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Abstract—This paper presents an analytical method based on the
coulombian model of a magnet for studying a ferrofluid seal in
ironless electrodynamic loudspeakers. Such an approach differs from
the ones generally used for studying such geometries because the
ferrofluid used is submitted to a magnetic field greater than 1 T which
saturates the ferrofluid. Consequently, its shape and its mechanical
properties depend mainly on the magnetic field produced by the
permanent magnets that constitute the ironless structure. The motor
is constituted of outer stacked ring permanent magnets and the inner
moving part is a piston. In addition, one ferrofluid seal is used for
centering the moving part and ensuring the airtightness between the
loudspeaker faces. The ferrofluid seal also exerts a pull back force
on the moving piston. It is noted that this force depends on the
lateral shape of the moving piston. Therefore, the piston profile is
analytically studied in this paper. A peculiar attention is given to
profiles that ensure the axial pull back force to be proportional to the
piston displacement. Furthermore, a geometrical method is presented
to design the shape of the ferrofluid seal according to the chosen piston
profile. It can be noted that such a profile is elliptical in this study.
Then, the magnetic energy of the ferrofluid seal is determined with
the analytical expression of the magnetic energy density. Such an
expression allows us to calculate the axial force created by the ferrofluid
seal for a given profile.
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1. INTRODUCTION

Three-dimensional analytical calculations of the magnetic field
produced by ring or tile permanent magnets are generally used for
the design of structures like axial or radial bearings and couplings.
However, such analytical approaches can also be used for the study of
ferrofluid seals submitted to magnetic fields higher than 1 T. Strictly
speaking, most studies dealing with ferrofluids are carried out by using
several terms in the equation of equilibrium describing the ferrofluid [1].
However, not all these terms have the same weight and in some
conditions, some of them can be omitted. This is particularly the case
when a ferrofluid is submitted to a very high magnetic field. This often
occurs when it is used in audio speakers [2] or ironless loudspeakers [3–
6].

The first studies dealing with their behaviour under magnetic
fields began in the early to mid-1960s [7]. Then, as ferrofluids have
been improved, more and more engineering applications have been
developed [8]. On the other hand, three-dimensional approaches for
calculating the magnetic field produced by permanent magnets have
been proposed [9–15].

By using both the studies dealing with ferrofluids and the ones
carried out by scientists involved in the three-dimensional calculations
of the magnetic field produced by cylindrical geometries, some
configurations (as ironless loudspeakers) can be investigated by using
the concept of magnetic energy or magnetic pressure. Such terms
are often simplified in many studies because they do not play a key
role. However, in ironless loudspeakers, the precise determination of
some terms (as the magnetic pressure) is required. Consequently, the
study of the ferrofluid seal in ironless loudspeakers must be carried out
with the three-dimensional analytical expressions of the magnetic field
produced by ring permanent magnets.

The utility of ferrofluids lies in the fact that they can fulfil different
functions: heat transfer, damping, motion control [16–17]. Ferrofluids
can be used for the design of electromagnetic pumps for medical
applications [18] or for the processing industry of liquid metal. Such
fluids are also used for the design of bearings [19–22]. Other authors
have studied high-speed magnetic fluid bearings and the properties
of these ferrofluid seals when used in such applications [23–25]. An
important parameter for the modeling ferrofluid seals is certainly its
seal capacity [26] that can be used for optimization purposes.

