

χ
(
j − R̄

)
=

{
1, 0 ≤ j − R̄ < 1
0, otherwise (14)

Using the definitions of (12)–(13), we find that (9), with (7) in
place, can be calculated in a recursive way:

Zmn(j) = 1
2 Ỹ

(2)
mn(j) +

[
1
2Y

(0)
mn(j − 1) + Y

(1)
mn(j − 1) − Ỹ

(2)
mn(j − 1)

]
+

[
1
2Y

(0)
mn(j − 2) − Y

(1)
mn(j − 2) + 1

2 Ỹ
(2)
mn(j − 2)

]
(15)

where Ỹ
(2)
mn(j) = Y

(2)
mn(j)+2Xmn(j), and so forth. Evaluating (12)–(13)

is more efficient than performing (9), because the supported interval
is only one in (12)–(13), while it is three in (9), which means that
the number of nonzero elements of [Y (j)] is about one third of that of
[Z(j)]. Numerical experiments show that filling the matrix entries by
using (15) via (12)–(13) saves at least half CPU time than by carrying
out (9) directly.

Once the coefficients {c(j)}Nt
j=0 are found recursively by (11),

where Nt is the length of the time sequence that has been resolved, the
distributions of currents and charges along the wire can be retrieved.
The scattered far-field is calculated by the first term of (3) and then
just taking the transverse components.

3. DERIVATION OF MATRIX ELEMENTS

Let the unit directional vector of the segment T p
m and T q

n be indicated
by ŝp

m and ŝq
n, respectively, where ŝp

m is defined by ŝp
m = (rm+p−1 −

rm+p−2)/l
p
m (hereafter we let p = 1 stands for “ + ” and p = 2 stands
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for “− ”), and so is ŝq
n. Then the spatial basis functions in (6) become

f q
n(r′) = l′ŝq

n if q = 1 and f q
n(r′) = (lqn − l′) ŝq

n if q = 2, for 0 < l′ < lqn.
We also have gq

n(r′) = −∇′ · f q
n(r′) = −(−1)q/lqn. Substituting these

expressions into (12)–(13), we obtain

Xmn(j) =
1

(cΔt)2

2,2∑
p,q=1

ŝp
m · ŝq

n

lpmlqn
F p,q

m,n(j) (16)

⎧⎪⎨
⎪⎩

Y
(0)
mn(j)

Y
(1)
mn(j)

Y
(2)
mn(j)

⎫⎪⎬
⎪⎭ =

2,2∑
p,q=1

(−1)p+q

lpmlqn

⎧⎪⎨
⎪⎩

I3(l
p
m, lqn)

jI3(l
p
m, lqn) − 1

cΔtI4(l
p
m, lqn)

j2I3(l
p
m, lqn) − 2j

cΔtI4(l
p
m, lqn) + 1

(cΔt)2 I5(l
p
m, lqn)

⎫⎪⎬
⎪⎭ (17)

In (16)–(17),

F p,q
m,n(j) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩

I1(lpm, lqn), p = 1; q = 1
lqnI2(lpm, lqn) − I1(lpm, lqn), p = 1; q = 2
lpmI ′2(l

p
m, lqn) − I1(lpm, lqn), p = 2; q = 1

lpmlqnI3(lpm, lqn)−lpmI ′2(l
p
m, lqn)−lqnI2(lpm, lqn)+I1(lpm, lqn), p = 2; q = 2

(18)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(lpm, lqn) =
∫ lpm

0

∫ lqn

0
ll′

χ
(
j − R̄

)
R

dl′dl

I2(lpm, lqn) =
∫ lpm

0

∫ lqn

0
l
χ

(
j − R̄

)
R

dl′dl

I ′2(l
p
m, lqn) =

∫ lpm

0

∫ lqn

0
l′

χ
(
j − R̄

)
R

dl′dl

I3(lpm, lqn) =
∫ lpm

0

∫ lqn

0

χ
(
j − R̄

)
R

dl′dl

I4(lpm, lqn) =
∫ lpm

0

∫ lqn

0
χ

(
j − R̄

)
dl′dl

I5(lpm, lqn) =
∫ lpm

0

∫ lqn

0
Rχ

(
j − R̄

)
dl′dl

(19)
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These integrals can be cast into the general form

I(lpm, lqn) =
∫ lpm

0

∫ lqn

0
h(l, l′)χ

(
j − R̄

)
dl′dl (20)

where h(l, l′) takes one of the five cases: h(l, l′) = l′l
R , l′

R or l
R , 1

R , 1,
R. One may show that, if it were not for χ

(
j − R̄

)
that imposes

the causality constraint, the integrals in (19) could be carried out
analytically, so that we would obtain closed-form expressions for full of
the matrix elements. Therefore, we will focus on resolving the causality
by transferring the constraint to the limits of integration.