This paper describes a way of designing ferrofluid seals for ironless
electrodynamic loudspeakers [27] with three-dimensional analytical
expressions of the magnetic field created by ring permanent magnets.
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We can say that ferrofluid seals in such structures ensure the
airtightness, play a heat transfer part and work as bearings. In
this paper, the associated structure consists of both two outer ring
permanent magnets and an inner moving piston. Thereby, the front
face of this piston is the emissive surface. This paper presents ferrofluid
seals associated with peculiar piston shapes which allow the axial
displacement of the moving piston to be linear. Indeed, one of the
ferrofluid seal properties is the axial force it creates on the moving
piston. This force is linked to the profile of the piston lateral face. This
paper describes the design of the piston shape which makes the axial
force proportional to the piston displacement. Most of the calculations
are analytical and the method used is based on a geometrical approach.
The assumptions taken throughout this paper are based on the papers
published by Cunha [28] and Matthies [29]. However, in this paper,
the intensity of magnetization of a magnetic particle (M) is saturated
because the magnetic field we use is higher than 1T. Consequently, the
relation between M and H is not linear. We neglect the aggregation
in chains that occurs under very high magnetic fields [30] because this
effect is not preponderant in the determination of the ferrofluid seal
energy. In addition, M is denoted Ms in this paper. First, the design
of the moving piston shape is studied. Then, the calculation of the
axial force is discussed.

We can say that such an approach can be applied to the design of
bearings using ferrofluid seals [31–33]. Indeed, the accurate knowledge
of the quantity of ferrofluid, its shape or even the axial properties it
can generate are an important element of information for the design of
new types of ironless structures with permanent magnets and ferrofluid
seals. In other words, this paper can be seen as an illustration of the use
of three-dimensional analytical expressions for the design of ferrofluid
seals. We think that it paves the way for a new approach for designing
such structures.

2. INTEREST OF CARRYING OUT THIS STUDY

This study has been performed for the design of new structures of
ironless loudspeakers. In our laboratory, we must find technological
solutions for allowing the emissive piston to be proportional to its
axial displacement. Some prototypes have been built and have shown
promising sound reproductions. The back enclosure of an ironless
loudspeaker functions as a pneumatic stiffness. Consequently, it
generates a back pull force that is linear to its axial displacement.
However, there are some temperature and pressure variations in the
back enclosure. Small orifices can be performed in this enclosure
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to ensure pressure equilibrium between the two faces of the ironless
loudspeaker but another pull back force is required for ensuring a good
functioning of the emissive piston. We think that the piston shape can
be optimized in a first step. We propose in this paper a fully theoretical
study based on the coulombian model of a magnet that could be used
for designing the piston profile.

This paper has two objectives. The first aim of this paper is to
propose an original method, based on only geometrical considerations
and magnetic energy calculations for studying the piston profile of an
ironless loudspeaker. Some assumptions are taken into account but are
fully justified by the very high magnetic fields produced by the ring
permanent magnets. In addition, some experimental investigations
have shown the accuracy of this model. The second objective of this
paper is to show how exact three-dimensional analytical methods can
be used for the design of ironless structures using ferrofluid seals. This
is an important point because many devices use permanent magnets
and ferrofluid seals. Nevertheless, the methods generally used for
studying them are numerical. Even though these numerical methods
are useful, the optimization of such structures with such approaches is
rather difficult. The way we treat the problem in this paper is possible
because the ferromagnetic particles are saturated and the Bernoulli
equation can be reduced to a very simple form.

3. DESIGN OF THE PISTON

3.1. Geometry of the Structure Studied

The structure studied consists of two outer ring permanent magnets,
an inner non-magnetic piston, a ferrofluid seal placed in the air gap
between the piston and the magnets and a back enclosure (Fig. 1).
Moreover, the emitting surface of the moving piston is plane. The two
ring permanent magnets are stacked and their magnetizations are both
radial, but in opposed directions. Furthermore, the ring permanent
magnets have both the same dimensions and the same magnetization
magnitude. The ring inner radius is rin, the ring outer radius is rout and
the height of one ring permanent magnet is h. The non-magnetic piston
is radially centered with the two ring permanent magnets. Moreover,
the z axis is an axis of symmetry. We can point out that the magnetic
energy of the ferrofluid seal is determined with the analytical expression
of the magnetic field created by the two ring permanent magnets.
This is done by using the Coulombian model of permanent magnets.
Consequently, each permanent magnet is represented by two curved
planes. For the upper permanent magnet (Z > 0), the ring inner face
(R = rin) is charged with the magnetic pole surface density +σ∗ and
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Figure 1. Geometry: two outer ring permanent magnets, the inner
non-magnetic piston, the ferrofluid seal is placed in the air gap between
the piston and the magnets; the ring inner radius is rin, the ring outer
one is rout and the height of one ring permanent magnet is h. The
inner piston is radially centered with the ring permanent magnets.

the ring outer one (R = rout) is charged with the magnetic pole surface
density −σ∗. For the lower permanent magnet (Z < 0), the ring inner
face (R = rin) is charged with the magnetic pole surface density −σ∗
and the ring outer one (R = rout) is charged with the magnetic pole
surface density +σ∗. It is to be noted that, in Fig. 1, the inner piston
does not crush the ferrofluid seal. This structure is the starting point
of this study. Then, the following step is to determine the optimal
shape of the inner moving piston in order to have an axial pull back
force proportional to the piston displacement. This optimal shape is
obtained by using criteria based on the magnetic energy. The magnetic
energy calculation of the ferrofluid seal is discussed in the next section.

3.2. Energy Calculation of the Ferrofluid Seal

The magnetic energy of the ferrofluid seal is based on several
assumptions. First, the ferromagnetic particles are assumed small
spheres which can be freely oriented in all the directions of space.
Second, the polarization of the permanent magnets is 1.5 T so the
particles are in a magnetic field which magnitude is around 1.3 T. Then,
as the magnetic relative permeability of the ferrofluid is very small,
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the presence of ferrofluid does not modify the field created by the ring
permanent magnets. In this paper, the maximal ferrofluid saturation
magnetization μ0Ms is 40 mT. Moreover, the ferrofluid volume is small
and the maximal particle volume density is 5.5% : the magnetic field
created by the particles themselves is small compared to the external
field created by the permanent magnets. Consequently, this field
is omitted. It can be noted that the magnetic interaction energy
between the magnetic particles is important for dynamics studies.
Indeed, it allows the magnetic particles both to be aligned between
them and to form chains. However, we do not consider it because
this study is a static one. Furthermore, the viscous effects and the
magnetic interaction energy between the magnetic spherical particles
are omitted. At least, the surface tension energy is not taken into
account. We can point out that this latter assumption is also a strong
one which can be justified by the fact that the magnetic field created by
the ring permanent magnets is higher than 1T; the influence of the air
on the surface tension can be neglected since the magnetic particles
are aligned with the magnetic field. Furthermore, the particles are
assumed surfacted well enough so that they do not sediment in the
high magnetic field created by the permanent magnets. In short, the
only energy considered is the magnetic energy Em defined by (1):

Em = −
∫ ∫ ∫

(Ω)
H(r, z).μ0MsdV (1)

where H(r, z) is the magnetic field created by the two ring permanent
magnets, (Ω) is the ferrofluid seal volume and Ms is the intensity of
magnetization. This expression is given in terms of elliptic integrals.
The magnetic energy density em(r, z) is given by (2):

em(r, z) = μ0Ms

√
Hr(r, z)2 + Hz(r, z)2 (2)

where Ms is the intensity of magnetization of a magnetic particle. The
radial component Hr(r, z) and the axial component Hz(r, z) have been
published in [11] and these expressions have been reduced to compact
forms in [9]. Consequently, we use the expressions determined by
Babic and Akyel for studying the magnetic energy density em(r, z).
Let us consider a ring permanent magnet whose polarization is radial
and directed towards the centre of the ring (0), the radial and axial
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where J is the polarization of the ring permanent magnet, h = z2 − z1

is its height, μ0 is the permeability of the vacuum, K(k), E(k) and
Π(h, k) are the complete elliptic integrals of the first, second and
third kind. In our configuration, we use two ring permanent magnets
with opposite magnetizations. The total magnetic field produced by
these two ring permanent magnets can be easily obtained by using
the principle of superposition. By denoting h

(2)
r (r, z) and h

(2)
z (r, z)

the radial and axial components of the magnetic field produced by the
other ring permanent magnet, the total magnetic field is:

�H(r, z) =
(
h1

r(r, z) + h2
r(r, z)

)
�ur +

(
h1

z(r, z) + h2
z(r, z)

)
�uz

= Hr(r, z)�ur + Hz(r, z)�uz (5)
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in which Hr(r, z) and Hz(r, z) are used in (1) for calculating the
magnetic energy density.