Figure 2. The distance between the observation and source points.

As shown in Figure 2, let R denote the distance between the
observation point r and the source point r′, where r is on the segment
T p

m while r′ is on the segment T q
n . We can write out r = rm+p−2 + lŝp

m

(p = 1, 2) for 0 ≤ l ≤ lpm and r′ = rn+q−2+l′ŝq
n (q = 1, 2) for 0 ≤ l′ ≤ lqn.

Using the thin-wire approximation, i.e., the observer is considered on
the surface of the wire while the source is taken to be concentrated on
and flowing along the central axis of the wire, we have

R =
∣∣r̃ − r′

∣∣ , r̃ = r + aτ̂

=
∣∣(̃rm+p−2 + lŝp

m) − (rn+q−2 + l′ŝq
n)

∣∣ , r̃m+p−2 = rm+p−2 + aτ̂

=
√

[l′ − P (l)]2 + A(l) =
√

[l − Q(l′)]2 + B(l′) (21)

where a is the radius while τ̂ is a unit directional vector that is
perpendicular to the axis, and{

P (l)=αl − ξ, A (l) =
(
1 − α2

)
l2 + 2 (αξ + η) l +

(
d2 − ξ2

)
Q

(
l′
)
=αl′ − η, B

(
l′
)

=
(
1 − α2

)
l′2 + 2 (αη + ξ) l′ +

(
d2 − η2

) (22)
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with α = ŝp
m ·ŝq

n, ξ = ŝp
m · (̃rm+p−2−rn+q−2), η = ŝq

n ·(rn+q−2−r̃m+p−2),
and d = |̃rm+p−2 − rn+q−2|.

Substituting (21) into the function χ
(
j − R̄

)
defined in (14), we

have

0 ≤ j − R̄ < 1 ⇔ (j − 1)cΔt <
√

[l′ − P (l)]2 + A(l) ≤ jcΔt (23)

from which we can solve for l′ to get{
P (l) − Uj(l) ≤ l′ < P (l) − Ũj−1(l), or

P (l) + Ũj−1(l) < l′ ≤ P (l) + Uj(l)
(24)

where

Ũj−1(l) =

{ √
u2

j−1 − A(l), if A(l) ≤ u2
j−1

0, if A(l) > u2
j−1

(25)

Uj(l) =

{ √
u2

j − A(l), if A(l) ≤ u2
j

non-causal, if A(l) > u2
j

(26)

with uj = j(cΔt) (j ≥ 0). Similarly, the solution of (23) for l can be
expressed as {

Q(l′) − Vj(l′) ≤ l < Q(l′) − Ṽj−1(l′), or

Q(l′) + Ṽj−1(l′) < l ≤ Q(l′) + Vj(l)
(27)

where

Ṽj−1(l′) =

{ √
u2

j−1 − B(l′), if B(l′) ≤ u2
j−1

0, if B(l′) > u2
j−1

(28)

Vj(l′) =

{ √
u2

j − B(l′), if B(l′) ≤ u2
j

non-causal, if B(l′) > u2
j

(29)

By virtue of (24), the integral (20) becomes

I(lpm, lqn) =
∫ lpm

0

∫ min[lqn,P (l)−Ũj−1(l)]

max[0,P (l)−Uj(l)]
h(l, l′)dl′dl

+
∫ lpm

0

∫ min[lqn,P (l)+Uj(l)]

max[0,P (l)+Ũj−1(l)]
h(l, l′)dl′dl (30)
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Now, we concentrate on dealing with the first term in (30), as the
second term can be treated in the same way. The integral with respect
to l′ is