The magnetic field created by the two ring permanent magnets
depends only on both radius r and altitude z since the azimuthal
component equals zero because of the cylindrical symmetry. The
components of this field have been established in previous papers [11–
13]. It can be noted that in most of the papers dealing with the
modeling of ferrofluids, many parameters are taken into account in
the Bernoulli equation but the magnetic field is always very simplified.
Indeed, the magnetic field is often assumed constant. In this paper,
the way of studying the ferrofluid seal is different. Indeed, we propose
to study a complex geometry with an analytical expression of the
magnetic field. Consequently, the term which is the most important in
the Bernoulli equation is exact in this paper. This way of optimizing
a piston profile is very useful in such geometry because it has a very
low computational cost. Moreover, it allows making easily parametric
studies on the configuration dimensions.

3.3. Determination of the Piston Optimal Shape

The moving part of electrodynamic loudspeakers must be axially
stable in order to avoid being ejected. This remains true for ironless
electrodynamic loudspeakers and a good axial stability of the moving
piston is thus searched. We can point out that such a stability is
reached thanks to the pull back force exerted by the ferrofluid seal on
the piston. It can be noted that the greater this force is, the better the
axial stability is. However, if the force intensity is too high, the piston
movement can be impeded. As a consequence, some compromises must
be made. In any case, it is useful to control the force variation when
the piston moves. Therefore, the design of the inner piston is made so
that the variation force is linear. For this purpose, the lateral face
of the piston must be considered. As the variation force depends
on its profile, the piston shape is determined by using a magnetic
energy criterion of the ferrofluid seal. To do so, the magnetic energy
in the ferrofluid seal is first calculated when the inner piston does not
crush the ferrofluid. The value obtained is denoted Em[1]. Second,
the same geometry is considered but the piston has a larger diameter
and it crushes the ferrofluid seal (Fig. 2). The magnetic energy in the
ferrofluid is determined in this configuration and the obtained value is
denoted Em[2]. Furthermore, the pull back force is defined by (6):

F =
Em[1] − Em[2]

Δr
(6)
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Figure 2. Geometry: two outer ring permanent magnets, an inner
non-magnetic piston whose radius is larger than the previous one and
a ferrofluid seal placed between them; the ring inner radius is rin and
the height of one ring permanent magnet is h. The inner piston is
radially centered.
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Figure 3. Qualitative representation of the magnetic energy of the
ferrofluid seal in two configurations; Em[1] is the energy when the
piston does not crush the ferrofluid seal. Em[2] is the energy when the
piston crushes the ferrofluid seal, that is, when its radius increased by
Δr.

where Δr represents the increase in the piston radius. These values
are qualitatively represented in Fig. 3. The magnetic energy of the
ferrofluid seal is represented as a function of the piston radius variation.
Fig. 3 shows that Em[2] is smaller than Em[1]. Indeed, the increase in
the piston diameter generates the crushing of the ferrofluid seal and
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Figure 4. Geometry: two outer ring permanent magnets and an inner
non-magnetic piston whose radius depends ‘smoothly’ on the altitude
z.

consequently a diminution in the magnetic energy. Furthermore, Fig. 3
clearly shows that the relationship between the axial pull back force
and the axial displacement of the moving piston depends on the piston
radius, and so, on the way the piston crushes the ferrofluid seal. In
order to have a good axial stability, the pull back force should increase
when the axial displacement of the piston increases. Therefore, the
piston radius must not be constant, but should vary along the Z axis.
In addition, its radius should increase with an increasing altitude z.
Fig. 4 shows such a geometry with a piston radius which depends on
z. It can be noted that the relation linking the piston radius and
the altitude depends on both the ferrofluid quantity and the structure
dimensions. Thereby, the nature of this relation has an impact on
the intensity of the axial pull back force. If we look for a great pull
back force, the piston radius variation must be important with the
altitude z (Fig. 5). As the pull back force also impedes the piston
movement, an optimal piston shape piston must be determined for a
given ferrofluid quantity. In fact, several shapes have been tried out
for a given ferrofluid quantity. For a given piston shape, the magnetic
energy is determined when the piston is centered and not. Then, we
determine the axial pull back force by using the calculations of the
magnetic energy in the two previous configurations. These numerical
results are presented in Fig. 15 for the optimal profile of the emissive
piston. It is emphasized here that this way of determining the best
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Figure 5. Geometry: two outer ring permanent magnets and an inner
non-magnetic piston whose radius depends ‘sharply on the altitude z.

piston profile is accurate with the model taken in this paper but not fast
because several congurations have been tested (circle, ellipse, straight
line). The straight line gives an axial pull back force that equals 0,
which is consistent with the model used. Moreover, smooth profiles
seemed to be good solutions. By using the relations of the magnetic
energy and the definition of the axial force (Eq. (24)), we have found
that an elliptical profile gives an axial force which is proportional to
the axial displacement (Fig. 15). This implies that such a profile does
not generate distortions.

In conclusion, the piston shape that gives a linear pull back force
is an ellipse. It is noted that the equation of the ellipse depends on the
ferrofluid quantity used.

4. CALCULATION OF THE PULL BACK FORCE

The optimal shape of the piston is an ellipse and its axial stability is
now studied. Consequently, the pull back force must be calculated.
For this purpose, a method based on the determination of the
magnetic energy of the ferrofluid is presented. Two configurations
are considered. The ferrofluid seal energy is first determined when the
piston is axially centered and newt when the piston has moved axially.
It is noted that the second configuration corresponds to the case when
the piston is no longer axially centered. As the piston remains radially
centered over this study, the whole structure remains axisymmetrical.
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Therefore, the volume of ferrofluid is totally characterized by the
surface of its cross-section in an axial plane. The method consists
in geometrical reflections on this surface and its variations. Thus, the
ferrofluid quantity is described in terms of surface or of contour in this
plane.

4.1. Determination of the Ferrofluid Seal Energy When the
Piston Is Axially Centered

4.1.1. Ferrofluid Seal Free Shape

A small quantity of ferrofluid is used to make the seal. In absence of
the piston, the seal has its free shape and its contour can be described
approximately in terms of an equation of ellipse (7). This equation
has been determined as follows: we have drawn the magnetic lines
created by the ring permanent magnets and have looked for a simple
equation which can describes the magnetic lines for small quantities of
ferrofluids. The error done is inferior to 2%. As a consequence, we can
approximate the contour with (7):

(r − rf1)2

a2
1

+
(z − zf1)2

b2
1

= 1 (7)

where a1, b1, rf1 and zf1 are given in Table 1. Such an ellipse is
represented in Fig. 6 where the scale of the R axis is magnified. The
analytical integration of (8) gives the value of the ferrofluid seal cross-
section:

Sfree = 2
∫ r=rin

r=r0

(
b1

√
1 − (r − rf1)2

a2
1

)
dr (8)

4.1.2. Superposition of the Piston Contour and of the Ferrofluid Seal
Free Contour

The presence of the non-magnetic piston changes the seal geometrical
shape, as the fluid fits the piston contour. The piston profile chosen
is a portion of an ellipse (Fig. 7). This profile has not been obtained
directly but is the result of several attempts. Indeed, the final aim
of this study being to have a pull back force proportional to the
axial displacement of the piston, its geometry is the most important
parameter.