ψ(l)
Δ
=

∫ min[lqn,P (l)−Ũj−1(l)]

max[0,P (l)−Uj(l)]
h(l, l′)dl′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ lqn

0

h(l, l′)dl′, if lqn + Ũj−1(l) < P (l) ≤ Uj(l)∫ P (l)−Ũj−1(l)

0

h(l, l′)dl′, if Ũj−1(l) < P (l) < min
[
Uj(l), l

q
n + Ũj−1(l)

]
∫ lqn

P (l)−Uj(l)

h(l, l′)dl′, if max
[
Uj(l), l

q
n + Ũj−1(l)

]
< P (l) < lqn + Uj(l)

∫ P (l)−Ũj−1(l)

P (l)−Uj(l)

h(l, l′)dl′, if Uj(l) ≤ P (l) < lqn + Ũj−1(l)

(31)

The inequalities in (31) have to be solved to determine the integrating
bounds with respect to l. To illustrate the process to solve lqn +
Ũj−1(l) < P (l) ≤ Uj(l), please refer to Figure 3, in which x and y
are used to stand for l and l′, respectively. From Figure 3(a), we have

b̃ + Ũj−1(x) < P (x)

⇒ Ω̃ Δ=

⎧⎪⎨
⎪⎩

x̃c < x < ∞, for case 0
x̃c < x < x̃1 or x̃2 < x < ∞, for case 1: x̃c < x̃01

x̃2 < x < ∞, for case 2: x̃01 ≤ x̃c < x̃02

x̃c < x < ∞, for case 3: x̃c ≥ x̃02

(32)

where x̃c = (b̃ + ξ)/α with b̃ = 0 or lqn; x̃1 and x̃2 are the solutions of
b̃ + Ũj−1(x) = P (x) that gives x̃1,2 = Q(b̃) ∓ Ṽj−1(b̃) with Q(∗) and
Ṽj−1(∗) defined in (22) and (28); x̃01 and x̃02 are the roots of Ũj−1(x) =

0, i.e., x̃01,02 = x0∓
√

u2
j−1 − A0/(1 − α2) with x0 = −(αξ+η)/(1−α2)

and A0 = (d2 − ξ2) − (1 − α2)x2
0. Case 0 is actually a special case of

case 1 when Ṽj−1(b̃) = 0 so that x̃1 = x̃2 results. Similarly, from
Figure 3(b), we have

P (x) ≤ b+Uj(x) ⇒ Ω Δ=

⎧⎪⎨
⎪⎩

non-causal, for case 0
x1 ≤ x ≤ x2, for case 1: xc < x01

x01 ≤ x ≤ x2, for case 2: x01 ≤ xc < x02

x01 ≤ x ≤ x02, for case 3: xc ≥ x02

(33)
where xc = (b + ξ)/α with b = 0 or lqn; x1 and x2 are the solutions of
b + Uj(x) = P (x) that gives x1,2 = Q(b) ∓ Vj(b); x01 and x02 are the
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(a)

(b)

Figure 3. Illustration of solutions for (a) b̃+ Ũj−1(x) < P (x), and (b)
P (x) ≤ b + Uj(x).

roots of Uj(x) = 0, i.e., x01,02 = x0 ∓
√

u2
j − A0/(1 − α2). Again, case

0 is actually a special case of case 1 when Vj(b) violates causality so
that the interval x1 ≤ x ≤ x2 vanishes.

By combining (32) and (33), the solution of inequality lqn +
Ũj−1(l) < P (l) ≤ Uj(l) can be easily retrieved (by setting b̃ = lqn
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Table 1. The solution of lqn + Ũj−1(l) < P (l) ≤ Uj(l), denoted by
D′

1 = Ω̃ ∩ Ω.