The piston minimal radius is rmin, its maximum one is rmax. The
dependence of the piston radius with the altitude z is given by the
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Table 1. Parameters used for the design of the emissive piston of the
ironless loudspeaker.

Parameter Value
a1 0, 00025
b1 0, 000275
rf1 0, 025
a2 0, 00025
b2 0, 001
rf2 0, 0251
a3 0, 0003091
b3 0, 00034
r3 0, 0249
a4 0, 00025
b4 0, 001
rf4 0, 0251
zf4 0, 000252
a5 0, 000309
b5 0, 00034
rf5 0, 0249005
r7 0, 0248509
r10 0, 0248985

following equation of ellipse (9):

(r − rf2)2

a2
2

+
(z)2

b2
2

= 1 (9)

where rf2, a2 and b2 are given in Table 1.
Figure 8 shows the superposition of both the piston profile and

the shape of the free ferrofluid seal. The points of intersection of both
contours are denoted P1 and P2. The left hand streaked surface, Sexcess ,
represents the quantity of ferrofluid which will move because of the
presence of the piston.
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Figure 6. Representation of the ferrofluid seal free shape in an axial
plane: the scale is magnified along the R axis. The ferrofluid volume
is proportional to the streaked surface (Sfree).

0

Z

R

Figure 7. Illustration of the shapes of the piston and of the seal:
both profiles are portion of ellipses. The scale along the R axis is not
magnified here.

4.1.3. Determination of the Shape of the Ferrofluid Seal in Presence
of the Axially Centered Piston

In presence of the piston, the ferrofluid seal no longer has its free shape,
but instead, it fits the piston own shape. Fig. 8 shows that a quantity
of ferrofluid has therefore to move. This quantity is proportional to the
left hand streaked surface Sexcess and can be analytically determined
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Figure 8. Ferrofluid seal in presence of the axially centered piston: the
left hand streaked surface represents the quantity of ferrofluid which
will move. The parameters are defined in Table 1.

by (10).

Sexcess = 2

(∫ r=r2

r=r0

(
b1

√
1 − (r − rf1)2

a2
1

))
dr

−2

(∫ r=r2

r=rmin

(
b2

√
1 − (r − rf2)2

a2
2

)
dr

)
(10)

This “exceeding” ferrofluid quantity moves towards the remaining free
space between the piston and the magnets and thickens symmetrically
the existing seal. The new contour is also described in terms of an
equation of ellipse (Fig. 9) whose coefficients a3, b3 and r3 must be
determined so that (11) is verified:

Sferro = 2

(∫ r=r3

r=rmin

(
b2

√
1 − (r − rf2)2

a2
2

))
dr

+2

(∫ r=rin

r=r3

(
b3

√
1 − (r − rf1)2

a2
3

)
dr

)
(11)

where Sferro is the surface of the new ferrofluid seal cross-section.
The parameter rf1 is kept in the second term of the second member
of (11) because of the equation of ellipse describing the piston
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Figure 9. Determination of the ferrofluid seal contour in presence of
the axially centered piston. The parameters are defined in Table 1.

contour. Moreover, the coefficients a3, b3 and r3 can be determined
by a dichotomy search by taking into account the fact that the
transformation between (7) and (13) is isometric. Consequently, the
following relation must be verified (12):

a1

b1
=

a3

b3
(12)

As a result, the equation of ellipse describing the ferrofluid seal contour
between r3 and rin in presence of the inner non-magnetic piston is given
by (13):

(r − rf1)2

a2
3

+
(z)2

b2
3

= 1 (13)

where a3, b3 and r3 are given in Table 1. The ferrofluid seal shape is
represented in Fig. 10.

4.1.4. Energy of the Ferrofluid Seal

As we exactly know where the ferrofluid moves when the inner
non-magnetic piston is present, the energy in the ferrofluid can be
calculated. Furthermore, the energy E1 of the ferrofluid seal with an
axially centered piston can be determined in two steps. The first step
consists in calculating the magnetic energy in the ferrofluid located
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Figure 10. Shape of the ferrofluid seal in presence of the inner non-
magnetic piston. The parameters are defined in Table 1.

between r3 and rin. This magnetic energy, Em1, is given by (14).