x̃ c < x̃ 01 x̃ 01 ≤ x̃ c < x̃ 02 x̃ c ≥ x̃ 02

x c < x 01
max[ x̃ c, x 1] < l < min[x̃ 1, x 2]
or max[ x̃ 2, x 1] < l ≤ x 2

max[ x̃ 2, x 1] < l ≤ x 2 max[ x̃ c, x 1] < l ≤ x 2

x 01 ≤ x c < x 02
max[ x̃ c, x 01] < l < min[x̃ 1, x 02]
or max[ x̃ 2, x 01] < l ≤ x 2

max[ x̃ 2, x 01] < l ≤ x 2 max[ x̃ c, x 01] < l ≤ x 2

x c ≥ x 02
max[ x̃ c, x 01] < l < min[x̃ 1, x 02]
or max[ x̃ 2, x 01] < l ≤ x 02

max[ x̃ 2, x 01] < l ≤ x02 max[ x̃ c, x 01] < l ≤ x02

and b = 0) and denoted by D′
1 = Ω̃ ∩ Ω, as listed in Table 1. Thus,

along with 0 ≤ l ≤ lpm, the integrating intervals for variable l is
D1 = [0, lpm] ∩ D′

1. For the other three cases in (31), the integrating
intervals for the variable l, denoted by D2, D3, D4, respectively, can
be determined by similar ways and not repeated for conciseness.

As a result, the first term of (30), with x and y standing for l and
l′, respectively, becomes

∫
D1

dx

∫ lqn

0
h(x, y)dy+

∫
D2

dx

∫ P (x)−Ũj−1(x)

0
h(x, y)dy

+
∫
D3

dx

∫ lqn

P (x)−Uj(x)
h(x, y)dx +

∫
D4

dx

∫ P (x)−Ũj−1(x)

P (x)−Uj(x)
h(x, y)dy (34)

These integrals can be evaluated in closed-form ways. To check
the correctness, we take the first term as an example and assume
ŝp
m = ŝq

n, so that α = 1, ξ = −η, P (l) = l − ξ, Q(l′) = l′ + ξ and
A(l) = B(l′) = d2 − ξ2. It follows

lqn + Ũj−1(l) < P (l) ≤ Uj(l)

⇒ lqn +
√

u2
j−1 − (d2 − ξ2) < l − ξ ≤

√
u2

j − (d2 − ξ2)

⇒ (lqn + ξ) +
√

u2
j−1 − (d2 − ξ2) < l ≤ ξ +

√
u2

j − (d2 − ξ2) (35)

If we use (32) and (33) (by setting b̃ = lqn and b = 0), we have
x̃c = lqn + ξ, x̃01,02 = ∓∞, x̃1,2 = (lqn + ξ)∓

√
u2

j−1 − (d2 − ξ2); xc = ξ,

x01,02 = ∓∞, x1,2 = ξ∓
√

u2
j − (d2 − ξ2). Thus, we find x̃01 < x̃c < x̃02
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and x01 < xc < x02, and then by looking up Table 1 to obtain

max[x̃2, x01] < l ≤ x2

⇒ (lqn + ξ) +
√

u2
j−1 − (d2 − ξ2) < l ≤ ξ +

√
u2

j − (d2 − ξ2)

which is identical to (35). Furthermore, if we let h(x, y) = (xy)/R with
R =

√
[y − (x − ξ)]2 + (d2 − ξ2), the first term of (34) reads

∫ min[lpm,x2]

max[0,x̃2]
xdx

∫ lqn

0

ydy√
[y − (x − ξ)]2 + (d2 − ξ2)

=
∫ min[lpm,x2]

max[0,x̃2]
xdx

[ √
[y − (x − ξ)]2 + (d2 − ξ2)

−(x − ξ) ln
(√

[y − (x − ξ)]2 + (d2 − ξ2) − [y − (x − ξ)]
) ]y=lqn

y=0

which can be integrated analytically by using the following formulae
(letting z = y − (x − ξ) and C = d2 − ξ2):∫

zσ
√

z2 + C dz =⎧⎪⎪⎨
⎪⎪⎩

z
2

√
z2 + C + C

2 ln
[√

z2 + C + z
]
, σ = 0

1
3

[
z2 + C

]3/2
, σ = 1

z
8(2z2 + C)

√
z2 + C − C2

8 ln
[√

z2 + C + z
]
, σ = 2

(36)

∫
zσ ln

[√
z2 + C − z

]
dx =⎧⎪⎪⎪⎨

⎪⎪⎪⎩

√
z2 + C + z ln

[√
z2 + C − z

]
, σ = 0

z
4

√
z2 + C + z2

2 ln
[√

z2 + C − z
]
− C

4 ln
[√

z2 + C + z
]
, σ = 1

1
9(z2 − 2C)