Em1 =
∫ θ=2π

θ=0

∫ z=zsup

z=zinf

∫ r=rin

r=r4

em(r, z)rdrdθdz

−
∫ θ=2π

θ=0

∫ z=zsup

z=zinf

∫ r=r3

r=r4

em(r, z)rdrdθdz (14)

The second step consists in determining the magnetic energy in
the ferrofluid located between rmin and r3. For this purpose, a non-
linear regression allows us to approximate the contour of the ferrofluid
seal between rmin and r3 by a parabolic equation. Consequently, the
integration limits are not constant but depend on the altitude z. The
lower limit r(z) verifies (15).

r(z) = p1z
2 + p2z + p3 (15)

The parameters p1, p2 and p3 appear in the integration limits of the
energy volume density. Therefore, the magnetic energy Em2 of the
ferrofluid located between rmin and r3 is given by (16):

Em2 =
∫ θ=2π

θ=0

∫ r3

(p1z2+p2z+p3)

∫ zsup1

zinf 1

em(r, z)rdrdθdz (16)

The total magnetic energy E1 in the ferrofluid seal is the sum of both
partial energies (17):

E1 = Em1 + Em2 (17)
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Figure 11. Geometry: two outer ring permanent magnets and an
inner non-magnetic piston with a ferrofluid seal between them. The
inner piston is not axially centered.

4.2. Determination of the Ferrofluid Seal Energy When the
Inner Piston Is Axially Decentered

4.2.1. Superposition of the Piston Contour and of the Ferrofluid Seal
Free Contour

When the piston moves, it becomes axially decentered as represented in
Fig. 11. The method remains the same as when the piston is centered
but calculations become more difficult. Indeed, even if ferrofluid
seal free contour remains the same, the piston contour is no longer
symmetrically superposed and the points of intersection determination
of both contours, P5(r, z) and P6(r, z), is more complicated (Fig. 12).
The equation of ellipse describing the axially decentered piston is given
by (18):

(r − rf4)2

a2
4

+
(z − zf4)2

b2
4

= 1 (18)

where rf4, a4, b4 and zf4 are given in Table 1. The points of intersection
of (7) and (8) can thus be determined.

4.2.2. Determination of the Shape of the Ferrofluid Seal in Presence
of the Axially Decentered Piston

As previously, in presence of the piston, the ferrofluid fits the piston
shape. The “exceeding” ferrofluid quantity appearing in the left hand
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Z

Z

Figure 12. Ferrofluid seal in presence of the axially decentered piston:
the left hand streaked surface represents the quantity of ferrofluid
which will move. The parameters are defined in Table 1.

streaked surface in Fig. 12 moves towards the remaining free space
between the piston and the magnets. Consequently, it thickens the
existing seal and the new contour is also described in terms of an
equation of ellipse. The total quantity of ferrofluid is still the same. In
addition, the seal shape is not symmetrical according to the R axis and
the points of intersection P7(r7, z7) and P8(r10, z10) (Fig. 13) must be
found so that (19) is verified.

Sferro = 2
∫ r=rin

r=r10

(
b5

√
1 − (r − rf5)2

a2
5

)
dr

+
∫ r10

r=r9

(
b5

√
1 − (r − rf5)2

a2
5

)
dr

−
∫ r=r1

r=r9

(
b5

√
1 − (r − rf5)2

a2
5

)
dr

− (r10 − r1) z7

+
∫ r=r10

r=r1

(
b4

√
1 − (r − rf4)2

a2
4

)
dr (19)

where rf5, a5, b5, r7 and r10 are given in Table 1. These coefficients are
obtained by a multivariable dichotomy search. It is to be noted that
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Figure 13. Determination of the ferrofluid seal contour in presence of
the axially decentered piston. The parameters are defined in Table 1.

the equation of ellipse describing the ferrofluid seal contour in presence
of the axially decentered piston is the same as the one describing the
ferrofluid seal contour in presence of the axially centered piston. The
final shape of the ferrofluid seal in presence of the axially decentered
piston is shown in Fig. 14.