√
z2 + C + z3

3 ln
[√

z2 + C − z
]
, σ=2

(37)

Following the procedure described above, the other three terms
in (34) can also be evaluated analytically, which completes the first
term in (30). The second term in (30) can be treated in the same way.
Finally, full of the matrix elements are obtained via exact closed-form
formulae.
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4. NUMERICAL RESULTS

The first example is a dipole antenna illuminated by a Gaussian
impulse [25]

Ei(r, t) = E0
4

T
√

π
exp

[
− 4

T

(
ct − ct0 − k̂ · r

)2
]

(38)

with E0 = ẑ, T = 4 and ct0 = 6. The antenna is along the z-
axis, has a length 1m and radius 0.5 cm, and is divided into 10
segments. Δt = Δz/c is used in this example. The short-circuit

(b)

(a)

Figure 4. Currents at the center of the dipole: (a) comparison of
inaccurate results obtained via numerical integration with exact results
obtained via analytical formulae, and (b) decaying behavior of the
current magnitude.
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current at the center of the dipole is depicted in Figure 4(a) from
0 to 20 LM (LM = light meter: the time that light takes to travel 1 m
in vacuum). For comparison, Figure 4(a) also contains two sets of
conventional MOT results obtained by using Gaussian quadrature, in
which Points M×N means using M -point rule for the integration with
respect to l and N -point rule for l′. It can be seen that the results are
divergent or inaccurate if the number of integration points are not
enough. It may be shown that the results will approach the exact
results as the number of integration points is continuously increased.
However, it is not known a priori that how many integration points are
sufficient for convergence or for an acceptable accuracy. To inspect the
late-time behavior, the magnitude of current is plotted in logarithm
scale as shown in Figure 4(b) from 0 to 200 LM (4,000 time-steps). It
can be seen that the current decays exponentially, which implies an

 

(a) 

 

(b) 

Figure 5. Radiation of a V-shape antenna: (a) input current, (b)
decaying behavior of the input current.
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absolute convergence for this example.
The second example is to analyze a radiation problem by a V-

shaped antenna [25], which lies in the xy-plane and symmetrically
about the x-axis, with the vertex at the origin. Each arm has a length
of 0.5 m and is divided into ten segments. The radius of the arms
is 0.5 cm. The included angle between the arms is 60◦. A Gaussian
source voltage

V (t) =
4

T
√

π
exp

[
− 4

T
(ct − ct0)2

]
(39)

is applied at the vertex (feed point), which enters (10) to yield
V i

m = V (iΔt) if m = (N + 1)/2 and V i
m = 0 otherwise. The input

current at the feed point for the time from 0 to 50 LM is displayed in
Figure 5(a), and its late-time behavior till 300 LM (6,000 time-steps)
is shown in Figure 5(b). It can be seen that the input current is also
exponentially convergent but at a lower rate than the straight dipole
antenna example above.

The third example is a radiation problem by a monopole helical
beam antenna as shown in Figure 6. It has 6 turns and the pitch angle
is 14 degrees. The 6-turn helix has a length of 1.24 m, and each turn is
divided into ten segments. By using the image theory, the ground plane
can be removed and a dipole helical antenna is considered instead. A
Gaussian source voltage in (39) is applied at the feed point. The input
current is depicted in Figure 6(a) till 8,300 LM (200,000 time-steps),
which again decays exponentially but at much lower rate than the
above dipole antenna and V-shaped antenna problems. Figure 6(b)
shows the radiating far-field component Ex in the axis direction, which
has a very long tail compared with the excitation waveform.

(a) 
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(b) 

Figure 6. Radiation of a helical beam antenna: (a) decaying behavior
of the input current, (b) the radiating far-field.

5. CONCLUDING REMARKS

A novel time-domain integral equation (TDIE) solver via exact
calculations of full matrix elements for transient analysis of conducting
wires is developed. Numerical examples show that the responses of
currents to an impulse incident wave or an impulse excitation voltage
attenuate exponentially, at some rate pertinent to the structures. The
marching-on-in-time (MOT) process based on the present formulations
with exact matrix elements seems to be immune to instability without
sacrifice of accuracy or efficiency.
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