4.2.3. Magnetic Energy of the Ferrofluid Seal in Presence of the
Axially Decentered Piston

The magnetic energy of the ferrofluid can be calculated in two steps.
The first step consists in calculating the magnetic energy Em3 of the
ferrofluid located between r10 and rin with (20).

Em3 =
∫ θ=2π

θ=0

∫ z=zsup2

z=zinf 2

∫ r=rin

r=r1

em(r, z)rdrdθdz

−
∫ θ=2π

θ=0

∫ z=zsup2

z=zinf 2

∫ r=r10

r=r1

em(r, z)rdrdθdz (20)

The second step consists in calculating the magnetic energy Em4 of
the ferrofluid located between r7 and r10. For this purpose, a non
linear regression allows us to approximate the contour of the ferrofluid
seal between r7 and r10 by a parabolic equation. Consequently, the
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Figure 14. Shape of the ferrofluid seal when the inner piston is not
axially centered. The parameters are defined in Table 1.

integration limits are not constant but depend on the altitude z. The
lower limit r(z) verifies (21).

r(z) = p4z
2 + p5z + p6 (21)

It is noted that the parameters p4, p5 and p6 appear in the integration
limits of the energy volume density. Therefore, the magnetic energy
Em4 of the ferrofluid seal between r7 and r10 is given by (22):

Em4 =
∫ θ=2π

θ=0

∫ r10

(p4z2+p5z+p6)

∫ zsup2

zinf 2

em(r, z)rdrdθdz (22)

where zinf 2 and zsup2 correspond to the points of intersection between
the line of equation r = r10 and the parabolic equation r = p4z

2 +
p5z+p6. As a result, the magnetic energy of the ferrofluid seal is given
by (23).

E2 = Em3 + Em4 (23)

4.2.4. Determination of the Axial Force Exerted by the Ferrofluid Seal

The determination of the magnetic energy in the two previous
configurations allows us to calculate the axial pull back force Faxial

of the ferrofluid seal with (24):

Faxial =
E2 − E1

Δz
(24)
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Figure 15. Pull-back force exerted by the seal when the piston has
an elliptic profile versus the piston displacement.

where E1 and E2 have been determined previously. It is noted that all
the energy density calculations are done analytically and the energy
calculations are done numerically.

When the numerical set of values given in Table 1 is considered,
the calculation of the force exerted by the seal on the piston for several
axial displacements of the piston is shown in Fig. 15. This proves that
an elliptical piston profile effectively leads to linear force variations
with the piston displacement. The corresponding axial stiffness is
approximately 3.6 N/mm.

5. CONCLUSION

This paper has described the use of ferrofluid seals in ironless
electrodynamic loudspeakers by using the three-dimensional analytical
expressions of the magnetic field created by ring permanent magnets.
One of the seal properties lies in the pull back force it exerts on
the moving piston. It is noted that this force depends on both the
ferrofluid quantity used and the piston lateral profile. Moreover, this
paper shows that the piston shape can be chosen to control the force
variation with the axial displacement. For small ferrofluid quantities,
an elliptical piston profile leads to a pull back force which varies
linearly with the piston axial displacement. Furthermore, this paper
also describes a semi-analytical method for calculating the pull back
force. Such an approach is based on geometrical reflections enabled by
the axisymmetry of the device. Thereby, the shape of the ferrofluid seal
can be found and the energy in the ferrofluid calculated for each piston
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position. Then, the force exerted by the seal on the piston is deducted.
Such an approach can be very useful to determine the mechanical
properties of ferrofluid seals in several engineering applications. In
addition, we think that such an approach paves the way for new
analytical approaches for the design of airtightness seals or bearings
using ferrofluid seals.
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